1
|
Ruiz PAS, Ziebert F, Kulić IM. Physics of self-rolling viruses. Phys Rev E 2022; 105:054411. [PMID: 35706307 DOI: 10.1103/physreve.105.054411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Viruses are right at the interface of inanimate matter and life. However, recent experiments [Sakai et al., J. Virol. 92, e01522-17 (2018)0022-538X10.1128/JVI.01522-17] have shown that some influenza strains can actively roll on glycan-covered surfaces. In a previous letter [Ziebert and Kulić, Phys. Rev. Lett. 126, 218101 (2021)0031-900710.1103/PhysRevLett.126.218101] we suggested this to be a form of viral surface metabolism: a collection of spike proteins that attach to and cut the glycans act as a self-organized mechano-chemical motor. Here we study in more depth the physics of the emergent self-rolling states. We give scaling arguments how the motion arises, substantiated by a detailed analytical theory that yields the full torque-angular velocity relation of the self-organized motor. Stochastic Gillespie simulations are used to validate the theory and to quantify stochastic effects like virus detachment and reversals of its direction. Finally, we also cross-check several approximations made previously and show that the proposed mechanism is very robust. All these results point together to the statistical inevitability of viral rolling in the presence of enzymatic activity.
Collapse
Affiliation(s)
- Pedro A Soria Ruiz
- Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany
- BioQuant, Heidelberg University, D-69120 Heidelberg, Germany
| | - Igor M Kulić
- Institut Charles Sadron UPR22-CNRS, F-67034 Strasbourg, France
- Institute Theory of Polymers, Leibniz-Institute of Polymer Research, D-01069 Dresden, Germany
| |
Collapse
|
2
|
Ziebert F, Kulić IM. How Influenza's Spike Motor Works. PHYSICAL REVIEW LETTERS 2021; 126:218101. [PMID: 34114881 DOI: 10.1103/physrevlett.126.218101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
While often believed to be a passive agent that merely exploits its host's metabolism, the influenza virus has recently been shown to actively move across glycan-coated surfaces. This form of enzymatically driven surface motility is currently not well understood and has been loosely linked to burnt-bridge Brownian ratchet mechanisms. Starting from known properties of influenza's spike proteins, we develop a physical model that quantitatively describes the observed motility. It predicts a collectively emerging dynamics of spike proteins and surface-bound ligands that combined with the virus' geometry give rise to a self-organized rolling propulsion. We show that in contrast to a Brownian ratchet, the rotary spike drive is not fluctuation driven but operates optimally as a macroscopic engine in the deterministic regime. The mechanism also applies to relatives of influenza and to man-made analogs like DNA monowheels and should give guidelines for their optimization.
Collapse
Affiliation(s)
- Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany and BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Igor M Kulić
- Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France and Institute Theory of Polymers, Leibniz-Institute of Polymer Research, D-01069 Dresden, Germany
| |
Collapse
|
3
|
Abstract
In this work, computer modeling has been used to show that longer ligands allow biological cells (e.g., blood platelets) to withstand stronger flows after their adhesion to solid walls. A mechanistic model of polymer-mediated ligand-receptor adhesion between a microparticle (cell) and a flat wall has been developed. The theoretical threshold between adherent and non-adherent regimes has been derived analytically and confirmed by simulations. These results lead to a deeper understanding of numerous biophysical processes, e.g., arterial thrombosis, and to the design of new biomimetic colloid-polymer systems.
Collapse
Affiliation(s)
- Aleksey V Belyaev
- M. V. Lomonosov Moscow State University, Faculty of Physics, 119991 Moscow, Russia
| |
Collapse
|
4
|
Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones. Phys Life Rev 2018; 26-27:57-95. [PMID: 29550179 DOI: 10.1016/j.plrev.2018.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 12/24/2022]
Abstract
Hemostasis is a complex physiological mechanism that functions to maintain vascular integrity under any conditions. Its primary components are blood platelets and a coagulation network that interact to form the hemostatic plug, a combination of cell aggregate and gelatinous fibrin clot that stops bleeding upon vascular injury. Disorders of hemostasis result in bleeding or thrombosis, and are the major immediate cause of mortality and morbidity in the world. Regulation of hemostasis and thrombosis is immensely complex, as it depends on blood cell adhesion and mechanics, hydrodynamics and mass transport of various species, huge signal transduction networks in platelets, as well as spatiotemporal regulation of the blood coagulation network. Mathematical and computational modeling has been increasingly used to gain insight into this complexity over the last 30 years, but the limitations of the existing models remain profound. Here we review state-of-the-art-methods for computational modeling of thrombosis with the specific focus on the analysis of unresolved challenges. They include: a) fundamental issues related to physics of platelet aggregates and fibrin gels; b) computational challenges and limitations for solution of the models that combine cell adhesion, hydrodynamics and chemistry; c) biological mysteries and unknown parameters of processes; d) biophysical complexities of the spatiotemporal networks' regulation. Both relatively classical approaches and innovative computational techniques for their solution are considered; the subjects discussed with relation to thrombosis modeling include coarse-graining, continuum versus particle-based modeling, multiscale models, hybrid models, parameter estimation and others. Fundamental understanding gained from theoretical models are highlighted and a description of future prospects in the field and the nearest possible aims are given.
Collapse
|
5
|
Investigating the effects of membrane deformability on artificial capsule adhesion to the functionalized surface. Biomech Model Mechanobiol 2015; 15:1055-68. [DOI: 10.1007/s10237-015-0742-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
|
6
|
Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 2015; 44:1240-56. [PMID: 25561050 DOI: 10.1039/c4cs00357h] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers, identified from a random sequence pool, with the ability to form unique and versatile tertiary structures that bind to cognate molecules with superior specificity. Their small size, excellent chemical stability and low immunogenicity enable them to rival antibodies in cancer imaging and therapy applications. Their facile chemical synthesis, versatility in structural design and engineering, and the ability for site-specific modifications with functional moieties make aptamers excellent recognition motifs for cancer biomarker discovery and detection. Moreover, aptamers can be selected or engineered to regulate cancer protein functions, as well as to guide anti-cancer drug design or screening. This review summarizes their applications in cancer, including cancer biomarker discovery and detection, cancer imaging, cancer therapy, and anti-cancer drug discovery. Although relevant applications are relatively new, the significant progress achieved has demonstrated that aptamers can be promising players in cancer research.
Collapse
Affiliation(s)
- Haitao Ma
- The Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shamloo A, Mohammadaliha N, Heilshorn SC, Bauer AL. A Comparative Study of Collagen Matrix Density Effect on Endothelial Sprout Formation Using Experimental and Computational Approaches. Ann Biomed Eng 2015; 44:929-41. [DOI: 10.1007/s10439-015-1416-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
|
8
|
Wang S, Wan Y, Liu Y. Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors. NANOSCALE 2014; 6:12482-9. [PMID: 25137436 PMCID: PMC4194151 DOI: 10.1039/c4nr02854f] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future.
Collapse
Affiliation(s)
- Shunqiang Wang
- Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015, United States
| | - Yuan Wan
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| | - Yaling Liu
- Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015, United States
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, United States
| |
Collapse
|
9
|
Wang L, Asghar W, Demirci U, Wan Y. Nanostructured substrates for isolation of circulating tumor cells. NANO TODAY 2013; 8:347-387. [PMID: 24944563 PMCID: PMC4059613 DOI: 10.1016/j.nantod.2013.07.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Circulating tumor cells (CTCs) originate from the primary tumor mass and enter into the peripheral bloodstream. CTCs hold the key to understanding the biology of metastasis and also play a vital role in cancer diagnosis, prognosis, disease monitoring, and personalized therapy. However, CTCs are rare in blood and hard to isolate. Additionally, the viability of CTCs can easily be compromised under high shear stress while releasing them from a surface. The heterogeneity of CTCs in biomarker expression makes their isolation quite challenging; the isolation efficiency and specificity of current approaches need to be improved. Nanostructured substrates have emerged as a promising biosensing platform since they provide better isolation sensitivity at the cost of specificity for CTC isolation. This review discusses major challenges faced by CTC isolation techniques and focuses on nanostructured substrates as a platform for CTC isolation.
Collapse
Affiliation(s)
- Lixue Wang
- Department of Oncology, The Second Affiliated Hospital of Southeast University, Southeast University, Nanjing, Jiangsu 210003, PR China
| | - Waseem Asghar
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Center for Biomedical Engineering, Renal Division and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Center for Biomedical Engineering, Renal Division and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-Massachusetts Institute of Technology (MIT), Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Yuan Wan
- Department of Oncology, The Second Affiliated Hospital of Southeast University, Southeast University, Nanjing, Jiangsu 210003, PR China
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| |
Collapse
|
10
|
Sundd P, Gutierrez E, Koltsova EK, Kuwano Y, Fukuda S, Pospieszalska MK, Groisman A, Ley K. 'Slings' enable neutrophil rolling at high shear. Nature 2012; 488:399-403. [PMID: 22763437 PMCID: PMC3433404 DOI: 10.1038/nature11248] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/22/2012] [Indexed: 12/19/2022]
Abstract
Most leukocytes can roll along the walls of venules at low shear stress (1 dyn/cm2), but neutrophils have the ability to roll at 10-fold higher shear stress in microvessels in vivo1,2. The mechanisms involved in this shear-resistant rolling are known to involve cell flattening3 and pulling of long membrane tethers at the rear4–6. Here, we show that these long tethers do not retract as postulated6,7, but instead persist and appear as ‘slings’ at the front of rolling cells. We demonstrate slings in a model of acute inflammation in vivo and on P-selectin in vitro, where P-selectin-glycoprotein-ligand-1 (PSGL-1) is presented as discrete sticky patches while LFA-1 is expressed over the entire length on slings. As neutrophils roll forward, slings wrap around the rolling cells and undergo a step-wise peeling from the P-selectin substrate enabled by the failure of PSGL-1 patches under hydrodynamic forces. The ‘step-wise peeling of slings’ is distinct from the ‘pulling of tethers’ reported previously4–6,8. Each sling effectively lays out a cell-autonomous adhesive substrate in front of neutrophils rolling at high shear stress during inflammation.
Collapse
Affiliation(s)
- Prithu Sundd
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Spertini C, Baïsse B, Spertini O. Ezrin-radixin-moesin-binding sequence of PSGL-1 glycoprotein regulates leukocyte rolling on selectins and activation of extracellular signal-regulated kinases. J Biol Chem 2012; 287:10693-10702. [PMID: 22311979 DOI: 10.1074/jbc.m111.318022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) mediates the capture (tethering) of free-flowing leukocytes and subsequent rolling on selectins. PSGL-1 interactions with endothelial selectins activate Src kinases and spleen tyrosine kinase (Syk), leading to α(L)β(2) integrin-dependent leukocyte slow rolling, which promotes leukocyte recruitment into tissues. In addition, but through a distinct pathway, PSGL-1 engagement activates ERK. Because ezrin, radixin and moesin proteins (ERMs) link PSGL-1 to actin cytoskeleton and because they serve as adaptor molecules between PSGL-1 and Syk, we examined the role of PSGL-1 ERM-binding sequence (EBS) on cell capture, rolling, and signaling through Syk and MAPK pathways. We carried out mutational analysis and observed that deletion of EBS severely reduced 32D leukocyte tethering and rolling on L-, P-, and E-selectin and slightly increased rolling velocity. Alanine substitution of Arg-337 and Lys-338 showed that these residues play a key role in supporting leukocyte tethering and rolling on selectins. Importantly, EBS deletion or Arg-337 and Lys-338 mutations abrogated PSGL-1-induced ERK activation, whereas they did not prevent Syk phosphorylation or E-selectin-induced leukocyte slow rolling. These studies demonstrate that PSGL-1 EBS plays a critical role in recruiting leukocytes on selectins and in activating the MAPK pathway, whereas it is dispensable to phosphorylate Syk and to lead to α(L)β(2)-dependent leukocyte slow rolling.
Collapse
Affiliation(s)
- Caroline Spertini
- Service and Central Laboratory of Hematology, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Bénédicte Baïsse
- Service and Central Laboratory of Hematology, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Olivier Spertini
- Service and Central Laboratory of Hematology, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland.
| |
Collapse
|
12
|
Sundd P, Pospieszalska MK, Cheung LSL, Konstantopoulos K, Ley K. Biomechanics of leukocyte rolling. Biorheology 2011; 48:1-35. [PMID: 21515934 DOI: 10.3233/bir-2011-0579] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip bonds) their lifetimes. The force-dependent 'catch-slip' bond kinetics are explained using the 'two pathway model' for bond dissociation. Both the 'sliding-rebinding' and the 'allosteric' mechanisms attribute 'catch-slip' bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This 'shear-threshold' phenomenon is a consequence of shear-enhanced tethering and catch bond-enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (>0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers.
Collapse
Affiliation(s)
- Prithu Sundd
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
13
|
Frequency-Dependent Focal Adhesion Instability and Cell Reorientation Under Cyclic Substrate Stretching. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0187-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
14
|
Bose S, Das SK, Karp JM, Karnik R. A semianalytical model to study the effect of cortical tension on cell rolling. Biophys J 2011; 99:3870-9. [PMID: 21156128 DOI: 10.1016/j.bpj.2010.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/29/2010] [Accepted: 10/21/2010] [Indexed: 01/13/2023] Open
Abstract
Cell rolling on the vascular endothelium plays an important role in trafficking of leukocytes, stem cells, and cancer cells. We describe a semianalytical model of cell rolling that focuses on the microvillus as the unit of cell-substrate interaction and integrates microvillus mechanics, receptor clustering, force-dependent receptor-ligand kinetics, and cortical tension that enables incorporation of cell body deformation. Using parameters obtained from independent experiments, the model showed excellent agreement with experimental studies of neutrophil rolling on P-selectin and predicted different regimes of cell rolling, including spreading of the cells on the substrate under high shear. The cortical tension affected the cell-surface contact area and influenced the rolling velocity, and modulated the dependence of rolling velocity on microvillus stiffness. Moreover, at the same shear stress, microvilli of cells with higher cortical tension carried a greater load compared to those with lower cortical tension. We also used the model to obtain a scaling dependence of the contact radius and cell rolling velocity under different conditions of shear stress, cortical tension, and ligand density. This model advances theoretical understanding of cell rolling by incorporating cortical tension and microvillus extension into a versatile, semianalytical framework.
Collapse
Affiliation(s)
- Suman Bose
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
15
|
Cheung LSL, Raman PS, Balzer EM, Wirtz D, Konstantopoulos K. Biophysics of selectin-ligand interactions in inflammation and cancer. Phys Biol 2011; 8:015013. [PMID: 21301059 DOI: 10.1088/1478-3975/8/1/015013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Selectins (L-, E- and P-selectin) are calcium-dependent transmembrane glycoproteins that are expressed on the surface of circulating leukocytes, activated platelets, and inflamed endothelial cells. Selectins bind predominantly to sialofucosylated glycoproteins and glycolipids (E-selectin only) present on the surface of apposing cells, and mediate transient adhesive interactions pertinent to inflammation and cancer metastasis. The rapid turnover of selectin-ligand bonds, due to their fast on- and off-rates along with their remarkably high tensile strengths, enables them to mediate cell tethering and rolling in shear flow. This paper presents the current body of knowledge regarding the role of selectins in inflammation and cancer metastasis, and discusses experimental methodologies and mathematical models used to resolve the biophysics of selectin-mediated cell adhesion. Understanding the biochemistry and biomechanics of selectin-ligand interactions pertinent to inflammatory disorders and cancer metastasis may provide insights for developing promising therapies and/or diagnostic tools to combat these disorders.
Collapse
Affiliation(s)
- Luthur Siu-Lun Cheung
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
16
|
Spain SG, Cameron NR. The binding of polyvalent galactosides to the lectin Ricinus communis agglutinin 120 (RCA120): an ITC and SPR study. Polym Chem 2011. [DOI: 10.1039/c1py00030f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Stabilizing to disruptive transition of focal adhesion response to mechanical forces. J Biomech 2010; 43:2524-9. [PMID: 20542514 DOI: 10.1016/j.jbiomech.2010.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 05/15/2010] [Accepted: 05/18/2010] [Indexed: 01/09/2023]
Abstract
Strong mechanical forces can, obviously, disrupt cell-cell and cell-matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin-integrin interaction and integrin-ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin-ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin-ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force.
Collapse
|
18
|
Buscher K, Riese SB, Shakibaei M, Reich C, Dernedde J, Tauber R, Ley K. The transmembrane domains of L-selectin and CD44 regulate receptor cell surface positioning and leukocyte adhesion under flow. J Biol Chem 2010; 285:13490-7. [PMID: 20212041 DOI: 10.1074/jbc.m110.102640] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During inflammation and immune surveillance, initial contacts (tethering) between free-flowing leukocytes and the endothelium are vitally dependent on the presentation of the adhesion receptor L-selectin on leukocyte microvilli. Determinants that regulate receptor targeting to microvilli are, however, largely elusive. Therefore, we systematically swapped the extracellular (EC), transmembrane (TM), and intracellular (IC) domains of L-selectin and CD44, a hyaluronan receptor expressed on the cell body and excluded from microvilli. Electron microscopy of transfected human myeloid K562 cells showed that the highly conserved TM domains are responsible for surface positioning. The TM segment of L-selectin forced chimeric molecules to microvilli, and the CD44 TM domain evoked expression on the cell body, whereas the IC and EC domains hardly influenced surface localization. Transfectants with microvillus-based chimeras showed a significantly higher adhesion rate under flow but not under static conditions compared with cells with cell body-expressed receptors. Substitution of the IC domain of L-selectin caused diminished tethering but no change in surface distribution, indicating that both microvillus positioning and cytoskeletal anchoring contribute to leukocyte tethering. These findings demonstrate that TM domains of L-selectin and CD44 play a crucial role in cell adhesion under flow by targeting receptors to microvilli or the cell body, respectively.
Collapse
Affiliation(s)
- Konrad Buscher
- Central Department of Laboratory Medicine and Pathobiochemistry, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Pospieszalska MK, Ley K. Chapter 8 Modeling Leukocyte Rolling. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Pospieszalska MK, Zarbock A, Pickard JE, Ley K. Event-tracking model of adhesion identifies load-bearing bonds in rolling leukocytes. Microcirculation 2008; 16:115-30. [PMID: 19023690 DOI: 10.1080/10739680802462792] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES P-selectin binding to P-selectin glycoprotein ligand-1 (PSGL)-1 mediates leukocyte rolling under conditions of inflammation and injury. The aims of this study were to develop an efficient, high temporal resolution model for direct simulation of leukocyte rolling and conduct a study of load-bearing bonds using the model. MATERIALS AND METHODS A stochastic pi-calculus-driven event-tracking model of adhesion (ETMA) was developed and compared with experimental data. Multiple simulations for each case were conducted to obtain high-confidence numerical characteristics of leukocyte rolling. RESULTS Leukocyte rolling and the underlying P-selectin-PSGL-1 bonds were studied under low wall shear rate (25-50 s(-1)) conditions from measured parameters of leukocyte rolling and bond properties. For the first time, the location, number, lifetime, history, and kinetics of load-bearing bonds and their influence on cell rolling were identified and instantaneous cell displacements, translational and rotational velocities, and cell-substrate distances derived. The model explains the commonly observed "stop-start" type rolling behavior and reveals that a few load-bearing bonds are sufficient to support rolling, while a large number of bonds dissociate before becoming load bearing. CONCLUSIONS ETMA provides a method for more precise, direct simulation of leukocyte rolling at low wall shear rates and sets a foundation upon which further refinements can be introduced.
Collapse
Affiliation(s)
- Maria K Pospieszalska
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
21
|
Duffadar RD, Davis JM. Dynamic adhesion behavior of micrometer-scale particles flowing over patchy surfaces with nanoscale electrostatic heterogeneity. J Colloid Interface Sci 2008; 326:18-27. [DOI: 10.1016/j.jcis.2008.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
22
|
A computational study of leukocyte adhesion and its effect on flow pattern in microvessels. J Theor Biol 2008; 254:483-98. [DOI: 10.1016/j.jtbi.2008.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/08/2008] [Accepted: 05/19/2008] [Indexed: 11/18/2022]
|
23
|
Abstract
This work is motivated by experimental observations that cells on stretched substrate exhibit different responses to static and dynamic loads. A model of focal adhesion that can consider the mechanics of stress fiber, adhesion bonds, and substrate was developed at the molecular level by treating the focal adhesion as an adhesion cluster. The stability of the cluster under dynamic load was studied by applying cyclic external strain on the substrate. We show that a threshold value of external strain amplitude exists beyond which the adhesion cluster disrupts quickly. In addition, our results show that the adhesion cluster is prone to losing stability under high-frequency loading, because the receptors and ligands cannot get enough contact time to form bonds due to the high-speed deformation of the substrate. At the same time, the viscoelastic stress fiber becomes rigid at high frequency, which leads to significant deformation of the bonds. Furthermore, we find that the stiffness and relaxation time of stress fibers play important roles in the stability of the adhesion cluster. The essence of this work is to connect the dynamics of the adhesion bonds (molecular level) with the cell's behavior during reorientation (cell level) through the mechanics of stress fiber. The predictions of the cluster model are consistent with experimental observations.
Collapse
|
24
|
Pappu V, Bagchi P. 3D computational modeling and simulation of leukocyte rolling adhesion and deformation. Comput Biol Med 2008; 38:738-53. [PMID: 18499093 DOI: 10.1016/j.compbiomed.2008.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 04/03/2008] [Indexed: 01/09/2023]
Abstract
A 3D computational fluid dynamic (CFD) model is presented to simulate transient rolling adhesion and deformation of leukocytes over a P-selectin coated surface in shear flow. The computational model is based on immersed boundary method for cell deformation, and stochastic Monte Carlo simulation for receptor/ligand interaction. The model is shown to predict the characteristic 'stop-and-go' motion of rolling leukocytes. Here we examine the effect of cell deformation, shear rate, and microvilli distribution on the rolling characteristics. Comparison with experimental measurements is presented throughout the article. We observe that compliant cells roll more stably, and have longer pause times due to reduced bond force and increased bond lifetime. Microvilli presentation is shown to affect rolling characteristics by altering the step size, but not pause times. Our simulations predict a significant sideway motion of the cell arising purely due to receptor/ligand interaction, and discrete nature of microvilli distribution. Adhesion is seen to occur via multiple tethers, each of which forms multiple selectin bonds, but often one tether is sufficient to support rolling. The adhesion force is concentrated in only 1-3 tethered microvilli in the rear-most part of a cell. We also observe that the number of selectin bonds that hold the cell effectively against hydrodynamic shear is significantly less than the total adhesion bonds formed between a cell and the substrate. The force loading on individual microvillus and selectin bond is not continuous, rather occurs in steps. Further, we find that the peak force on a tethered microvillus is much higher than that measured to cause tether extrusion.
Collapse
Affiliation(s)
- Vijay Pappu
- Department of Mechanical and Aerospace Engineering, Rutgers University, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | | |
Collapse
|
25
|
Korn CB, Schwarz US. Dynamic states of cells adhering in shear flow: from slipping to rolling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:041904. [PMID: 18517653 DOI: 10.1103/physreve.77.041904] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Indexed: 05/10/2023]
Abstract
Motivated by rolling adhesion of white blood cells in the vasculature, we study how cells move in linear shear flow above a wall to which they can adhere via specific receptor-ligand bonds. Our computer simulations are based on a Langevin equation accounting for hydrodynamic interactions, thermal fluctuations, and adhesive interactions. In contrast to earlier approaches, our model not only includes stochastic rules for the formation and rupture of bonds, but also fully resolves both receptor and ligand positions. We identify five different dynamic states of motion in regard to the translational and angular velocities of the cell. The transitions between the different states are mapped out in a dynamic state diagram as a function of the rates for bond formation and rupture. For example, as the cell starts to adhere under the action of bonds, its translational and angular velocities become synchronized and the dynamic state changes from slipping to rolling. We also investigate the effect of nonmolecular parameters. In particular, we find that an increase in viscosity of the medium leads to a characteristic expansion of the region of stable rolling to the expense of the region of firm adhesion, but not to the expense of the regions of free or transient motion. Our results can be used in an inverse approach to determine single bond parameters from flow chamber data on rolling adhesion.
Collapse
Affiliation(s)
- C B Korn
- University of Heidelberg, Bioquant, BQ 0013 BIOMS Schwarz, Im Neuenheimer Feld 267, Heidelberg, Germany
| | | |
Collapse
|
26
|
Abstract
We simulated the docking of human immunodeficiency virus (HIV) with a cell membrane using Brownian adhesive dynamics. The main advance in the current version of Brownian adhesive dynamics is that we use a simple bead-spring model to coarsely approximate the role of gp120 trimerization on HIV docking. We used our simulations to elucidate the effect of env spike density on the rate and probability of HIV binding, as well as the probability that each individual gp120 trimer is fully engaged. We found that for typical CD4 surface densities, viruses expressing as few as 8 env spikes will dock with binding rate constants comparable to viruses expressing 72 spikes. We investigated the role of cellular receptor diffusion on the degree of binding achieved by the virus on both short timescales (where binding has reached steady state but before substantial receptor accumulation in the viral-cell contact zone has occurred) and long timescales (where the system has reached steady state). On short timescales, viruses with 10-23 env trimers most efficiently form fully engaged trimers. On long timescales, all gp120 in the contact area will become bound to CD4. We found that it takes seconds for engaged trimers to cluster CD4 molecules in the contact zone, which partially explains the deleay in viral entry.
Collapse
|
27
|
Usta OB, Alexeev A, Balazs AC. Fork in the road: patterned surfaces direct microcapsules to make a decision. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:10887-90. [PMID: 17880118 DOI: 10.1021/la7018583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Using computational modeling, we simulate the motion of compliant microcapsules on patterned surfaces. The microcapsules, which consist of an elastic shell and an encapsulated fluid, model biological cells or polymeric particles. We focus on a surface that is decorated with a Y-shaped pattern. As compared to the stem of the Y, one branch is relatively soft, and the other branch is relatively sticky. The capsules are driven to move over this substrate by an imposed fluid flow. Upon reaching the junction point, we find that deformable capsules preferentially move onto the sticky branch and stiffer capsules move onto the soft branch. Thus, through their inherent interactions with the patterned domains, the microcapsules are driven to "make decisions" about their path along the surface. Such surface patterning provides a facile means of routing particular capsules to specified locations in microfluidic devices and can form a fundamental component in creating fluidic circuits where microcapsules carry out simple logic operations.
Collapse
Affiliation(s)
- O Berk Usta
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
28
|
Affinity adsorption of cells to surfaces and strategies for cell detachment. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007. [PMID: 17924078 DOI: 10.1007/10_2006_042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The use of bio-specific interactions for the separation and recovery of bio-molecules is now widely established and in many cases the technique has successfully crossed the divide between bench and process scale operation. Although the major specificity advantage of affinity-based separations also applies to systems intended for cell fractionation, developments in this area have been slower. Many of the problems encountered result from attempts to take techniques developed for molecular systems and, with only minor modification to the conditions used, apply them for the separation of cells. This approach tends to ignore or at least trivialise the problems, which arise from the heterogeneous nature of a cell suspension and the multivalent nature of the cell/surface interaction. To develop viable separation processes on a larger scale, effective contacting strategies are required in separators that also allow detachment or recovery protocols that overcome the enhanced binding strength generated by multivalent interactions. The effects of interaction valency on interaction strength needs to be assessed and approaches developed to allow effective detachment and recovery of adsorbed cells without compromising cell viability. This article considers the influence of operating conditions on cell attachment and the extent to which multivalent interactions determine the strength of cell binding and subsequent detachment.
Collapse
|
29
|
Zhu G, Alexeev A, Kumacheva E, Balazs AC. Modeling the interactions between compliant microcapsules and pillars in microchannels. J Chem Phys 2007; 127:034703. [PMID: 17655451 DOI: 10.1063/1.2753150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using a computational model, we investigate the motion of microcapsules inside a microchannel that encompasses a narrow constriction. The microcapsules are composed of a compliant, elastic shell and an encapsulated fluid; these fluid-filled shells model synthetic polymeric microcapsules or biological cells (e.g., leukocytes). Driven by an imposed flow, the capsules are propelled along the microchannel and through the constricted region, which is formed by two pillars that lie in registry, extending from the top and bottom walls of the channels. The tops of these pillars (facing into the microchannel) are modified to exhibit either a neutral or an attractive interaction with the microcapsules. The pillars (and constriction) model topological features that can be introduced into microfluidic devices or the physical and chemical heterogeneities that are inherently present in biological vessels. To simulate the behavior of this complex system, we employ a hybrid method that integrates the lattice Boltzmann model (LBM) for fluid dynamics and the lattice spring model (LSM) for the micromechanics of elastic solids. Through this LBM/LSM technique, we probe how the capsule's stiffness and interaction with the pillars affect its passage through the chambers. The results yield guidelines for regulating the movement of microcarriers in microfluidic systems and provide insight into the flow properties of biological cells in capillaries.
Collapse
Affiliation(s)
- Guangdong Zhu
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
30
|
Zhu G, Alexeev A, Balazs AC. Designing Constricted Microchannels To Selectively Entrap Soft Particles. Macromolecules 2007. [DOI: 10.1021/ma0706632] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guangdong Zhu
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Alexander Alexeev
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Anna C. Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
31
|
Bailey AM, Thorne BC, Peirce SM. Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann Biomed Eng 2007; 35:916-36. [PMID: 17436112 DOI: 10.1007/s10439-007-9266-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 01/23/2007] [Indexed: 12/15/2022]
Abstract
Leukocyte trafficking through the microcirculation and into tissues is central in angiogenesis, inflammation, and the immune response. Although the literature is rich with mechanistic detail describing molecular mediators of these processes, integration of signaling events and cell behaviors within a unified spatial and temporal framework at the multi-cell tissue-level is needed to achieve a fuller understanding. We have developed a novel computational framework that combines agent-based modeling (ABM) with a network flow analysis to study monocyte homing. A microvascular network architecture derived from mouse muscle was incorporated into the ABM. Each individual cell was represented by an individual agent in the simulation. The network flow model calculates hemodynamic parameters (blood flow rates, fluid shear stress, and hydrostatic pressures) throughout the simulated microvascular network. These are incorporated into the ABM to affect monocyte transit through the network and chemokine/cytokine concentrations. In turn, simulated monocytes respond to their local mechanical and biochemical environments and make behavioral decisions based on a rule set derived from independent literature. Simulated cell behaviors give rise to emergent leukocyte rolling, adhesion, and extravasation. Molecular knockout simulations were performed to validate the model, and predictions of monocyte adhesion, rolling, and extravasation show good agreement with the independently published corresponding mouse studies.
Collapse
Affiliation(s)
- Alexander M Bailey
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
32
|
Duffadar RD, Davis JM. Interaction of micrometer-scale particles with nanotextured surfaces in shear flow. J Colloid Interface Sci 2007; 308:20-9. [PMID: 17254594 DOI: 10.1016/j.jcis.2006.12.068] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 11/25/2006] [Accepted: 12/27/2006] [Indexed: 10/23/2022]
Abstract
Dynamic particle adhesion from flow over collecting surfaces with nanoscale heterogeneity occurs in important natural systems and current technologies. Accurate modeling and prediction of the dynamics of particles interacting with such surfaces will facilitate their use in applications for sensing, separating, and sorting colloidal-scale objects. In this paper, the interaction of micrometer-scale particles with electrostatically heterogeneous surfaces is analyzed. The deposited polymeric patches that provide the charge heterogeneity in experiments are modeled as 11-nm disks randomly distributed on a planar surface. A novel technique based on surface discretization is introduced to facilitate computation of the colloidal interactions between a particle and the heterogeneous surface based on expressions for parallel plates. Combining these interactions with hydrodynamic forces and torques on a particle in a low Reynolds number shear flow allows particle dynamics to be computed for varying net surface coverage. Spatial fluctuations in the local surface density of the deposited patches are shown responsible for the dynamic adhesion phenomena observed experimentally, including particle capture on a net-repulsive surface.
Collapse
Affiliation(s)
- Ranojoy D Duffadar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
33
|
Yu Y, Shao JY. Simultaneous tether extraction contributes to neutrophil rolling stabilization: a model study. Biophys J 2006; 92:418-29. [PMID: 17071668 PMCID: PMC1751384 DOI: 10.1529/biophysj.105.078808] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neutrophil rolling is the initial step of neutrophil recruitment to sites of inflammation. During the rolling, membrane tethers are very likely extracted from both the neutrophil and the endothelial cell lining of vessel walls. Here, we present a two-dimensional neutrophil-rolling model to investigate whether and how membrane tethers contribute to stable neutrophil rolling. In our model, neutrophils are assumed to be rigid spheres covered with randomly distributed deformable microvilli, and endothelial cells are modeled as flat membrane surfaces decorated with evenly distributed ligands. The instantaneous rolling velocity and other unknowns of the model are calculated by coupling the hydrodynamic resistance functions, the geometric relationships, and the constitutive equations that govern microvillus extension and tether extraction. Our results show that glutaraldehyde-fixed neutrophils (without microvillus extension or tether extraction) roll unstably on a P-selectin-coated substrate with large variance in rolling velocity. In contrast, normal neutrophils roll much more stably, with small variance in rolling velocity. Compared with tether extraction from the neutrophil alone, simultaneous tether extraction from the neutrophil and endothelial cell greatly increases the lifetime of the adhesive bond that mediates the rolling, allows more transient tethers to make the transition into stable rolling, and enables rolling neutrophils to be more shear-resistant.
Collapse
Affiliation(s)
- Yan Yu
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63130, USA
| | | |
Collapse
|
34
|
The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 2006; 27:5307-14. [PMID: 16797691 DOI: 10.1016/j.biomaterials.2006.05.024] [Citation(s) in RCA: 312] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 05/14/2006] [Indexed: 11/24/2022]
Abstract
The specific adhesive interaction between a non-spherical particle and a cell layer under a linear shear flow is analyzed. The effect of the characteristic particle size, expressed in terms of the volume V, and shape, expressed in terms of the aspect ratio gamma, on the adhesive strength is investigated. It is shown that for a fixed shape, there exists an optimal volume V(opt) for which the adhesive strength has a maximum. A surprisingly accurate relationship has been derived between the optimal volume V(opt) and the ratio microS/m(r) (wall shear stress to the receptors surface density) having the form V(opt)=alpha(m(r)/microS)(beta). Also, oblate particles have been shown to adhere more effectively to the biological substrate than classical spherical particles for the same volume V. As a consequence, non-spherical particles can carry a larger amount of drugs and contrast agents than classical spherical particles with the same adhesive strength, improving the therapeutic and imaging efficacy. The formulae and the procedures described in the present work can guide the optimal design of intravascularly injectable micro/nano carriers.
Collapse
|
35
|
Alexeev A, Verberg R, Balazs AC. Modeling the interactions between deformable capsules rolling on a compliant surface. SOFT MATTER 2006; 2:499-509. [PMID: 32680246 DOI: 10.1039/b602417c] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By integrating mesoscale models for hydrodynamics and micromechanics, we examine the fluid-driven motion of pairs of capsules on a compliant, adhesive substrate. The capsules, modeled as fluid filled elastic shells, represent cells or polymeric microcapsules. We show that both the relative and the average velocities of two closely spaced, rolling capsules depends on the elasticity of the capsules, the adhesive interaction between the capsules and the substrate, and the compliance of the substrate. We first focused on a stiff surface and found that pairs of rigid capsules always separate from each other, while for deformable capsules, the dynamic behavior depends critically on the strength of the adhesive interaction. For strong adhesion to the substrate, the capsules again roll away from each other, while for a relatively weak adhesion, the capsules actually approach each other. In the case of soft substrates, any significant deformations of the surface that are caused by the capsules give rise to a force that propels the particles to move rapidly apart. Thus, in the case of strong adhesion between the capsules and the soft substrates, both rigid and flexible capsules are driven to separate. On the other hand, for weak adhesion, the elastic particles approach each other, similar to the behavior on stiff surfaces. These findings reveal that the interactions between the capsules are mediated by the nature of the underlying layer. We can harness this information to design surfaces that actively control the relative separation between the capsules. This could be utilized to regulate the motion of biological cells, as well as polymeric microcapsules, and thus, could prove to be useful in various biological assays or tissue engineering studies.
Collapse
Affiliation(s)
- Alexander Alexeev
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261.
| | - Rolf Verberg
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261.
| | - Anna C Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261.
| |
Collapse
|
36
|
Zhang Y, Milam VT, Graves DJ, Hammer DA. Differential adhesion of microspheres mediated by DNA hybridization I: experiment. Biophys J 2006; 90:4128-36. [PMID: 16533856 PMCID: PMC1459507 DOI: 10.1529/biophysj.105.072629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have developed a novel method to study collective behavior of multiple hybridized DNA chains by measuring the adhesion of DNA-coated micron-scale beads under hydrodynamic flow. Beads coated with single-stranded DNA probes are linked to surfaces coated with single target strands through DNA hybridization, and hydrodynamic shear forces are used to discriminate between strongly and weakly bound beads. The adhesiveness of microspheres depends on the strength of interaction between DNA chains on the bead and substrate surfaces, which is a function of the degree of DNA chain overlap, the fidelity of the match between hybridizing pairs, and other factors that affect the hybridization energy, such as the salt concentration in the hybridization buffer. The force for bead detachment is linearly proportional to the degree of chain overlap. There is a detectable drop in adhesion strength when there is a single base mismatch in one of the hybridizing chains. The effect of single nucleotide mismatch was tested with two different strand chemistries, with mutations placed at several different locations. All mutations were detectable, but there was no comprehensive rule relating the drop in adhesive strength to the location of the defect. Since adhesiveness can be coupled to the strength of overlap, the method holds promise to be a novel methodology for oligonucleotide detection.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemical and Biomolecular Engineering, and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
37
|
Alexeev A, Verberg R, Balazs AC. Motion of compliant capsules on corrugated surfaces: A means of sorting by mechanical properties. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/polb.20899] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Alexeev A, Verberg R, Balazs AC. Modeling the Motion of Microcapsules on Compliant Polymeric Surfaces. Macromolecules 2005. [DOI: 10.1021/ma0516135] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander Alexeev
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Rolf Verberg
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Anna C. Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|