1
|
Chenal A, Minton AP. The effect of Ficoll 70 on thermally-induced and chemically-induced conformational transitions of an RTX protein is quantitatively accounted for by a unified excluded volume model. Phys Chem Chem Phys 2024; 26:24461-24469. [PMID: 39263711 DOI: 10.1039/d4cp02213k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A unified excluded volume model based upon the effective hard particle approximation is developed and used to quantitatively model previously published experimental measurements of the effect of adding high concentrations of an "inert" polymer, Ficoll 70, on conformational transitions of the toxin protein RCL that are induced by addition of calcium at constant temperature or by increasing temperature in the absence and presence of high calcium concentrations. The best-fit of this model, which accounts quantitatively for all of the published data to within experimental precision, yields an estimate of the volume of solution excluded to Ficoll by each of four identified conformational states of RCL: H - the most compact conformation adopted in the limits of high calcium concentration and low temperature, H* - the conformation adopted in the limits of high calcium concentration and high temperature, A - the conformation adopted in the limits of low (or no) calcium at low temperature, and A* - the conformation adopted in the limits of low calcium and high temperature. Ficoll exclusion volumes increase in the order H < H* < A < A*. These results are discussed in the context of the physiological functions of the RTX proteins, which are involved in the secretion process and the calcium-induced folding of bacterial virulence factors.
Collapse
Affiliation(s)
- Alexandre Chenal
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, F75015 Paris, France.
| | - Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Saikia Q, Adhikari K, Sanjeev A, Hazarika A, Sarma K. Isoliquiritigenin: a potential drug candidate for the management of erectile dysfunction. J Pharm Pharmacol 2024; 76:1065-1077. [PMID: 38865360 DOI: 10.1093/jpp/rgae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVE This study aimed to assess the erectogenic properties of isoliquiritigenin taking sildenafil (SDF) as the standard. METHODS The binding affinity of isoliquiritigenin (ISL) with the erectile marker proteins (endothelial nitric oxide synthase [eNOS] and enzyme phosphodiesterase type 5 [PDE5]) was investigated using Autodock Vina, which was validated using molecular dynamics simulation. Furthermore, the effect of ISL on the eNOS and PDE5 messenger ribonucleic acid (mRNA) expression and the sexual behavior of mice was investigated, along with the assessment of the pharmacokinetics of ISL. KEY FINDINGS The results revealed that the binding affinity of ISL-eNOS/PDE5 and SDF-eNOS/PDE5 was in the range of -7.5 to -8.6 kcal/mol. The ISL-eNOS/PDE5 complexes remained stable throughout the 100 ns simulation period. Root mean square deviation, Rg, SASA, hydrogen, and hydrophobic interactions were similar between ISL-eNOS/PDE5 and SDF-eNOS/PDE5. Analysis of mRNA expressions in paroxetine (PRX)-induced ED mice showed that the co-administration of PRX with ISL reduced PDE5 and increased eNOS mRNA expression, similar to the co-administered group (PRX+SDF). The sexual behavior study revealed that the results of PRX+ISL were better than those of the PRX+SDF group. Pharmacokinetic evaluation further demonstrated that ISL possesses drug-like properties. CONCLUSIONS The results showed that ISL is equally potent as SDF in terms of binding affinity, specific pharmacological properties, and modulating sexual behavior.
Collapse
Affiliation(s)
- Queen Saikia
- Department of Zoology, Mangaldai College, Mangaldai, Assam 784125, India
| | - Kamal Adhikari
- Department of Zoology, Tihu College, Tihu, Assam 781371, India
| | - Airy Sanjeev
- ACTREC, Sector 22, Utsav Chowk - CISF Rd, Owe Camp, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Ajit Hazarika
- Tyagbir Hem Baruah College, Jamugurihat, Sonitpur, Assam 784189, India
| | - Kishore Sarma
- Department of Computational Biology and Biotechnology, Mahapurusha Srimanta Sankardeva Viswavidyalaya (Guwahati Unit), Rupnagar, Guwahati 781032, India
| |
Collapse
|
3
|
Singh A, Gupta M, Rastogi H, Khare K, Chowdhury PK. Deeper Insights into Mixed Crowding through Enzyme Activity, Dynamics, and Crowder Diffusion. J Phys Chem B 2024; 128:5293-5309. [PMID: 38808573 DOI: 10.1021/acs.jpcb.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Given the fact that the cellular interior is crowded by many different kinds of macromolecules, it is important that in vitro studies be carried out in the presence of mixed crowder systems. In this regard, we have used binary crowders formed by the combination of some of the commonly used crowding agents, namely, Ficoll 70, Dextran 70, Dextran 40, and PEG 8000 (PEG 8), to study how these affect enzyme activity, dynamics, and crowder diffusion. The enzyme chosen is AK3L1, an isoform of adenylate kinase. To investigate its dynamics, we have carried out three single point mutations (A74C, A132C, and A209C) with the cysteine residues being labeled with a coumarin-based solvatochromic probe [CPM: (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin)]. Both enzyme activity and dynamics decreased in the binary mixtures as compared with the sum of the individual crowders, suggesting a reduction in excluded volume (in the mixture). To gain deeper insights into the binary mixtures, fluorescence correlation spectroscopy studies were carried out using fluorescein isothiocyanate-labeled Dextran 70 and tetramethylrhodamine-labeled AK3L1 as the diffusion probes. Diffusion in binary mixtures was observed to be much more constrained (relative to the sum of the individual crowders) for the labeled enzyme as compared to the labeled crowder showing different environments being faced by the two species. This was further confirmed during imaging of the phase-separated droplets formed in the binary mixtures having PEG as one of the crowding agents. The interior of these droplets was found to be rich in crowders and densely packed, as shown by confocal and digital holographic microscopy images, with the enzymes predominantly residing outside these droplets, that is, in the relatively less crowded regions. Taken together, our data provide important insights into various aspects of the simplest form of mixed crowding, that is, composed of just two components, and also hint at the enhanced complexity that the cellular interior presents toward having a detailed and comprehensive understanding of the same.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kedar Khare
- Optics and Photonics Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
5
|
Hafeez A, Shabbir M, Khan K, Trembley JH, Badshah Y, Zafar S, Shahid K, Shah H, Ashraf NM, Hamid A, Afsar T, Almajwal A, Marium A, Razak S. Possible prognostic impact of PKCι genetic variants in prostate cancer. Cancer Cell Int 2024; 24:24. [PMID: 38200472 PMCID: PMC10782671 DOI: 10.1186/s12935-023-03182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) have been linked with prostate cancer (PCa) and have shown potential as prognostic markers for advanced stages. Loss of function mutations in PKCι have been linked with increased risk of malignancy by enhancing tumor cell motility and invasion. We have evaluated the impact of two coding region SNPs on the PKCι gene (PRKCI) and their prognostic potential. METHODS Genotypic association of non-synonymous PKCι SNPs rs1197750201 and rs1199520604 with PCa was determined through tetra-ARMS PCR. PKCι was docked with interacting partner Par-6 to determine the effect of these variants on PKCι binding capabilities. Molecular dynamic simulations of PKCι docked with Par-6 were performed to determine variant effects on PKCι protein interactions. The possible impact of changes in PKCι protein interactions on epithelial cell polarity was hypothesized. RESULTS PKCι rs1199520604 mutant genotype TT showed association with PCa (p = 0.0055), while rs1197750201 mutant genotype AA also showed significant association with PCa (P = 0.0006). The binding interaction of PKCι with Par-6 was altered for both variants, with changes in Van der Waals energy and electrostatic energy of docked structures. CONCLUSION Genotypic analysis of two non-synonymous PKCι variants in association with PCa prognosis was performed. Both variants in the PB1 domain showed potential as a prognostic marker for PCa. In silico analysis of the effect of the variants on PKCι protein interactions indicated they may be involved in PCa progression through aberration of epithelial cell polarity pathways.
Collapse
Affiliation(s)
- Amna Hafeez
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan.
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Janeen H Trembley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Sameen Zafar
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Kanza Shahid
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Hania Shah
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Punjab, Pakistan
| | - Arslan Hamid
- University of Bonn, LIMES Institute (AG-Netea), Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Afifa Marium
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Singh BP, Cheppali SK, Saha I, Swamy MJ. Contrasting effects of molecular crowding on the membrane-perturbing and chaperone-like activities of major bovine seminal plasma protein, PDC-109. Int J Biol Macromol 2024; 254:127573. [PMID: 37923045 DOI: 10.1016/j.ijbiomac.2023.127573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Crowded environments inside cells and biological fluids greatly affect protein stability and activity. PDC-109, a polydisperse oligomeric protein of the bovine seminal plasma selectively binds choline phospholipids on the sperm cell surface and causes membrane destabilization and lipid efflux, leading to acrosome reaction. PDC-109 also exhibits chaperone-like activity (CLA) and protects client proteins against various kinds of stress, such as high temperature and low pH. In the present work, we have investigated the effect of molecular crowding on these two different activities of PDC-109 employing Dextran 70 (D70) - a widely used polymeric dextran - as the crowding agent. The results obtained show that presence of D70 markedly increases membrane destabilization by PDC-109. Isothermal titration calorimetric studies revealed that under crowded condition the binding affinity of PDC-109 for choline phospholipids increases approximately 3-fold, which could in turn facilitate membrane destabilization. In contrast, under identical conditions, its CLA was reduced significantly. The decreased CLA could be correlated to reduced surface hydrophobicity, which was due to stabilization of the protein oligomers. These results establish that molecular crowding exhibits contrasting effects on two different functional activities of PDC-109 and highlight the importance of microenvironment of proteins in modulating their functional activities.
Collapse
Affiliation(s)
| | | | - Ishita Saha
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
7
|
Minton AP. Simplified Equilibrium Model for Exploring the Combined Influences of Concentration, Aggregate Shape, Excluded Volume, and Surface Adsorption upon Aggregation Propensity and Distribution of Globular Macromolecules. J Phys Chem B 2023; 127:9303-9311. [PMID: 37871252 DOI: 10.1021/acs.jpcb.3c05594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A mesoscopic model for the equilibrium self-association of a globular macromolecule that may form oligomers of various shapes and unlimited sizes is presented. Allowance is made within this model for the effects of variation in the free energy of subunit contact within an oligomer of specified size and different shapes, the free energy of adsorption of an oligomer of specified size and shape to a planar surface, and the free energy of nonspecific excluded volume interaction between an oligomer of specified size and shape and an inert species occupying a specified fraction of total volume. The model is analytically soluble and permits rapid calculation and analysis of the effects of variation in each of the three free energy parameters upon the concentration dependence of the weight-average stoichiometry of the oligomer, the fraction of total macromolecule that is adsorbed, and the fraction of differently shaped oligomers that are adsorbed and in free solution.
Collapse
Affiliation(s)
- Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda Maryland 20892-0830, United States
| |
Collapse
|
8
|
Garnica-Galvez S, Skoufos I, Tzora A, Diakakis N, Prassinos N, Zeugolis DI. Macromolecular crowding in equine bone marrow mesenchymal stromal cell cultures using single and double hyaluronic acid macromolecules. Acta Biomater 2023; 170:111-123. [PMID: 37634833 DOI: 10.1016/j.actbio.2023.08.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Macromolecular crowding (MMC) enhances and accelerates extracellular matrix (ECM) deposition in eukaryotic cell culture. Single hyaluronic acid (HA) molecules have not induced a notable increase in the amount and rate of deposited ECM. Thus, herein we assessed the physicochemical properties and biological consequences in equine bone marrow mesenchymal stromal cell cultures of single and mixed HA molecules and correlated them to the most widely used MMC agents, the FicollⓇ cocktail (FC) and carrageenan (CR). Dynamic light scattering analysis revealed that all HA cocktails had significantly higher hydrodynamic radius than the FC and CR; the FC and the 0.5 mg/ml 100 kDa and 500 kDa single HA molecules had the highest charge; and, in general, all molecules had high polydispersity index. Biological analyses revealed that none of the MMC agents affected cell morphology and basic cell functions; in general, CR outperformed all other macromolecules in collagen type I and V deposition; FC, the individual HA molecules and the HA cocktails outperformed CR in collagen type III deposition; FC outperformed CR and the individual HA molecules and the HA cocktails outperformed their constituent HA molecules in collagen type IV deposition; FC and certain HA cocktails outperformed CR and constituent HA molecules in collagen type VI deposition; and all individual HA molecules outperformed FC and CR and the HA cocktails outperformed their constituent HA molecules in laminin deposition. With respect to tri-lineage analysis, CR and HA enhanced chondrogenesis and osteogenesis, whilst FC enhanced adipogenesis. This work opens new avenues in mixed MMC in eukaryotic cell culture. STATEMENT OF SIGNIFICANCE: Mixed macromolecular crowding (MMC) in eukaryotic cell culture is still under-investigated. Herein, single and double hyaluronic acid (HA) macromolecules, along with the traditional MMC agents FicollⓇ cocktail (FC) and carrageenan (CR), were used as MMC agents in equine mesenchymal stromal cell cultures. Biological analysis showed that none of the MMC agents affected cell morphology and basic cell functions. Protein deposition analysis made apparent that CR outperformed all other macromolecules in collagen type I and collagen type V deposition, whilst FC, the individual HA macromolecules and the HA cocktails outperformed CR in collagen type III deposition. Tri-lineage analysis revealed that CR and HA enhanced chondrogenesis and osteogenesis, whilst FC enhanced adipogenesis. These data illustrate that MMC agents are not inert macromolecules.
Collapse
Affiliation(s)
- Sergio Garnica-Galvez
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece; School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
| | - Athina Tzora
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
| | - Nikolaos Diakakis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikitas Prassinos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
9
|
Bazmi S, Seifi B, Wallin S. Simulations of a protein fold switch reveal crowding-induced population shifts driven by disordered regions. Commun Chem 2023; 6:191. [PMID: 37689829 PMCID: PMC10492864 DOI: 10.1038/s42004-023-00995-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023] Open
Abstract
Macromolecular crowding effects on globular proteins, which usually adopt a single stable fold, have been widely studied. However, little is known about crowding effects on fold-switching proteins, which reversibly switch between distinct folds. Here we study the mutationally driven switch between the folds of GA and GB, the two 56-amino acid binding domains of protein G, using a structure-based dual-basin model. We show that, in the absence of crowders, the fold populations PA and PB can be controlled by the strengths of contacts in the two folds, κA and κB. A population balance, PA ≈ PB, is obtained for κB/κA = 0.92. The resulting model protein is subject to crowding at different packing fractions, ϕc. We find that crowding increases the GB population and reduces the GA population, reaching PB/PA ≈ 4 at ϕc = 0.44. We analyze the ϕc-dependence of the crowding-induced GA-to-GB switch using scaled particle theory, which provides a qualitative, but not quantitative, fit of our data, suggesting effects beyond a spherical description of the folds. We show that the terminal regions of the protein chain, which are intrinsically disordered only in GA, play a dominant role in the response of the fold switch to crowding effects.
Collapse
Affiliation(s)
- Saman Bazmi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
10
|
Menon S, Mondal J. Conformational Plasticity in α-Synuclein and How Crowded Environment Modulates It. J Phys Chem B 2023; 127:4032-4049. [PMID: 37114769 DOI: 10.1021/acs.jpcb.3c00982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A 140-residue intrinsically disordered protein (IDP), α-synuclein (αS), is known to adopt conformations that are vastly plastic and susceptible to environmental cues and crowders. However, the inherently heterogeneous nature of αS has precluded a clear demarcation of its monomeric precursor between aggregation-prone and functionally relevant aggregation-resistant states and how a crowded environment could modulate their mutual dynamic equilibrium. Here, we identify an optimal set of distinct metastable states of αS in aqueous media by dissecting a 73 μs-long molecular dynamics ensemble via building a comprehensive Markov state model (MSM). Notably, the most populated metastable state corroborates with the dimension obtained from PRE-NMR studies of αS monomer, and it undergoes kinetic transition at diverse time scales with a weakly populated random-coil-like ensemble and a globular protein-like state. However, subjecting αS to a crowded environment results in a nonmonotonic compaction of these metastable conformations, thereby skewing the ensemble by either introducing new tertiary contacts or by reinforcing the innate contacts. The early stage of dimerization process is found to be considerably expedited in the presence of crowders, albeit promoting nonspecific interactions. Together with this, using an extensively sampled ensemble of αS, this exposition demonstrates that crowded environments can potentially modulate the conformational preferences of IDP that can either promote or inhibit aggregation events.
Collapse
Affiliation(s)
- Sneha Menon
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| |
Collapse
|
11
|
Xu S, Wang J, Dong J. Nonspecific interaction and overlap concentration influence macromolecular crowding effect on glucose oxidase activity. Int J Biol Macromol 2023; 241:124525. [PMID: 37086776 DOI: 10.1016/j.ijbiomac.2023.124525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
Macromolecular crowding can change kinetics of enzyme catalysis. How interaction between enzymes and neighboring macromolecules contributes to the crowding effect on enzyme catalysis has not been quantitatively revealed. In this study, crowding effects of dextran and poly(ethylene glycol) (PEG) on glucose oxidase (GOx) are studied. Fluorescence resonance energy transfer experiments show the high transfer efficiency and stable interaction between the dextran and GOx. Further fluorescence quenching analysis also proves that the association of the dextran-GOx pair can become stronger than that of the PEG-GOx pair. Dextrans with concentrations above or below their chain overlap concentrations (c*) reduce Michaelis constants (Km) of GOx catalysis by 90 % or 45 %, respectively, through volume exclusion mechanism, and in the meantime elevate the enzymatic efficiency (kcat/Km) by 8-fold or by 3-fold, respectively, which is more dramatic than that found in other enzymes before. Strong association between the enzyme and the dextran results in slow turnover rates (kcat). Intermediate crowding with weak to moderate affinity to the enzyme below the c* can tune the kcat higher than in the free state. Catalysis under crowded conditions is a joint effect of the enzyme-crowder nonspecific interaction, volume exclusion and overlap condition of the crowders.
Collapse
Affiliation(s)
- Siyuan Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang Province 312000, China
| | - Jie Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang Province 312000, China
| | - Jian Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang Province 312000, China.
| |
Collapse
|
12
|
Ni S, Zhu H, Neuzil P, Yobas L. Sub-nL thin-film differential scanning calorimetry chip for rapid thermal analysis of liquid samples. LAB ON A CHIP 2023; 23:1926-1934. [PMID: 36883529 DOI: 10.1039/d2lc01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Differential scanning calorimetry (DSC) is a popular thermal analysis technique. The miniaturization of DSC on chip as thin-film DSC (tfDSC) has been pioneered for the analysis of ultrathin polymer films at temperature scan rates and sensitivities far superior to those attainable with DSC instruments. The adoption of tfDSC chips for the analysis of liquid samples is, however, confronted with various issues including sample evaporation due to the lack of sealed enclosures. Although the subsequent integration of enclosures has been demonstrated in various designs, rarely did those designs exceed the scan rates of DSC instruments mainly because of their bulky features and requirement for exterior heating. Here, we present a tfDSC chip featuring sub-nL thin-film enclosures integrated with resistance temperature detectors (RTDs) and heaters. The chip attains an unprecedented sensitivity of 11 V W-1 and a rapid time constant of 600 ms owing to its low-addenda design and residual heat conduction (∼6 μW K-1). We present results on the phase transition of common liquid crystals which we leverage to calibrate the RTDs and characterize the thermal lag with scan rates up to 900 °C min-1. We then present results on the heat denaturation of lysozyme at various pH values, concentrations, and scan rates. The chip can provide excess heat capacity peaks and enthalpy change steps without much alteration induced by the thermal lag at elevated scan rates up to 100 °C min-1, which is an order of magnitude faster than those of many chip counterparts.
Collapse
Affiliation(s)
- Sheng Ni
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Hanliang Zhu
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Pavel Neuzil
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Levent Yobas
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Raina N, Hassan MI, Ahmad F, Islam A, Singh AK. PEG mediated destabilization of holo α-lactalbumin probed by in silico and in vitro studies: deviation from excluded volume effect. J Biomol Struct Dyn 2022; 40:13265-13277. [PMID: 34726117 DOI: 10.1080/07391102.2021.1987990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Crowded and confined macromolecular milieus surround proteins, and both are stabilizing if the nature of the interaction between crowder and proteins are considered hard-core repulsive interactions. However, non-specific chemical interactions between a protein and its surroundings also play a significant role and the sum effect of both hard-core repulsion and soft interaction balances the overall effect of crowding/confinement. Previous studies showing the effect of polyethylene glycol (PEG) on protein and nucleic acid may be interpreted as either primarily excluded volume effect or, in some cases, chemical effect by changing solvent properties. In case of destabilizing interactions, charge-charge and hydrophobic contact have to gain more attention. For instance, in vitro and in vivo studies using protein as crowding agent revealed the destabilization of proteins induced by charge-charge interactions. To investigate the effect of PEG 10 kDa on holo α-lactalbumin (holo α-LA), structure and thermal stability of the protein were measured at different pH values using several techniques. Structural characterization by Trp-fluorescence, near-UV CD and far-UV measurements at different pH values clearly shows perturbation of tertiary and secondary structure of holo α-LA by PEG 10 kDa. Furthermore, the dynamic light scattering measurement shows that the protein is homogeneous under all experimental conditions. Analysis of the heat-induced denaturation profile in the presence of the crowder shows destabilization of the protein in terms of Tm (midpoint of denaturation) and ΔGD0 (Gibbs free energy change at 25 °C). To evaluate the interaction of PEG 10 kDa with holo α-LA and stability of PEG-α-LA complex, docking and molecular dynamic simulation were carried out for 100 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neha Raina
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
14
|
Ryan CNM, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs MJ, Griffin MD, Zeugolis DI. The synergistic effect of physicochemical in vitro microenvironment modulators in human bone marrow stem cell cultures. BIOMATERIALS ADVANCES 2022; 144:213196. [PMID: 36455498 DOI: 10.1016/j.bioadv.2022.213196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Modern bioengineering utilises biomimetic cell culture approaches to control cell fate during in vitro expansion. In this spirit, herein we assessed the influence of bidirectional surface topography, substrate rigidity, collagen type I coating and macromolecular crowding (MMC) in human bone marrow stem cell cultures. In the absence of MMC, surface topography was a strong modulator of cell morphology. MMC significantly increased extracellular matrix deposition, albeit in a globular manner, independently of the surface topography, substrate rigidity and collagen type I coating. Collagen type I coating significantly increased cell metabolic activity and none of the assessed parameters affected cell viability. At day 14, in the absence of MMC, none of the assessed genes was affected by surface topography, substrate rigidity and collagen type I coating, whilst in the presence of MMC, in general, collagen type I α1 chain, tenascin C, osteonectin, bone sialoprotein, aggrecan, cartilage oligomeric protein and runt-related transcription factor were downregulated. Interestingly, in the presence of the MMC, the 1000 kPa grooved substrate without collagen type I coating upregulated aggrecan, cartilage oligomeric protein, scleraxis homolog A, tenomodulin and thrombospondin 4, indicative of tenogenic differentiation. This study further supports the notion for multifactorial bioengineering to control cell fate in culture.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Peadar Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md Nahidul Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - Manus J Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Matthew D Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
15
|
Quinn SD, Dresser L, Graham S, Conteduca D, Shepherd J, Leake MC. Crowding-induced morphological changes in synthetic lipid vesicles determined using smFRET. Front Bioeng Biotechnol 2022; 10:958026. [PMID: 36394015 PMCID: PMC9650091 DOI: 10.3389/fbioe.2022.958026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Lipid vesicles are valuable mesoscale molecular confinement vessels for studying membrane mechanics and lipid-protein interactions, and they have found utility among bio-inspired technologies, including drug delivery vehicles. While vesicle morphology can be modified by changing the lipid composition and introducing fusion or pore-forming proteins and detergents, the influence of extramembrane crowding on vesicle morphology has remained under-explored owing to a lack of experimental tools capable of capturing morphological changes on the nanoscale. Here, we use biocompatible polymers to simulate molecular crowding in vitro, and through combinations of FRET spectroscopy, lifetime analysis, dynamic light scattering, and single-vesicle imaging, we characterize how crowding regulates vesicle morphology. We show that both freely diffusing and surface-tethered vesicles fluorescently tagged with the DiI and DiD FRET pair undergo compaction in response to modest concentrations of sorbitol, polyethylene glycol, and Ficoll. A striking observation is that sorbitol results in irreversible compaction, whereas the influence of high molecular weight PEG-based crowders was found to be reversible. Regulation of molecular crowding allows for precise control of the vesicle architecture in vitro, with vast implications for drug delivery and vesicle trafficking systems. Furthermore, our observations of vesicle compaction may also serve to act as a mechanosensitive readout of extramembrane crowding.
Collapse
Affiliation(s)
- Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Lara Dresser
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Sarah Graham
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Donato Conteduca
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Jack Shepherd
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Mark C. Leake
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
16
|
Ranganathan VT, Bazmi S, Wallin S, Liu Y, Yethiraj A. Is Ficoll a Colloid or Polymer? A Multitechnique Study of a Prototypical Excluded-Volume Macromolecular Crowder. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Saman Bazmi
- Department of Physics and Physical Oceanography, Memorial University, St. John’s, NLA1B 3X7, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University, St. John’s, NLA1B 3X7, Canada
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Anand Yethiraj
- Department of Physics and Physical Oceanography, Memorial University, St. John’s, NLA1B 3X7, Canada
| |
Collapse
|
17
|
Raina N, Khan S, Soundhararajan R, Shahid M, Srinivasan H, Islam A. Understanding the nano colloid-protein interaction in crowded milieu. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Sung HL, Nesbitt DJ. Synergism in the Molecular Crowding of Ligand-Induced Riboswitch Folding: Kinetic/Thermodynamic Insights from Single-Molecule Spectroscopy. J Phys Chem B 2022; 126:6419-6427. [PMID: 35981263 DOI: 10.1021/acs.jpcb.2c03507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conformational dynamics in riboswitches involves ligand binding and folding of RNA, each of which can be influenced by excluded volume effects under "crowded" in vivo cellular conditions and thus incompletely characterized by in vitro studies under dilute buffer conditions. In this work, temperature-dependent single-molecule fluorescence resonance energy transfer (FRET) spectroscopy is used to characterize the thermodynamics of (i) cognate ligand and (ii) molecular crowders (PEG, polyethylene glycol) on folding of the B. subtilis LysC lysine riboswitch. With the help of detailed kinetic analysis, we isolate and study the effects of PEG on lysine binding and riboswitch folding steps individually, from which we find that PEG crowding facilitates riboswitch folding primarily via a surprising increase in affinity for the cognate ligand. This is furthermore confirmed by temperature-dependent studies, which reveal that PEG crowding is not purely entropic and instead significantly impacts both enthalpic and entropic contributions to the free energy landscape for folding. The results indicate that PEG molecular crowding/stabilization of the lysine riboswitch is more mechanistically complex and requires extension beyond the conventional picture of purely repulsive solvent-solute steric interactions arising from excluded volume and entropy. Instead, the current experimental FRET data support an alternative multistep mechanism, whereby PEG first entropically crowds the unfolded riboswitch into a "pre-folded" conformation, which in turn greatly increases the ligand binding affinity and thereby enhances the overall equilibrium for riboswitch folding.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
19
|
Abstract
Although G-protein–coupled receptors (GPCRs) control vast physiological pathways, their activation remains chemically and physically enigmatic. Our osmotic stress studies of the visual receptor rhodopsin have redefined the standard model of GPCR signaling by revealing the essential role of bulk water. We show results consistent with a large number of water molecules flooding the rhodopsin interior during activation to stabilize the effector binding conformation. These results suggest a model of GPCR activation in which the receptor becomes solvent-swollen upon formation of the active state. We thus demonstrate the mechanism whereby water acts as a powerful allosteric modulator of a pharmacologically important membrane protein family. The Rhodopsin family of G-protein–coupled receptors (GPCRs) comprises the targets of nearly a third of all pharmaceuticals. Despite structural water present in GPCR X-ray structures, the physiological relevance of these solvent molecules to rhodopsin signaling remains unknown. Here, we show experimental results consistent with the idea that rhodopsin activation in lipid membranes is coupled to bulk water movements into the protein. To quantify hydration changes, we measured reversible shifting of the metarhodopsin equilibrium due to osmotic stress using an extensive series of polyethylene glycol (PEG) osmolytes. We discovered clear evidence that light activation entails a large influx of bulk water (∼80–100 molecules) into the protein, giving insight into GPCR activation mechanisms. Various size polymer osmolytes directly control rhodopsin activation, in which large solutes are excluded from rhodopsin and dehydrate the protein, favoring the inactive state. In contrast, small osmolytes initially forward shift the activation equilibrium until a quantifiable saturation point is reached, similar to gain-of-function protein mutations. For the limit of increasing osmolyte size, a universal response of rhodopsin to osmotic stress is observed, suggesting it adopts a dynamic, hydrated sponge-like state upon photoactivation. Our results demand a rethinking of the role of water dynamics in modulating various intermediates in the GPCR energy landscape. We propose that besides bound water, an influx of bulk water plays a necessary role in establishing the active GPCR conformation that mediates signaling.
Collapse
|
20
|
Cubuk J, Soranno A. Macromolecular crowding and intrinsically disordered proteins: a polymer physics perspective. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202100051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jasmine Cubuk
- Washington University in St Louis Biochemistry and Molecular Biophysics UNITED STATES
| | - Andrea Soranno
- Washington University in St Louis Biochemistry and Molecular Biophysics 660 St Euclid Ave 63110 St Louis UNITED STATES
| |
Collapse
|
21
|
Basu M, Mishra PP. Kineto-Mechanistic Investigation of Effect of Macromolecular Crowding on the Breathing of DNA Bubble. J Phys Chem B 2022; 126:1375-1387. [PMID: 35143192 DOI: 10.1021/acs.jpcb.1c08206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macromolecular crowding along with hydrogen bonding or stacking interactions and hydration reportedly has enormous repercussions on elementary biochemical processes, such as the folding of proteins or nucleic acids involving the stability of DNA base pairing. By using the mismatch-induced DNA bubble as a mesoscopic model, the complex interplay of macromolecular crowding on the dynamical fluctuations at the bubble region within the thermodynamic limit has been monitored using single-molecule fluorescence resonance energy transfer (sm-FRET). These single-molecule experimental results have been further corroborated using physical models such as "scaled particle theory" (SPT) and "Gaussian cloud model" (GCM), to predict the biological activity of DNA. The two-state fluctuation of the DNA bubble has been visualized as a function of the nature, size, and concentration of the crowder. The influence of crowders on the DNA conformation has been investigated with the help of the m-factor, the eccentricity, and the kinetic and thermodynamic parameters without any prior assumption. The clear effect of crowding on the dynamics of such a simple biomolecular system emphasizes the power of single-molecule methods and the dependency of the radius of gyration of the co-solute as well as the preferential interaction with the crowder on the distinct conformational states adopted by the bubble. This study provides an idea and hypothesizes the preferential propensity of the DNA bubble to adopt a conformation with the single-stranded domains being far apart, independent of the crowder size, that may be beneficial for efficient recognition by proteins for an uninterrupted procession of the biological process of the central dogma.
Collapse
Affiliation(s)
- Manali Basu
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.,Homi Bhaba National Institute, Mumbai, Maharashtra 400094, India
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.,Homi Bhaba National Institute, Mumbai, Maharashtra 400094, India
| |
Collapse
|
22
|
Speer SL, Stewart CJ, Sapir L, Harries D, Pielak GJ. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys 2022; 51:267-300. [PMID: 35239418 DOI: 10.1146/annurev-biophys-091321-071829] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins. Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Claire J Stewart
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Liel Sapir
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA; .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina, USA.,Lineberger Cancer Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Gupta M, Chowdhury PK. Protein dynamics as a sensor for macromolecular crowding: Insights into mixed crowding. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Sung HL, Nesbitt DJ. Effects of Molecular Crowders on Single-Molecule Nucleic Acid Folding: Temperature-Dependent Studies Reveal True Crowding vs Enthalpic Interactions. J Phys Chem B 2021; 125:13147-13157. [PMID: 34813337 DOI: 10.1021/acs.jpcb.1c07852] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biomolecular folding in cells can be strongly influenced by spatial overlap/excluded volume interactions (i.e., "crowding") with intracellular solutes. As a result, traditional in vitro experiments with dilute buffers may not accurately recapitulate biomolecule folding behavior in vivo. In order to account for such ubiquitous excluded volume effects, biologically inert polyethylene glycol (PEG) and polysaccharides (dextran and Ficoll) are often used as in vitro crowding agents to mimic in vivo crowding conditions, with a common observation that high concentrations of these polymers stabilize the more compact biomolecule conformation. However, such an analysis can be distorted by differences in polymer interactions with the folded vs unfolded conformers, requiring temperature-dependent analysis of the thermodynamics to reliably assess competing enthalpic vs entropic contributions and thus the explicit role of excluded volume. In this work, temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) is used to characterize the thermodynamic interaction between nucleic acids and common polymer crowders PEG, dextran, and Ficoll. The results reveal that PEG promotes secondary and tertiary nucleic acid folding by simultaneously increasing the folding rate while decreasing the unfolding rate, with temperature-dependent studies confirming that the source of PEG stabilization is predominantly entropic and consistent with a true excluded volume crowding mechanism. By way of contrast, neither dextran nor Ficoll induces any significant concentration-dependent change in nucleic acid folding stability at room temperature, but instead, stabilization effects gradually appear with a temperature increase. Such a thermal response indicates that both folding enthalpies and entropies are impacted by dextran and Ficoll. A detailed thermodynamic analysis of the kinetics suggests that, instead of true entropic molecular crowding, dextran and Ficoll associate preferentially with the unfolded vs folded nucleic acid conformer as a result of larger solvent accessible surface area, thereby skewing the free energy landscapes through both significant entropic/enthalpic contributions that compete and fortuitously cancel near room temperature.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
25
|
Denton AR, Davis WJ. Influence of solvent quality on depletion potentials in colloid-polymer mixtures. J Chem Phys 2021; 155:084904. [PMID: 34470346 DOI: 10.1063/5.0061370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As first explained by the classic Asakura-Oosawa (AO) model, effective attractive forces between colloidal particles induced by depletion of nonadsorbing polymers can drive demixing of colloid-polymer mixtures into colloid-rich and colloid-poor phases, with practical relevance for purification of water, stability of foods and pharmaceuticals, and macromolecular crowding in biological cells. By idealizing polymer coils as effective penetrable spheres, the AO model qualitatively captures the influence of polymer depletion on thermodynamic phase behavior of colloidal suspensions. In previous work, we extended the AO model to incorporate aspherical polymer conformations and showed that fluctuating shapes of random-walk coils can significantly modify depletion potentials [W. K. Lim and A. R. Denton, Soft Matter 12, 2247 (2016); J. Chem. Phys. 144, 024904 (2016)]. We further demonstrated that the shapes of polymers in crowded environments sensitively depend on solvent quality [W. J. Davis and A. R. Denton, J. Chem. Phys. 149, 124901 (2018)]. Here, we apply Monte Carlo simulation to analyze the influence of solvent quality on depletion potentials in mixtures of hard-sphere colloids and nonadsorbing polymer coils, modeled as ellipsoids whose principal radii fluctuate according to random-walk statistics. We consider both self-avoiding and non-self-avoiding random walks, corresponding to polymers in good and theta solvents, respectively. Our simulation results demonstrate that depletion of polymers of equal molecular weight induces much stronger attraction between colloids in good solvents than in theta solvents and confirm that depletion interactions are significantly influenced by aspherical polymer conformations.
Collapse
Affiliation(s)
- Alan R Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Wyatt J Davis
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
26
|
Horvath I, Kumar R, Wittung-Stafshede P. Macromolecular crowding modulates α-synuclein amyloid fiber growth. Biophys J 2021; 120:3374-3381. [PMID: 34242594 PMCID: PMC8391083 DOI: 10.1016/j.bpj.2021.06.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
The crowdedness of living cells, hundreds of milligrams per milliliter of macromolecules, may affect protein folding, function, and misfolding. Still, such processes are most often studied in dilute solutions in vitro. To assess consequences of the in vivo milieu, we here investigated the effects of macromolecular crowding on the amyloid fiber formation reaction of α-synuclein, the amyloidogenic protein in Parkinson's disease. For this, we performed spectroscopic experiments probing individual steps of the reaction as a function of the macromolecular crowding agent Ficoll70, which is an inert sucrose-based polymer that provides excluded-volume effects. The experiments were performed at neutral pH at quiescent conditions to avoid artifacts due to shaking and glass beads (typical conditions for α-synuclein), using amyloid fiber seeds to initiate reactions. We find that both primary nucleation and fiber elongation steps during α-synuclein amyloid formation are accelerated by the presence of 140 and 280 mg/mL Ficoll70. Moreover, in the presence of Ficoll70 at neutral pH, secondary nucleation appears favored, resulting in faster overall α-synuclein amyloid formation. In contrast, sucrose, a small-molecule osmolyte and building block of Ficoll70, slowed down α-synuclein amyloid formation. The ability of cell environments to modulate reaction kinetics to a large extent, such as severalfold faster individual steps in α-synuclein amyloid formation, is an important consideration for biochemical reactions in living systems.
Collapse
Affiliation(s)
- Istvan Horvath
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
27
|
The effect of macromolecular crowders on dielecric constant of aqueous electrolyte solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Rastogi H, Chowdhury PK. Understanding enzyme behavior in a crowded scenario through modulation in activity, conformation and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140699. [PMID: 34298166 DOI: 10.1016/j.bbapap.2021.140699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/25/2023]
Abstract
Macromolecular crowding, inside the physiological interior, modulates the energy landscape of biological macromolecules in multiple ways. Amongst these, enzymes occupy a special place and hence understanding the function of the same in the crowded interior is of utmost importance. In this study, we have investigated the manner in which the multidomain enzyme, AK3L1 (PDB ID: 1ZD8), an isoform of adenylate kinase, has its features affected in presence of commonly used crowders (PEG 8, Dextran 40, Dextran 70, and Ficoll 70). Michaelis Menten plots reveal that the crowders in general enhance the activity of the enzyme, with the Km and Vmax values showing significant variations. Ficoll 70, induced the maximum activity for AK3L1 at 100 g/L, beyond which the activity reduced. Ensemble FRET studies were performed to provide insights into the relative domain (LID and CORE) displacements in presence of the crowders. Solvation studies reveal that the protein matrix surrounding the probe CPM (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin) gets restricted in presence of the crowders, with Ficoll 70 providing the maximum rigidity, the same being linked to the decrease in the activity of the enzyme. Through our multipronged approach, we have observed a distinct correlation between domain displacement, enzyme activity and associated dynamics. Thus, keeping in mind the complex nature of enzyme activity and the surrounding bath of dense soup that the biological entity remains immersed in, indeed more such approaches need to be undertaken to have a better grasp of the "enzymes in the crowd".
Collapse
Affiliation(s)
- Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
29
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
30
|
Bhide A, Lin KC, Muthukumar S, Prasad S. On-demand lactate monitoring towards assessing physiological responses in sedentary populations. Analyst 2021; 146:3482-3492. [PMID: 33955985 DOI: 10.1039/d1an00455g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identification of diseases in sedentary populations on a timely basis before reaching a critical stage is a continuing challenge faced by emergency care centers. Lactate is a key biomarker for monitoring restricted oxygen supply essential for assessing the physiological responses of the user for clinical diagnostics. The novelty of this work is the development of a non-invasive, mediator-free, stick and remove biosensor for the on-demand measurement of lactate in passive sweat targeted towards sedentary populations. The conformable interface of the biosensors with skin can be engineered to extract relevant biochemical signals and quantify the in situ sweat biomarker levels. In this work, we demonstrate a highly sensitive and specific on-demand biosensor with a fabricated hybrid nanotextured Au/ZnO electrode stack embedded within a flexible nanoporous material to capture the temporal dynamics of passive sweat lactate. The biosensor exhibits a lactate specific response in human sweat with a 1 mM lower limit of detection and a wide dynamic detection range of 1-100 mM (R2 = 0.98). The proposed biosensor has a sensitivity of 8.3% mM-1 while selectivity studies reveal negative interactions with non-specific molecules. The sensor stability studies showed an ∼30% degradation in the lactate biosensing response over a 4-day duration when stored at 4 °C. Non-faradaic electrochemical spectroscopy is employed as the detection modality to quantify the enzymatic catalysis of sweat lactate at the electrode-sweat interface. Spectroscopic characterization techniques such as XPS, ATR-FTIR, and zeta potential measurements confirm the enzymatic assay binding efficacy on a qualitative scale.
Collapse
Affiliation(s)
- Ashlesha Bhide
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX-75080, USA.
| | - Kai-Chun Lin
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX-75080, USA.
| | | | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX-75080, USA.
| |
Collapse
|
31
|
Sörensen T, Leeb S, Danielsson J, Oliveberg M. Polyanions Cause Protein Destabilization Similar to That in Live Cells. Biochemistry 2021; 60:735-746. [PMID: 33635054 PMCID: PMC8028048 DOI: 10.1021/acs.biochem.0c00889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Indexed: 12/25/2022]
Abstract
The structural stability of proteins is found to markedly change upon their transfer to the crowded interior of live cells. For some proteins, the stability increases, while for others, it decreases, depending on both the sequence composition and the type of host cell. The mechanism seems to be linked to the strength and conformational bias of the diffusive in-cell interactions, where protein charge is found to play a decisive role. Because most proteins, nucleotides, and membranes carry a net-negative charge, the intracellular environment behaves like a polyanionic (Z:1) system with electrostatic interactions different from those of standard 1:1 ion solutes. To determine how such polyanion conditions influence protein stability, we use negatively charged polyacetate ions to mimic the net-negatively charged cellular environment. The results show that, per Na+ equivalent, polyacetate destabilizes the model protein SOD1barrel significantly more than monoacetate or NaCl. At an equivalent of 100 mM Na+, the polyacetate destabilization of SOD1barrel is similar to that observed in live cells. By the combined use of equilibrium thermal denaturation, folding kinetics, and high-resolution nuclear magnetic resonance, this destabilization is primarily assigned to preferential interaction between polyacetate and the globally unfolded protein. This interaction is relatively weak and involves mainly the outermost N-terminal region of unfolded SOD1barrel. Our findings point thus to a generic influence of polyanions on protein stability, which adds to the sequence-specific contributions and needs to be considered in the evaluation of in vivo data.
Collapse
Affiliation(s)
- Therese Sörensen
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Sarah Leeb
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
32
|
Zeugolis DI. Bioinspired in vitro microenvironments to control cell fate: focus on macromolecular crowding. Am J Physiol Cell Physiol 2021; 320:C842-C849. [PMID: 33656930 DOI: 10.1152/ajpcell.00380.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of therapeutic regenerative medicine and accurate drug discovery cell-based products requires effective, with respect to obtaining sufficient numbers of viable, proliferative, and functional cell populations, cell expansion ex vivo. Unfortunately, traditional cell culture systems fail to recapitulate the multifaceted tissue milieu in vitro, resulting in cell phenotypic drift, loss of functionality, senescence, and apoptosis. Substrate-, environment-, and media-induced approaches are under intense investigation as a means to maintain cell phenotype and function while in culture. In this context, herein, the potential of macromolecular crowding, a biophysical phenomenon with considerable biological consequences, is discussed.
Collapse
Affiliation(s)
- Dimitrios I Zeugolis
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,Faculty of Biomedical Sciences, Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), Università della Svizzera Italiana, Lugano, Switzerland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Chawla U, Perera SMDC, Fried SDE, Eitel AR, Mertz B, Weerasinghe N, Pitman MC, Struts AV, Brown MF. Activation of the G‐Protein‐Coupled Receptor Rhodopsin by Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Udeep Chawla
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | | | - Steven D. E. Fried
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Anna R. Eitel
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Blake Mertz
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Nipuna Weerasinghe
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Michael C. Pitman
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Andrey V. Struts
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russia
| | - Michael F. Brown
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
- Department of Physics University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
34
|
Response to crowded conditions reveals compact nucleus for amyloid formation of folded protein. QRB DISCOVERY 2021. [PMID: 37529678 PMCID: PMC10392690 DOI: 10.1017/qrd.2020.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Although the consequences of the crowded cell environments may affect protein folding, function and misfolding reactions, these processes are often studied in dilute solutions in vitro. We here used biophysical experiments to investigate the amyloid fibril formation process of the fish protein apo-β-parvalbumin in solvent conditions that mimic steric and solvation aspects of the in vivo milieu. Apo-β-parvalbumin is a folded protein that readily adopts an amyloid state via a nucleation–elongation mechanism. Aggregation experiments in the presence of macromolecular crowding agents (probing excluded volume, entropic effects) as well as small molecule osmolytes (probing solvation, enthalpic effects) revealed that both types of agents accelerate overall amyloid formation, but the elongation step was faster with macromolecular crowding agents but slower in the presence of osmolytes. The observations can be explained by the steric effects of excluded volume favoring assembled states and that amyloid nucleation does not involve monomer unfolding. In contrast, the solvation effects due to osmolyte presence promote nucleation but not elongation. Therefore, the amyloid-competent nuclei must be compact with less osmolytes excluded from the surface than either the folded monomers or amyloid fibers. We conclude that, in contrast to other amyloidogenic folded proteins, amyloid formation of apo-β-parvalbumin is accelerated by crowded cell-like conditions due to a nucleation process that does not involve large-scale protein unfolding.
Collapse
|
35
|
Ferreira C, Pinto MF, Macedo-Ribeiro S, Pereira PJB, Rocha FA, Martins PM. Protein crystals as a key for deciphering macromolecular crowding effects on biological reactions. Phys Chem Chem Phys 2020; 22:16143-16149. [PMID: 32638771 DOI: 10.1039/d0cp02469d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
When placed in the same environment, biochemically unrelated macromolecules influence each other's biological function through macromolecular crowding (MC) effects. This has been illustrated in vitro by the effects of inert polymers on protein stability, protein structure, enzyme kinetics and protein aggregation kinetics. While a unified way to quantitatively characterize MC is still lacking, we show that the crystal solubility of lysozyme can be used to predict the influence of crowding agents on the catalytic efficiency of this enzyme. In order to capture general enthalpic effects, as well as hard entropic effects that are specific of large molecules, we tested sucrose and its cross-linked polymer Ficoll-70 as additives. Despite the different conditions of pH and ionic strength adopted, both the crystallization and the enzymatic assays point to an entropic contribution of approximately -1 kcal mol-1 caused by MC. Our results demonstrate that the thermodynamic activity of proteins is markedly increased by the reduction of accessible volume caused by the presence of macromolecular cosolutes. Unlike what is observed in protein folding studies, this MC effect cannot be reproduced using equivalent concentrations of monomeric crowding units. Applicable to any crystallizable protein, the thermodynamic interpretation of MC based on crystal solubility is expected to help in elucidating the full extent and importance of hard-type interactions in the crowded environment of the cell.
Collapse
Affiliation(s)
- Cecília Ferreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Filipa Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal and ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Fernando Alberto Rocha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Pedro Miguel Martins
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Chawla U, Perera SMDC, Fried SDE, Eitel AR, Mertz B, Weerasinghe N, Pitman MC, Struts AV, Brown MF. Activation of the G-Protein-Coupled Receptor Rhodopsin by Water. Angew Chem Int Ed Engl 2020; 60:2288-2295. [PMID: 32596956 DOI: 10.1002/anie.202003342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Indexed: 12/31/2022]
Abstract
Visual rhodopsin is an important archetype for G-protein-coupled receptors, which are membrane proteins implicated in cellular signal transduction. Herein, we show experimentally that approximately 80 water molecules flood rhodopsin upon light absorption to form a solvent-swollen active state. An influx of mobile water is necessary for activating the photoreceptor, and this finding is supported by molecular dynamics (MD) simulations. Combined force-based measurements involving osmotic and hydrostatic pressure indicate the expansion occurs by changes in cavity volumes, together with greater hydration in the active metarhodopsin-II state. Moreover, we discovered that binding and release of the C-terminal helix of transducin is coupled to hydration changes as may occur in visual signal amplification. Hydration-dehydration explains signaling by a dynamic allosteric mechanism, in which the soft membrane matter (lipids and water) has a pivotal role in the catalytic G-protein cycle.
Collapse
Affiliation(s)
- Udeep Chawla
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Steven D E Fried
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Anna R Eitel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Blake Mertz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Nipuna Weerasinghe
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael C Pitman
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.,Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.,Department of Physics, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
37
|
Camino JD, Gracia P, Chen SW, Sot J, de la Arada I, Sebastián V, Arrondo JLR, Goñi FM, Dobson CM, Cremades N. The extent of protein hydration dictates the preference for heterogeneous or homogeneous nucleation generating either parallel or antiparallel β-sheet α-synuclein aggregates. Chem Sci 2020; 11:11902-11914. [PMID: 33520152 PMCID: PMC7816767 DOI: 10.1039/d0sc05297c] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 11/21/2022] Open
Abstract
α-Synuclein amyloid self-assembly is the hallmark of a number of neurodegenerative disorders, including Parkinson's disease, although there is still very limited understanding about the factors and mechanisms that trigger this process. Primary nucleation has been observed to be initiated in vitro at hydrophobic/hydrophilic interfaces by heterogeneous nucleation generating parallel β-sheet aggregates, although no such interfaces have yet been identified in vivo. In this work, we have discovered that α-synuclein can self-assemble into amyloid aggregates by homogeneous nucleation, without the need of an active surface, and with a preference for an antiparallel β-sheet arrangement. This particular structure has been previously proposed to be distinctive of stable toxic oligomers and we here demonstrate that it indeed represents the most stable structure of the preferred amyloid pathway triggered by homogeneous nucleation under limited hydration conditions, including those encountered inside α-synuclein droplets generated by liquid-liquid phase separation. In addition, our results highlight the key role that water plays not only in modulating the transition free energy of amyloid nucleation, and thus governing the initiation of the process, but also in dictating the type of preferred primary nucleation and the type of amyloid polymorph generated depending on the extent of protein hydration. These findings are particularly relevant in the context of in vivo α-synuclein aggregation where the protein can encounter a variety of hydration conditions in different cellular microenvironments, including the vicinity of lipid membranes or the interior of membraneless compartments, which could lead to the formation of remarkably different amyloid polymorphs by either heterogeneous or homogeneous nucleation.
Collapse
Affiliation(s)
- José D Camino
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC) , University of Zaragoza , 50018 Zaragoza , Spain .
| | - Pablo Gracia
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC) , University of Zaragoza , 50018 Zaragoza , Spain .
| | - Serene W Chen
- Centre for Misfolding Diseases , Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , UK
| | - Jesús Sot
- Biofisika Institute (CSIC, UPV/EHU) , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
| | - Igor de la Arada
- Biofisika Institute (CSIC, UPV/EHU) , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
| | - Víctor Sebastián
- Instituto de Nanociencia y Materiales de Aragon (INMA) , CSIC-Universidad de Zaragoza , 50009 Zaragoza , Spain
- Department of Chemical and Enviromental Engineering , Aragon Health Research Institute (IIS Aragon) , University of Zaragoza , 50018 Zaragoza , Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , 28029 Madrid , Spain
| | - José L R Arrondo
- Biofisika Institute (CSIC, UPV/EHU) , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
- Department of Biochemistry and Molecular Biology , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
| | - Félix M Goñi
- Biofisika Institute (CSIC, UPV/EHU) , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
- Department of Biochemistry and Molecular Biology , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
| | - Christopher M Dobson
- Centre for Misfolding Diseases , Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , UK
| | - Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC) , University of Zaragoza , 50018 Zaragoza , Spain .
| |
Collapse
|
38
|
Köhn B, Kovermann M. All atom insights into the impact of crowded environments on protein stability by NMR spectroscopy. Nat Commun 2020; 11:5760. [PMID: 33188202 PMCID: PMC7666220 DOI: 10.1038/s41467-020-19616-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/23/2020] [Indexed: 01/16/2023] Open
Abstract
The high density of macromolecules affecting proteins due to volume exclusion has been discussed in theory but numerous in vivo experiments cannot be sufficiently understood taking only pure entropic stabilization into account. Here, we show that the thermodynamic stability of a beta barrel protein increases equally at all atomic levels comparing crowded environments with dilute conditions by applying multidimensional high-resolution NMR spectroscopy in a systematic manner. Different crowding agents evoke a pure stabilization cooperatively and do not disturb the surface or integrity of the protein fold. The here developed methodology provides a solid base that can be easily expanded to incorporate e.g. binding partners to recognize functional consequences of crowded conditions. Our results are relevant to research projects targeting soluble proteins in vivo as it can be anticipated that their thermodynamic stability increase comparably and has consequently to be taken into account to coherently understand intracellular processes.
Collapse
Affiliation(s)
- Birgit Köhn
- Department of Chemistry, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology KoRS-CB, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany.
- Konstanz Research School Chemical Biology KoRS-CB, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany.
| |
Collapse
|
39
|
Consequence of macromolecular crowding on aggregation propensity and structural stability of haemoglobin under glycating conditions. Int J Biol Macromol 2020; 162:1044-1053. [PMID: 32553973 DOI: 10.1016/j.ijbiomac.2020.06.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/31/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Cell interiors are extremely congested with biological macromolecules exerting crowding effect, influencing various physiognomies of protein life. Present work deals with effect of crowding on folding behaviour of haemoglobin (Hb) under glycating conditions. Macromolecular crowding was mimicked by concentrated solutions of dextran 70. Hb with 0.2 M fructose and ribose was incubated separately for 96 h in dilute and crowded solution to analyse conformational changes. Reduced intrinsic and ANS fluorescence, decreased Soret absorbance, enhanced turbidity, browning of protein, red shift in ThT and Congo red spectra significantly unveiled protein aggregation. FTIR and CD results revealed transition from α-helix to β-sheets confirming aggregation. Transmission electron microscopy exhibited incidence of aggregates. Macromolecular crowding was witnessed to defend conformational stability of native Hb under stress condition at 100 mg/ml dextran, noticeably indicating deceleration of aggregation. Stabilising effect of crowding was marginally better in fructosylated Hb than with ribose due to difference in their glycation potential. Contrarily, in over-crowded solution where dextran concentration was 500 mg/ml, heightened aggregation was perceived implying concentration dependant, dual nature of macromolecular crowding. The novelty of this study lies in idea of considering macromolecular crowding as a key player in regulation of protein stability which was safely ignored previously.
Collapse
|
40
|
Pittas T, Zuo W, Boersma AJ. Engineering crowding sensitivity into protein linkers. Methods Enzymol 2020; 647:51-81. [PMID: 33482994 DOI: 10.1016/bs.mie.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The intracellular environment contains a high concentration of biomacromolecules that present steric barriers and ample surface area for weak chemical interactions. Consequently, these forces influence protein conformations and protein self-assembly, with an outcome that depends on the sum of the effects resulting from crowding. Linkers are disordered domains that lack tertiary structure, and this flexible nature would render them susceptible to compression or extension under crowded conditions, compared to the equilibrium conformation in a dilute buffer. The change in distance between the linked proteins can become essential where it attenuates protein activity. In this chapter, we first discuss the experimental findings in vitro and in the cell on how linkers and other relevant macromolecules are affected by crowding. We focus on the dependence on the linker's size, flexibility, and the intra- and intermolecular interactions. Although the experimental data on the systematic variation of proteins in a buffer and cells is limited, extrapolating the available insights allows us to propose a protocol on how to engineer the directionality of crowding effects in the linker. Finally, we describe a straightforward experimental protocol on the determination of crowding sensitivity in a buffer and cell.
Collapse
Affiliation(s)
- Theodoros Pittas
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Weiyan Zuo
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
41
|
Begam N, Da Vela S, Matsarskaia O, Braun MK, Mariani A, Zhang F, Schreiber F. Packing and dynamics of a protein solution approaching the jammed state. SOFT MATTER 2020; 16:7751-7759. [PMID: 32744265 DOI: 10.1039/d0sm00962h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The packing of proteins and their collective behavior in crowded media is crucial for the understanding of biological processes. Here we study the structural and dynamical evolution of solutions of the globular protein bovine serum albumin with increasing concentration via drying using small angle X-ray scattering and dynamic light scattering. We probe an evolving correlation peak on the scattering profile, corresponding to the inter-protein distance, ξ, which decreases following a power law of the protein volume fraction, φ. The rate of decrease in ξ becomes faster above a protein concentration of ∼200 mg ml-1 (φ = 0.15). The power law exponent changes from 0.33, which is typical of colloidal or protein solutions, to 0.41. During the entire drying process, we observe the development and the growth of two-step relaxation dynamics with increasing φ as revealed by dynamic light scattering. We find three different regimes of the dependence of ξ as a function of φ. In the dilute regime (φ < 0.22), protein molecules are far apart from each other compared to their size. In this case, the dynamics mainly corresponds to Brownian motion. At an intermediate concentration (0.22 < φ < 0.47), inter-protein distances become comparable to the size of protein molecules, leading to a preferential orientation of the ellipsoidal protein molecules along with a possible deformation. In this regime, the dynamics shows two distinct relaxation times. At a very high concentration (φ > 0.47), the system reaches a jammed state. Subsequently, the secondary relaxation time in this state becomes extremely slow. In this state, the protein molecules have approximately one hydration layer. This study contributes to the understanding of protein molecular packing in crowded environments and the phenomenon of density-driven jamming for soft matter systems.
Collapse
Affiliation(s)
- Nafisa Begam
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| | - Stefano Da Vela
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| | - Olga Matsarskaia
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| | - Michal K Braun
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| | - Alessandro Mariani
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Fajun Zhang
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| | - Frank Schreiber
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| |
Collapse
|
42
|
Tanaka S, Shimamura K. Temperature relaxation in binary hard-sphere mixture system: Molecular dynamics and kinetic theory study. J Chem Phys 2020; 153:034114. [PMID: 32716157 DOI: 10.1063/5.0011181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Computational schemes to describe the temperature relaxation in the binary hard-sphere mixture system are given on the basis of molecular dynamics (MD) simulation and renormalized kinetic theory. Event-driven MD simulations are carried out for three model systems in which the initial temperatures and the ratios of diameter and mass of two components are different to study the temporal evolution of each component temperature in nanoscale molecular conditions mimicking those in living cells. On the other hand, the temperature changes of the two components are also described in terms of a mean-field kinetic theory with the correlation functions calculated in the Percus-Yevick approximation. The calculated results by both the computational approaches have shown fair agreement with each other, whereas slight deviations have been found in the temporal range of femto- to picoseconds when the initial temperatures of the two components are significantly different, such as 300 K vs 1000 K. This discrepancy can be ascribed to the fast intra-component temperature relaxation assumed in the kinetic theory, and its violation in the MD simulations can be evaluated in terms of the Kullback-Leibler divergence between the equilibrated Maxwell-Boltzmann distribution at each temperature and the actual non-equilibrium velocity distribution realized in the MD. Thus, the present analysis provides a quantitative basis for addressing the temperature inhomogeneities experimentally observed in nanoscale crowding conditions.
Collapse
Affiliation(s)
- Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan
| | - Kohei Shimamura
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
43
|
Disorder under stress: Role of polyol osmolytes in modulating fibrillation and aggregation of intrinsically disordered proteins. Biophys Chem 2020; 264:106422. [PMID: 32707418 DOI: 10.1016/j.bpc.2020.106422] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022]
Abstract
Intrinsically disordered proteins (IDPs) comprise ~30-40% of the proteome, have key roles in cellular processes, and have been reported to be involved in stress regulation working in synergy with osmolytes. Osmolytes are known to accumulate against various stresses in living systems and are known to stabilize the native conformation of globular proteins. However, little is known of their effect on IDPs and their mechanism of action is unclear. We have investigated the effect of a series of polyol osmolytes on the conformation, aggregation and fibrillation properties of the IDPs α and β-synuclein, involved in Parkinson's disease, using fluorescence, CD, light scattering and TEM. We observe inhibition of fibril and aggregate formation with increasing concentration as well as the number of hydroxyl groups in polyols as observed by light scattering measurements which correlates well with the increase in viscosity of solution with increasing number of OH groups in them. However, ThT assay, while indicating suppression of fibril formation at various concentrations of polyols, shows enhanced fibrillation at some other concentrations which could be due to the heterogeneity of the species formed that are ThT insensitive. Fibril formation was, thus, probed by using Nile red fluorescence which showed sensitivity towards the species formed. ANS binding fluorescence also indicates a decrease in the hydrophobicity of the fibrils with increasing number of OH groups in polyols. Polyols do not have any effect on the fibrillation of β-syn but lead to enhanced amorphous aggregate formation in presence of Ethylene Glycol and Glycerol and a reduction in the presence of Sorbitol. The net free energy of transfer of the proteins from water to Sorbitol is large and positive while it is relatively negligible in the case of Glycerol suggestive of greater preferential exclusion effect of Sorbitol in comparison with Glycerol in the case of IDPs as well. The results overall show differential and complex effect of osmolytes towards the fibrillation/aggregation properties of the two IDPs and suggest that an appropriate balance between the concentration and type of polyol or osmolyte would be required for the survival of organisms rich in IDPs under various stress conditions.
Collapse
|
44
|
Löwe M, Kalacheva M, Boersma AJ, Kedrov A. The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes. FEBS J 2020; 287:5039-5067. [DOI: 10.1111/febs.15429] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| | | | | | - Alexej Kedrov
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| |
Collapse
|
45
|
Simpson LW, Good TA, Leach JB. Protein folding and assembly in confined environments: Implications for protein aggregation in hydrogels and tissues. Biotechnol Adv 2020; 42:107573. [PMID: 32512220 DOI: 10.1016/j.biotechadv.2020.107573] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/03/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022]
Abstract
In the biological milieu of a cell, soluble crowding molecules and rigid confined environments strongly influence whether the protein is properly folded, intrinsically disordered proteins assemble into distinct phases, or a denatured or aggregated protein species is favored. Such crowding and confinement factors act to exclude solvent volume from the protein molecules, resulting in an increased local protein concentration and decreased protein entropy. A protein's structure is inherently tied to its function. Examples of processes where crowding and confinement may strongly influence protein function include transmembrane protein dimerization, enzymatic activity, assembly of supramolecular structures (e.g., microtubules), nuclear condensates containing transcriptional machinery, protein aggregation in the contexts of disease and protein therapeutics. Historically, most protein structures have been determined from pure, dilute protein solutions or pure crystals. However, these are not the environments in which these proteins function. Thus, there has been an increased emphasis on analyzing protein structure and dynamics in more "in vivo-like" environments. Complex in vitro models using hydrogel scaffolds to study proteins may better mimic features of the in vivo environment. Therefore, analytical techniques need to be optimized for real-time analysis of proteins within hydrogel scaffolds.
Collapse
Affiliation(s)
- Laura W Simpson
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Eng 314, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Theresa A Good
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Ave, Alexandria, VA 22314, USA
| | - Jennie B Leach
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Eng 314, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
46
|
Depletion interactions modulate the binding between disordered proteins in crowded environments. Proc Natl Acad Sci U S A 2020; 117:13480-13489. [PMID: 32487732 PMCID: PMC7306994 DOI: 10.1073/pnas.1921617117] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The molecular environment in a biological cell is much more crowded than the conditions commonly used in biochemical and biophysical experiments in vitro. It is therefore important to understand how the conformations and interactions of biological macromolecules are affected by such crowding. Addressing these questions quantitatively, however, has been challenging owing to a lack of sufficiently detailed experimental information and theoretical concepts suitable for describing crowding, especially when polymeric crowding agents and biomolecules are involved. Here, we use the combination of extensive single-molecule experiments with established and recent theoretical concepts to investigate the interaction between two intrinsically disordered proteins. We observe pronounced effects of crowding on their interactions and provide a quantitative framework for rationalizing these effects. Intrinsically disordered proteins (IDPs) abound in cellular regulation. Their interactions are often transitory and highly sensitive to salt concentration and posttranslational modifications. However, little is known about the effect of macromolecular crowding on the interactions of IDPs with their cellular targets. Here, we investigate the influence of crowding on the interaction between two IDPs that fold upon binding, with polyethylene glycol as a crowding agent. Single-molecule spectroscopy allows us to quantify the effects of crowding on a comprehensive set of observables simultaneously: the equilibrium stability of the complex, the association and dissociation kinetics, and the microviscosity, which governs translational diffusion. We show that a quantitative and coherent explanation of all observables is possible within the framework of depletion interactions if the polymeric nature of IDPs and crowders is incorporated based on recent theoretical developments. The resulting integrated framework can also rationalize important functional consequences, for example, that the interaction between the two IDPs is less enhanced by crowding than expected for folded proteins of the same size.
Collapse
|
47
|
Molecular and macromolecular crowding-induced stabilization of proteins: Effect of dextran and its building block alone and their mixtures on stability and structure of lysozyme. Int J Biol Macromol 2020; 150:1238-1248. [DOI: 10.1016/j.ijbiomac.2019.10.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 11/22/2022]
|
48
|
Chu X, Suo Z, Wang J. Confinement and Crowding Effects on Folding of a Multidomain Y-Family DNA Polymerase. J Chem Theory Comput 2020; 16:1319-1332. [PMID: 31972079 PMCID: PMC7258223 DOI: 10.1021/acs.jctc.9b01146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteins in vivo endure highly various interactions from the luxuriant surrounding macromolecular cosolutes. Confinement and macromolecular crowding are the two major effects that should be considered while comparing the results of protein dynamics from in vitro to in vivo. However, efforts have been largely focused on single domain protein folding up to now, and the quantifications of the in vivo effects in terms of confinements and crowders on modulating the structure and dynamics as well as the physical understanding of the underlying mechanisms on multidomain protein folding are still challenging. Here we developed a topology-based model to investigate folding of a multidomain Y-family DNA polymerase (DPO4) within spherical confined space and in the presence of repulsive and attractive crowders. We uncovered that the entropic component of the thermodynamic driving force led by confinements and repulsive crowders increases the stability of folded states relative to the folding intermediates and unfolded states, while the enthalpic component of the thermodynamic driving force led by attractive crowders gives rise to the opposite effects with less stability. We found that the shapes of DPO4 conformations influenced by the confinements and the crowders are quite different even when only the entropic component of the thermodynamic driving force is considered. We uncovered that under all in vivo conditions, the folding cooperativity of DPO4 decreases compared to that in bulk. We showed that the loss of folding cooperativity can promote the sequential domain-wise folding, which was widely found in cotranslational multidomain protein folding, and effectively prohibit the backtracking led by topological frustrations during multidomain protein folding processes.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| |
Collapse
|
49
|
Ogunmoyole T, Adewale IO, Fodeke AA, Afolayan A. Catalytic studies of glutathione transferase from Clarias gariepinus (Burchell) in dilute and crowded solutions. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108648. [PMID: 31672530 DOI: 10.1016/j.cbpc.2019.108648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
Kinetic properties of purified Clarias gariepinus glutathione transferase (CgGST) was studied in the presence of Ficoll 70, Polyethylene glycol (PEG) 6000, bovine serum albumin (BSA) and in dilute solution. This was done to mimic the cytosol thereby unraveling the actual mechanism of detoxication involving glutathione transferase (GST) in the crowded intracellular milieu. CgGST from the liver of Clarias gariepinus was purified to homogeneity by affinity chromatography on glutathione (GSH) - agarose. Initial-velocity study was performed by varying the concentrations of GSH at various fixed concentrations of 1-chloro-2,4-dinitrobenzene (CDNB) and vice-versa. Data obtained were fitted to the three equations representing random-ordered, compulsory-ordered and ping-pong mechanisms to obtain kinetic parameters. Product inhibition studies using sodium chloride (NaCl) was done by varying the concentrations of NaCl and CDNB at a fixed concentration of GSH and vice-versa. Data obtained were fitted to three equations representing competitive, non-competitive and uncompetitive inhibitions to obtain the inhibition constants (KiGSH and KiCDNB). Optimal temperature of CgGST activity was 20 °C both in dilute and crowded solutions. Maximum velocity (Vmax) in dilute solution was decreased, while KmGSH and KmCDNB were increased in the presence of the crowding agents. Turnover number (kcat), catalytic efficiency - kcat/KmGSH,kcat/KmCDNB and inhibition constants - (KiGSH and KiCDNB) were reduced in crowded solutions. Mechanism of catalysis was steady - state random sequential in both dilute and crowded solutions. The study concluded that although the catalytic efficiency of the enzyme was reduced in crowded solution, mechanism of catalysis remains the same in both crowded and dilute solutions.
Collapse
Affiliation(s)
- Temidayo Ogunmoyole
- Department of Medical Biochemistry, College of Medicine, Ekiti State University, Ado-Ekiti, Nigeria.
| | - Isaac Olusanjo Adewale
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife 220282, Nigeria.
| | - Adedayo A Fodeke
- Department of Chemistry, Obafemi Awolowo, University, Ile-Ife 220282, Nigeria
| | - Adeyinka Afolayan
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife 220282, Nigeria
| |
Collapse
|
50
|
Holehouse AS, Sukenik S. Controlling Structural Bias in Intrinsically Disordered Proteins Using Solution Space Scanning. J Chem Theory Comput 2020; 16:1794-1805. [DOI: 10.1021/acs.jctc.9b00604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Shahar Sukenik
- Department of Chemistry and Chemical Biology, UC Merced, Merced, California 95340, United States
| |
Collapse
|