1
|
Francia F, Malferrari M, Lanciano P, Steimle S, Daldal F, Venturoli G. The cytochrome b Zn binding amino acid residue histidine 291 is essential for ubihydroquinone oxidation at the Q o site of bacterial cytochrome bc 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1796-1806. [PMID: 27550309 DOI: 10.1016/j.bbabio.2016.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/27/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022]
Abstract
The ubiquinol:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important membrane protein complex in photosynthetic and respiratory energy transduction. In bacteria such as Rhodobacter capsulatus it is constituted of three subunits: the iron-sulfur protein, cyt b and cyt c1, which form two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the pathways of bifurcated electron transfers emanating from QH2 oxidation are known, but the associated proton release routes are not well defined. In energy transducing complexes, Zn2+ binding amino acid residues often correlate with proton uptake or release pathways. Earlier, using combined EXAFS and structural studies, we identified Zn coordinating residues of mitochondrial and bacterial cyt bc1. In this work, using the genetically tractable bacterial cyt bc1, we substituted each of the proposed Zn binding residues with non-protonatable side chains. Among these mutants, only the His291Leu substitution destroyed almost completely the Qo site catalysis without perturbing significantly the redox properties of the cofactors or the assembly of the complex. In this mutant, which is unable to support photosynthetic growth, the bifurcated electron transfer reactions that result from QH2 oxidation at the Qo site, as well as the associated proton(s) release, were dramatically impaired. Based on these findings, on the putative role of His291 in liganding Zn, and on its solvent exposed and highly conserved position, we propose that His291 of cyt b is critical for proton release associated to QH2 oxidation at the Qo site of cyt bc1.
Collapse
Affiliation(s)
- Francesco Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Marco Malferrari
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Pascal Lanciano
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefan Steimle
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy
| |
Collapse
|
2
|
Giustini M, Parente M, Mallardi A, Palazzo G. Effect of ionic strength on intra-protein electron transfer reactions: The case study of charge recombination within the bacterial reaction center. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1541-1549. [PMID: 27297026 DOI: 10.1016/j.bbabio.2016.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 11/27/2022]
Abstract
It is a common believe that intra-protein electron transfer (ET) involving reactants and products that are overall electroneutral are not influenced by the ions of the surrounding solution. The results presented here show an electrostatic coupling between the ionic atmosphere surrounding a membrane protein (the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides) and two very different intra-protein ET processes taking place within it. Specifically we have studied the effect of salt concentration on: i) the kinetics of the charge recombination between the reduced primary quinone acceptor QA(-) and the primary photoxidized donor P(+); ii) the thermodynamic equilibrium (QA(-)↔QB(-)) for the ET between QA(-) and the secondary quinone acceptor QB. A distinctive point of this investigation is that reactants and products are overall electroneutral. The protein electrostatics has been described adopting the lowest level of complexity sufficient to grasp the experimental phenomenology and the impact of salt on the relative free energy level of reactants and products has been evaluated according to suitable thermodynamic cycles. The ionic strength effect was found to be independent on the ion nature for P(+)QA(-) charge recombination where the leading electrostatic term was the dipole moment. In the case of the QA(-)↔QB(-) equilibrium, the relative stability of QA(-) and QB(-) was found to depend on the salt concentration in a fashion that is different for chaotropic and kosmotropic ions. In such a case both dipole moment and quadrupole moments of the RC must be considered.
Collapse
Affiliation(s)
- Mauro Giustini
- Chemistry Department, University of Rome "La Sapienza", Italy; CSGI (Center for Colloid and Surface Science), c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy.
| | - Matteo Parente
- Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612, AJ, Eindhoven, The Netherlands
| | - Antonia Mallardi
- CNR-IPCF, Istituto per i processi chimico fisici, c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Gerardo Palazzo
- Chemistry Department, University of Bari, via Orabona 4, 70125 Bari, Italy; CSGI (Center for Colloid and Surface Science), c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
3
|
Kriegel S, Srour B, Steimle S, Friedrich T, Hellwig P. Involvement of Acidic Amino Acid Residues in Zn2+Binding to Respiratory Complex I. Chembiochem 2015; 16:2080-5. [DOI: 10.1002/cbic.201500273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Sébastien Kriegel
- Laboratoire de Bioelectrochimie et Spectroscopie; UMR 7140; Chimie de la Matière Complexe; Université de Strasbourg; CNRS; 1 rue Blaise Pascal 67070 Strasbourg France
- Université Paris Diderot; Sorbonne Paris Cité; Laboratoire d'Electrochimie Moléculaire; Unité Mixte de Recherche Université-; CNRS No. 7591; Bâtiment Lavoisier 15 rue Jean de Baïf 75205 Paris Cedex 13 France
| | - Batoul Srour
- Laboratoire de Bioelectrochimie et Spectroscopie; UMR 7140; Chimie de la Matière Complexe; Université de Strasbourg; CNRS; 1 rue Blaise Pascal 67070 Strasbourg France
| | - Stefan Steimle
- Albert-Ludwigs-Universität Freiburg; Institut für Biochemie; Albertstrasse 21 79104 Freiburg Germany
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg; Institut für Biochemie; Albertstrasse 21 79104 Freiburg Germany
| | - Petra Hellwig
- Laboratoire de Bioelectrochimie et Spectroscopie; UMR 7140; Chimie de la Matière Complexe; Université de Strasbourg; CNRS; 1 rue Blaise Pascal 67070 Strasbourg France
| |
Collapse
|
4
|
Lee DW, El Khoury Y, Francia F, Zambelli B, Ciurli S, Venturoli G, Hellwig P, Daldal F. Zinc inhibition of bacterial cytochrome bc(1) reveals the role of cytochrome b E295 in proton release at the Q(o) site. Biochemistry 2011; 50:4263-72. [PMID: 21500804 DOI: 10.1021/bi200230e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cytochrome (cyt) bc(1) complex (cyt bc(1)) plays a major role in the electrogenic extrusion of protons across the membrane responsible for the proton motive force to produce ATP. Proton-coupled electron transfer underlying the catalysis of cyt bc(1) is generally accepted, but the molecular basis of coupling and associated proton efflux pathway(s) remains unclear. Herein we studied Zn(2+)-induced inhibition of Rhodobacter capsulatus cyt bc(1) using enzyme kinetics, isothermal titration calorimetry (ITC), and electrochemically induced Fourier transform infrared (FTIR) difference spectroscopy with the purpose of understanding the Zn(2+) binding mechanism and its inhibitory effect on cyt bc(1) function. Analogous studies were conducted with a mutant of cyt b, E295, a residue previously proposed to bind Zn(2+) on the basis of extended X-ray absorption fine-structure spectroscopy. ITC analysis indicated that mutation of E295 to valine, a noncoordinating residue, results in a decrease in Zn(2+) binding affinity. The kinetic study showed that wild-type cyt bc(1) and its E295V mutant have similar levels of apparent K(m) values for decylbenzohydroquinone as a substrate (4.9 ± 0.2 and 3.1 ± 0.4 μM, respectively), whereas their K(I) values for Zn(2+) are 8.3 and 38.5 μM, respectively. The calorimetry-based K(D) values for the high-affinity site of cyt bc(1) are on the same order of magnitude as the K(I) values derived from the kinetic analysis. Furthermore, the FTIR signal of protonated acidic residues was perturbed in the presence of Zn(2+), whereas the E295V mutant exhibited no significant change in electrochemically induced FTIR difference spectra measured in the presence and absence of Zn(2+). Our overall results indicate that the proton-active E295 residue near the Q(o) site of cyt bc(1) can bind directly to Zn(2+), resulting in a decrease in the electron transferring activity without changing drastically the redox potentials of the cofactors of the enzyme. We conclude that E295 is involved in proton efflux coupled to electron transfer at the Q(o) site of cyt bc(1).
Collapse
Affiliation(s)
- Dong-Woo Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Veronesi G, Whitehead SJ, Francia F, Giachini L, Boscherini F, Venturoli G, Cotton NP, Jackson JB. X-ray absorption studies of Zn2+-binding sites in Escherichia coli transhydrogenase and its βH91K mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:494-500. [DOI: 10.1016/j.bbabio.2010.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 12/01/2022]
|
6
|
Giachini L, Veronesi G, Francia F, Venturoli G, Boscherini F. Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins. JOURNAL OF SYNCHROTRON RADIATION 2010; 17:41-52. [PMID: 20029110 DOI: 10.1107/s090904950904919x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/18/2009] [Indexed: 05/28/2023]
Abstract
In the present work a data analysis approach, based on XAFS data, is proposed for the identification of most probable binding motifs of unknown mononuclear zinc sites in metalloproteins. This approach combines multiple-scattering EXAFS analysis performed within the rigid-body refinement scheme, non-muffin-tin ab initio XANES simulations, average structural information on amino acids and metal binding clusters provided by the Protein Data Bank, and Debye-Waller factor calculations based on density functional theory. The efficiency of the method is tested by using three reference zinc proteins for which the local structure around the metal is already known from protein crystallography. To show the applicability of the present analysis to structures not deposited in the Protein Data Bank, the XAFS spectra of six mononuclear zinc binding sites present in diverse membrane proteins, for which we have previously proposed the coordinating amino acids by applying a similar approach, is also reported. By comparing the Zn K-edge XAFS features exhibited by these proteins with those pertaining to the reference structures, key spectral characteristics, related to specific binding motifs, are observed. These case studies exemplify the combined data analysis proposed and further support its validity.
Collapse
Affiliation(s)
- Lisa Giachini
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia.
| | | | | | | | | |
Collapse
|
7
|
Kaneko Y, Hayashi S, Ohmine I. Proton-Transfer Reactions in Reaction Center of Photosynthetic Bacteria Rhodobacter sphaeroides. J Phys Chem B 2009; 113:8993-9003. [DOI: 10.1021/jp9008898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Kaneko
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan, and Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraku-machi 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan, and Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraku-machi 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Iwao Ohmine
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan, and Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraku-machi 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
8
|
Inhibition of proton-transfer steps in transhydrogenase by transition metal ions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1276-88. [PMID: 19505432 DOI: 10.1016/j.bbabio.2009.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022]
Abstract
Transhydrogenase couples proton translocation across a bacterial or mitochondrial membrane to the redox reaction between NAD(H) and NADP(H). Purified intact transhydrogenase from Escherichia coli was prepared, and its His tag removed. The forward and reverse transhydrogenation reactions catalysed by the enzyme were inhibited by certain metal ions but a "cyclic reaction" was stimulated. Of metal ions tested they were effective in the order Pb(2+)>Cu(2+)>Zn(2+)=Cd(2+)>Ni(2+)>Co(2+). The results suggest that the metal ions affect transhydrogenase by binding to a site in the proton-transfer pathway. Attenuated total-reflectance Fourier-transform infrared difference spectroscopy indicated the involvement of His and Asp/Glu residues in the Zn(2+)-binding site(s). A mutant in which betaHis91 in the membrane-spanning domain of transhydrogenase was replaced by Lys had enzyme activities resembling those of wild-type enzyme treated with Zn(2+). Effects of the metal ion on the mutant were much diminished but still evident. Signals in Zn(2+)-induced FTIR difference spectra of the betaHis91Lys mutant were also attributable to changes in His and Asp/Glu residues but were much smaller than those in wild-type spectra. The results support the view that betaHis91 and nearby Asp or Glu residues participate in the proton-transfer pathway of transhydrogenase.
Collapse
|
9
|
The fe2+ site of photosynthetic reaction centers probed by multiple scattering x-ray absorption fine structure spectroscopy: improving structure resolution in dry matrices. Biophys J 2008; 95:814-22. [PMID: 18456824 DOI: 10.1529/biophysj.108.132654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report on the x-ray absorption fine structure of the Fe(2+) site in photosynthetic reaction centers from Rhodobacter sphaeroides. Crystallographic studies show that Fe(2+) is ligated with four N(epsilon) atoms from four histidine (His) residues and two O(epsilon) atoms from a Glu residue. By considering multiple scattering contributions to the x-ray absorption fine structure function, we improved the structural resolution of the site: His residues were split into two groups, characterized by different Fe-N(epsilon) distances, and two distinct Fe-O(epsilon) bond lengths resolved. The effect of the environment was studied by embedding the reaction centers into a polyvinyl alcohol film and into a dehydrated trehalose matrix. Incorporation into trehalose caused elongation in one of the two Fe-N(epsilon) distances, and in one Fe-O(epsilon) bond length, compared with the polyvinyl alcohol film. The asymmetry detected in the cluster of His residues and its response to incorporation into trehalose are ascribed to the hydrogen bonds between two His residues and the quinone acceptors. The structural distortions observed in the trehalose matrix indicate a strong interaction between the reaction-centers surface and the water-trehalose matrix, which propagates deeply into the interior of the protein. The absence of matrix effects on the Debye-Waller factors is brought back to the static heterogeneity and rigidity of the ligand cluster.
Collapse
|
10
|
EXAFS reveals a structural zinc binding site in the bovine NADH-Q oxidoreductase. FEBS Lett 2007; 581:5645-8. [DOI: 10.1016/j.febslet.2007.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 11/21/2022]
|
11
|
Giachini L, Francia F, Veronesi G, Lee DW, Daldal F, Huang LS, Berry EA, Cocco T, Papa S, Boscherini F, Venturoli G. X-Ray absorption studies of Zn2+ binding sites in bacterial, avian, and bovine cytochrome bc1 complexes. Biophys J 2007; 93:2934-51. [PMID: 17573435 PMCID: PMC1989705 DOI: 10.1529/biophysj.107.110957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of Zn2+ has been shown previously to inhibit the ubiquinol cytochrome c oxidoreductase (cyt bc1 complex). X-ray diffraction data in Zn-treated crystals of the avian cyt bc1 complex identified two binding sites located close to the catalytic Qo site of the enzyme. One of them (Zn01) might interfere with the egress of protons from the Qo site to the aqueous phase. Using Zn K-edge x-ray absorption fine-structure spectroscopy, we report here on the local structure of Zn2+ bound stoichiometrically to noncrystallized cyt bc1 complexes. We performed a comparative x-ray absorption fine-structure spectroscopy study by examining avian, bovine, and bacterial enzymes. A large number of putative clusters, built by combining information from first-shell analysis and metalloprotein databases, were fitted to the experimental spectra by using ab initio simulations. This procedure led us to identify the binding clusters with high levels of confidence. In both the avian and bovine enzyme, a tetrahedral ligand cluster formed by two His, one Lys, and one carboxylic residue was found, and this ligand attribution fit the crystallographic Zn01 location of the avian enzyme. In the chicken enzyme, the ligands were the His121, His268, Lys270, and Asp253 residues, and in the homologous bovine enzyme they were the His121, His267, Lys269, and Asp254 residues. Zn2+ bound to the bacterial cyt bc1 complex exhibited quite different spectral features, consistent with a coordination number of 6. The best-fit octahedral cluster was formed by one His, two carboxylic acids, one Gln or Asn residue, and two water molecules. It was interesting that by aligning the crystallographic structures of the bacterial and avian enzymes, this group of residues was found located in the region homologous to that of the Zn01 site. This cluster included the His276, Asp278, Glu295, and Asn279 residues of the cyt b subunit. The conserved location of the Zn2+ binding sites at the entrance of the putative proton release pathways, and the presence of His residues point to a common mechanism of inhibition. As previously shown for the photosynthetic bacterial reaction center, zinc would compete with protons for binding to the His residues, thus impairing their function as proton donors/acceptors.
Collapse
Affiliation(s)
- Lisa Giachini
- Department of Physics, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Francia F, Giachini L, Boscherini F, Venturoli G, Capitanio G, Martino PL, Papa S. The inhibitory binding site(s) of Zn2+in cytochromecoxidase. FEBS Lett 2007; 581:611-6. [PMID: 17266955 DOI: 10.1016/j.febslet.2007.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 11/29/2022]
Abstract
EXAFS analysis of Zn binding site(s) in bovine-heart cytochrome c oxidase and characterization of the inhibitory effect of internal zinc on respiratory activity and proton pumping of the liposome reconstituted oxidase are presented. EXAFS identifies tetrahedral coordination site(s) for Zn(2+) with two N-histidine imidazoles, one N-histidine imidazol or N-lysine and one O-COOH (glutamate or aspartate), possibly located at the entry site of the proton conducting D pathway in the oxidase and involved in inhibition of the oxygen reduction catalysis and proton pumping by internally trapped zinc.
Collapse
|
13
|
Ishikita H, Knapp EW. Induced conformational changes upon Cd2+ binding at photosynthetic reaction centers. Proc Natl Acad Sci U S A 2005; 102:16215-20. [PMID: 16254054 PMCID: PMC1283420 DOI: 10.1073/pnas.0503826102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cd(2+) binding at the bacterial photosynthetic reaction center (bRC) from Rhodobacter sphaeroides is known to inhibit proton transfer (PT) from bulk solvent to the secondary quinone Q(B). To elucidate this mechanism, we calculated the pK(a) for residues along the water channels connecting Q(B) with the stromal side based on the crystal structures of WT-bRC and Cd(2+)-bound bRC. Upon Cd(2+) binding, we observed the release of two protons from His-H126/128 at the Cd(2+) binding site and significant pK(a) shifts for residues along the PT pathways. Remarkably, Asp-L213 near Q(B), which is proposed to play a significant role in PT, resulted in a decrease in pK(a) upon Cd(2+) binding. The direct electrostatic influence of the Cd(2+)-positive charge on these pK(a) shifts was small. Instead, conformational changes of amino acid side chains induced electrostatically by Cd(2+) binding were the main mechanism for these pK(a) shifts. The long-range electrostatic influence over approximately 12 A between Cd(2+) and Asp-L213 is likely to originate from a set of Cd(2+)-induced successive reorientations of side chains (Asp-H124, His-H126, His-H128, Asp-H170, Glu-H173, Asp-M17, and Asp-L210), which propagate along the PT pathways as a "domino" effect.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry and Biochemistry, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | |
Collapse
|