1
|
Cardoso RMS, Lairion F, Disalvo EA, Loura LMS, Moreno MJ. Dipole Potential of Monolayers with Biologically Relevant Lipid Compositions. Molecules 2024; 29:5843. [PMID: 39769931 PMCID: PMC11679974 DOI: 10.3390/molecules29245843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The membrane dipole potential that arises from the interfacial water and constitutive dipolar groups of lipid molecules modulates the interaction of amphiphiles and proteins with membranes. Consequently, its determination for lipid mixtures resembling the existing diversity in biological membranes is very relevant. In this work, the dipole potentials of monolayers, formed at the air-water interface, from pure or mixed lipids (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyserine (POPS), sphingomyelin (SpM) and cholesterol) were measured and correlated with the mean area per lipid. The results showed that, as previously observed, cholesterol increases the dipole potential in correspondence with the decrease in the average area per lipid. At the small mole fractions encountered in biomembranes, the presence of the negatively charged lipid POPS increases the dipole potentials of monolayers despite inducing an increase in the average area per lipid. Additionally, the inclusion of POPE in POPC:cholesterol monolayers disrupts the area condensation induced by cholesterol while increasing the membrane dipole moment, leading to a small reduction in the dipole potential. This trend is reinforced for the quaternary POPC:cholesterol:POPE:POPS 4:3:2:1 system, which mimics the inner leaflets of eukaryotic plasma membranes. In agreement with previous works, the replacement of phosphocholine lipids with sphingomyelin leads to a decrease in the dipole potential. Together, this results in a lower dipole potential for the SpM-enriched outer leaflet, generating a non-zero transbilayer dipole potential in the asymmetric plasma membranes of eukaryotic cells.
Collapse
Affiliation(s)
- Renato M. S. Cardoso
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Fabiana Lairion
- Institute of Biochemistry and Molecular Medicine Prof. Alberto Boveris (IBIMOL), University of Buenos Aires and National Council for Scientific and Technical Research (CONICET), Buenos Aires 1113, Argentina
| | - Edgardo Anibal Disalvo
- Applied Biophysics and Food Research Center (CIBAAL), National University of Santiago del Estero and National Council for Scientific and Technical Research (CONICET), Santiago del Estero 4206, Argentina
| | - Luís M. S. Loura
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Farmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
2
|
Filipe HAL, Loura LMS, Moreno MJ. Permeation of a Homologous Series of NBD-Labeled Fatty Amines through Lipid Bilayers: A Molecular Dynamics Study. MEMBRANES 2023; 13:551. [PMID: 37367755 DOI: 10.3390/membranes13060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Permeation through biomembranes is ubiquitous for drugs to reach their active sites. Asymmetry of the cell plasma membrane (PM) has been described as having an important role in this process. Here we describe the interaction of a homologous series of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled amphiphiles (NBD-Cn, n = 4 to 16) with lipid bilayers of different compositions (1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol (1:1) and palmitoylated sphingomyelin (SpM):cholesterol (6:4)), including an asymmetric bilayer. Both unrestrained and umbrella sampling (US) simulations (at varying distances to the bilayer center) were carried out. The free energy profile of NBD-Cn at different depths in the membrane was obtained from the US simulations. The behavior of the amphiphiles during the permeation process was described regarding their orientation, chain elongation, and H-bonding to lipid and water molecules. Permeability coefficients were also calculated for the different amphiphiles of the series, using the inhomogeneous solubility-diffusion model (ISDM). Quantitative agreement with values obtained from kinetic modeling of the permeation process could not be obtained. However, for the longer, and more hydrophobic amphiphiles, the variation trend along the homologous series was qualitatively better matched by the ISDM when the equilibrium location of each amphiphile was taken as reference (ΔG = 0), compared to the usual choice of bulk water.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Luís M S Loura
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Moreno MJ, Salvador A. Ligand's Partition to the Lipid Bilayer Should Be Accounted for When Estimating Their Affinity to Proteins. Molecules 2023; 28:3136. [PMID: 37049898 PMCID: PMC10095633 DOI: 10.3390/molecules28073136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Ligand-protein interactions are usually studied in complex media that also contain lipids. This is particularly relevant for membrane proteins that are always associated with lipid bilayers, but also for water-soluble proteins studied in in vivo conditions. This work addresses the following two questions: (i) How does the neglect of the lipid bilayer influence the apparent ligand-protein affinity? (ii) How can the intrinsic ligand-protein affinity be obtained? Here we present a framework to quantitatively characterize ligand-protein interactions in complex media for proteins with a single binding site. The apparent affinity obtained when following some often-used approximations is also explored, to establish these approximations' validity limits and to allow the estimation of the true affinities from data reported in literature. It is found that an increase in the ligand lipophilicity or in the volume of the lipid bilayer always leads to a decrease in the apparent ligand-protein affinity, both for water-soluble and for membrane proteins. The only exceptions are very polar ligands (excluded from the lipid bilayer) and ligands whose binding affinity to the protein increases supralinearly with ligand lipophilicity. Finally, this work discusses which are the most relevant parameters to consider when exploring the specificity of membrane proteins.
Collapse
Affiliation(s)
- Maria João Moreno
- Department of Chemistry, Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - Armindo Salvador
- Department of Chemistry, Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
4
|
Interaction of a Homologous Series of Amphiphiles with P-glycoprotein in a Membrane Environment-Contributions of Polar and Non-Polar Interactions. Pharmaceutics 2023; 15:pharmaceutics15010174. [PMID: 36678803 PMCID: PMC9862096 DOI: 10.3390/pharmaceutics15010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The transport of drugs by efflux transporters in biomembranes limits their bioavailability and is a major determinant of drug resistance development by cancer cells and pathogens. A large number of chemically dissimilar drugs are transported, and despite extensive studies, the molecular determinants of substrate specificity are still not well understood. In this work, we explore the role of polar and non-polar interactions on the interaction of a homologous series of fluorescent amphiphiles with the efflux transporter P-glycoprotein. The interaction of the amphiphiles with P-glycoprotein is evaluated through effects on ATPase activity, efficiency in inhibition of [125I]-IAAP binding, and partition to the whole native membranes containing the transporter. The results were complemented with partition to model membranes with a representative lipid composition, and details on the interactions established were obtained from MD simulations. We show that when the total concentration of amphiphile is considered, the binding parameters obtained are apparent and do not reflect the affinity for P-gp. A new formalism is proposed that includes sequestration of the amphiphiles in the lipid bilayer and the possible binding of several molecules in P-gp's substrate-binding pocket. The intrinsic binding affinity thus obtained is essentially independent of amphiphile hydrophobicity, highlighting the importance of polar interactions. An increase in the lipophilicity and amphiphilicity led to a more efficient association with the lipid bilayer, which maintains the non-polar groups of the amphiphiles in the bilayer, while the polar groups interact with P-gp's binding pocket. The presence of several amphiphiles in this orientation is proposed as a mechanism for inhibition of P-pg function.
Collapse
|
5
|
Effect of dipole moment on amphiphile solubility and partition into liquid ordered and liquid disordered phases in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183157. [PMID: 31846646 DOI: 10.1016/j.bbamem.2019.183157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Association of amphiphiles with biomembranes is important for their availability at specific locations in organisms and cells, being critical for their biological function. A prominent role is usually attributed to the hydrophobic effect, and to electrostatic interactions between charged amphiphiles and lipids. This work explores a closely related and complementary aspect, namely the contribution made by dipole moments to the strength of the interactions established. Two xanthene amphiphiles with opposite relative orientations of their dipole and amphiphilic moments have been selected (Rhodamine-C14 and Carboxyfluorescein-C14). The membranes studied have distinct lipid compositions, representing typical cell membrane pools, ranging from internal membranes to the outer and inner leaflet of the plasma membrane. A comprehensive study is reported, including the affinity of the amphiphiles for the different membranes, the stability of the amphiphiles as monomers and their tendency to form small clusters, as well as their transverse location in the membrane. The orientation of the amphiphile dipole moment, which determines whether its interaction with the membrane dipole potential is repulsive or attractive, is found to exert a large influence on the association of the amphiphile with ordered lipid membranes. These interactions are also responsible for the formation of small clusters or stabilization of amphiphile monomers in the membrane. The results obtained allow understanding the prevalence of protein lipidation at the N-terminal for efficient targeting to the plasma membrane, as well as the tendency of GPI-anchored proteins (usually lipidated at the C-terminal) to form small clusters in the membrane ordered domains.
Collapse
|
6
|
PIP2 Reshapes Membranes through Asymmetric Desorption. Biophys J 2019; 117:962-974. [PMID: 31445680 DOI: 10.1016/j.bpj.2019.07.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 11/24/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is an important signaling lipid in eukaryotic cell plasma membranes, playing an essential role in diverse cellular processes. The headgroup of PIP2 is highly negatively charged, and this lipid displays a high critical micellar concentration compared to housekeeping phospholipid analogs. Given the crucial role of PIP2, it is imperative to study its localization, interaction with proteins, and membrane-shaping properties. Biomimetic membranes have served extensively to elucidate structural and functional aspects of cell membranes including protein-lipid and lipid-lipid interactions, as well as membrane mechanics. Incorporation of PIP2 into biomimetic membranes, however, has at times resulted in discrepant findings described in the literature. With the goal to elucidate the mechanical consequences of PIP2 incorporation, we studied the desorption of PIP2 from biomimetic giant unilamellar vesicles by means of a fluorescent marker. A decrease in fluorescence intensity with the age of the vesicles suggested that PIP2 lipids were being desorbed from the outer leaflet of the membrane. To evaluate whether this desorption was asymmetric, the vesicles were systematically diluted. This resulted in an increase in the number of internally tubulated vesicles within minutes after dilution, suggesting that the desorption was asymmetric and also generated membrane curvature. By means of a saturated chain homolog of PIP2, we showed that the fast desorption of PIP2 is facilitated by presence of an arachidonic lipid tail and is possibly due to its oxidation. Through measurements of the pulling force of membrane tethers, we quantified the effect of this asymmetric desorption on the spontaneous membrane curvature. Furthermore, we found that the spontaneous curvature could be modulated by externally increasing the concentration of PIP2 micelles. Given that the local concentration of PIP2 in biological membranes is variable, spontaneous curvature generated by PIP2 may affect the formation of highly curved structures that can serve as initiators for signaling events.
Collapse
|
7
|
Gerl MJ, Vaz WLC, Domingues N, Klose C, Surma MA, Sampaio JL, Almeida MS, Rodrigues G, Araújo-Gonçalves P, Ferreira J, Borbinha C, Marto JP, Viana-Baptista M, Simons K, Vieira OV. Cholesterol is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients. Sci Rep 2018; 8:14764. [PMID: 30282999 PMCID: PMC6170447 DOI: 10.1038/s41598-018-33116-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
Shotgun lipidomic analysis of 203 lipids in 13 lipid classes performed on blood plasma of donors who had just suffered an acute coronary syndrome (ACS, n = 74), or an ischemic stroke (IS, n = 21), or who suffer from stable angina pectoris (SAP, n = 78), and an age-matched control cohort (n = 52), showed some of the highest inter-lipid class correlations between cholesteryl esters (CE) and phosphatidylcholines (PC) sharing a common fatty acid. The concentration of lysophospatidylcholine (LPC) and ratios of concentrations of CE to free cholesterol (Chol) were also lower in the CVD cohorts than in the control cohort, indicating a deficient conversion of Chol to CE in the blood plasma in the CVD subjects. A non-equilibrium reaction quotient, Q′, describing the global homeostasis of cholesterol as manifested in the blood plasma was shown to have a value in the CVD cohorts (Q′ACS = 0.217 ± 0.084; Q′IS = 0.201 ± 0.084; Q′SAP = 0.220 ± 0.071) that was about one third less than in the control cohort (Q′Control = 0.320 ± 0.095, p < 1 × 10−4), suggesting its potential use as a rapid predictive/diagnostic measure of CVD-related irregularities in cholesterol homeostasis.
Collapse
Affiliation(s)
| | - Winchil L C Vaz
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal
| | - Neuza Domingues
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal
| | | | | | - Júlio L Sampaio
- Lipotype GmbH, Tatzberg 47, 01307, Dresden, Germany.,Centre de Recherche, Institut Curie, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Manuel S Almeida
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Gustavo Rodrigues
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Pedro Araújo-Gonçalves
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Jorge Ferreira
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Claudia Borbinha
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisboa, Portugal
| | - João Pedro Marto
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisboa, Portugal
| | - Miguel Viana-Baptista
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisboa, Portugal
| | - Kai Simons
- Lipotype GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Otilia V Vieira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal.
| |
Collapse
|
8
|
Coreta-Gomes FM, Vaz WLC, Moreno MJ. Effect of Acyl Chain Length on the Rate of Phospholipid Flip-Flop and Intermembrane Transfer. J Membr Biol 2017; 251:431-442. [PMID: 29264685 DOI: 10.1007/s00232-017-0009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/13/2017] [Indexed: 11/25/2022]
Abstract
The rate at which phospholipids equilibrate between different membranes and between the non-polar environments in biological fluids is of high importance in the understanding of biomembrane diversity, as well as in the development of liposomes for drug delivery. In this work, we characterize the rate of insertion into and desorption from POPC bilayers for a homologous series of amphiphiles with the fluorescent NBD group attached to phosphoethanolamines of different acyl chain lengths, NBD-diC n -PE with n = 6, 8, 10, and 12. The rate of translocation between bilayer leaflets was also characterized, providing all the relevant parameters for their interaction with lipid bilayers. The results are complemented with data for NBD-diC14-PE obtained from literature (Abreu et al. Biophys J 87:353-365, 2004; Moreno et al. Biophys J 91:873-881, 2006). The rate of translocation between the POPC leaflets is not dependent on the length of the acyl chains, while this affects strongly the rate of desorption from the bilayer. Insertion in the POPC bilayer is not diffusion controlled showing a significant dependence on the acyl chain length and on temperature. The results obtained are compared with those previously reported for NBD-LysoC14-PE (Sampaio et al. Biophys J 88:4064-4071, 2005), and with the homologous series of single chain amphiphiles NBD-C n (Cardoso et al. J Phys Chem B 114:16337-16346, 2010; J Phys Chem B 115:10098-10108, 2011). This allows the establishment of important relations between the rate constants for interaction with the lipid bilayers and the structural properties of the amphiphiles, namely the total surface and the cross-section of their non-polar region.
Collapse
Affiliation(s)
- Filipe M Coreta-Gomes
- CQC-Biological Chemistry Group, Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535, Coimbra, Portugal
- QOPNA, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Winchil L C Vaz
- CEDOC, NOVA Medical School, Faculdadede Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria J Moreno
- CQC-Biological Chemistry Group, Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
9
|
Filipe HAL, Bowman D, Palmeira T, Cardoso RMS, Loura LMS, Moreno MJ. Interaction of NBD-labelled fatty amines with liquid-ordered membranes: a combined molecular dynamics simulation and fluorescence spectroscopy study. Phys Chem Chem Phys 2016; 17:27534-47. [PMID: 26426766 DOI: 10.1039/c5cp04191k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A complete homologous series of fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl-(NBD) labelled fatty amines of varying alkyl chain lengths, NBD-Cn, inserted in 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) or N-palmitoyl sphingomyelin (SpM) bilayers, with 50 mol% and 40 mol% cholesterol (Chol), respectively, was studied using atomistic molecular dynamics simulations. For all amphiphiles in both bilayers, the NBD fluorophore locates at the interface, in a more external position than that previously observed for pure POPC bilayers. This shallower location of the NBD group agrees with the lower fluorescent quantum yield, shorter fluorescence lifetime, and higher ionisation constants (smaller pKa) determined experimentally. The more external location is also consistent with the changes measured in steady-state fluorescence anisotropy from POPC to POPC/Chol (1 : 1) vesicles. Accordingly, the equilibrium location of the NBD group within the various bilayers is mainly dictated by bilayer compositions, and is mostly unaffected by the length of the attached alkyl chain. Similarly to the behaviour observed in POPC bilayers, the longer-chained NBD-Cn amphiphiles show significant mass density near the mixed bilayers' midplanes, and the alkyl chains of the longer derivatives, mainly NBD-C16, penetrate the opposite bilayer leaflet to some extent. However, this effect is quantitatively less pronounced in these ordered bilayers than in POPC. Similarly to POPC bilayers, the effects of these amphiphiles on the structure and dynamics of the host lipid were found to be relatively mild, in comparison with acyl-chain phospholipid analogues.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
10
|
Zhang Y, Li X, Yu H. Toxicity of nanoparticle surface coating agents: Structure-cytotoxicity relationship. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:204-215. [PMID: 27323213 DOI: 10.1080/10590501.2016.1202762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Surface coating agents for metal nanoparticles, cationic alkyl ammonium bromides, and anionic alkyl sulfates were tested against human skin keratinocytes (HaCaT) and blood T lymphocytes (TIB-152). The surfactants of short chain (C8) are not cytotoxic, but as chain length increases, their cytotoxicity increases and levels off at C12 for cationic surfactants against both cell lines and for anionic surfactants against the TIB-152, but C14 for anionic surfactants against HaCaT. The cationic surfactants are more toxic than the anionic surfactants for HaCaT; while with similar cytotoxicity for TIB-152 cells. di- and tetra-Alkyl ammonium salts are more cytotoxic than the mono-substituted.
Collapse
Affiliation(s)
- Ying Zhang
- a Department of Chemistry and Biochemistry , Jackson State University , Jackson , Mississippi , USA
| | - Xiaoping Li
- b Center for Nano-Environmental Science and Health, Shaanxi Normal University , Xi'an , China
| | - Hongtao Yu
- a Department of Chemistry and Biochemistry , Jackson State University , Jackson , Mississippi , USA
- b Center for Nano-Environmental Science and Health, Shaanxi Normal University , Xi'an , China
| |
Collapse
|
11
|
Inácio ÂS, Domingues NS, Nunes A, Martins PT, Moreno MJ, Estronca LM, Fernandes R, Moreno AJM, Borrego MJ, Gomes JP, Vaz WLC, Vieira OV. Quaternary ammonium surfactant structure determines selective toxicity towards bacteria: mechanisms of action and clinical implications in antibacterial prophylaxis. J Antimicrob Chemother 2015; 71:641-54. [PMID: 26679255 DOI: 10.1093/jac/dkv405] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/02/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Broad-spectrum antimicrobial activity of quaternary ammonium surfactants (QAS) makes them attractive and cheap topical prophylactic options for sexually transmitted infections and perinatal vertically transmitted urogenital infections. Although attributed to their high affinity for biological membranes, the mechanisms behind QAS microbicidal activity are not fully understood. We evaluated how QAS structure affects antimicrobial activity and whether this can be exploited for use in prophylaxis of bacterial infections. METHODS Acute toxicity of QAS to in vitro models of human epithelial cells and bacteria were compared to identify selective and potent bactericidal agents. Bacterial cell viability, membrane integrity, cell cycle and metabolism were evaluated to establish the mechanisms involved in selective toxicity of QAS. RESULTS QAS toxicity normalized relative to surfactant critical micelle concentration showed n-dodecylpyridinium bromide (C12PB) to be the most effective, with a therapeutic index of ∼10 for an MDR strain of Escherichia coli and >20 for Neisseria gonorrhoeae after 1 h of exposure. Three modes of QAS antibacterial action were identified: impairment of bacterial energetics and cell division at low concentrations; membrane permeabilization and electron transport inhibition at intermediate doses; and disruption of bacterial membranes and cell lysis at concentrations close to the critical micelle concentration. In contrast, toxicity to mammalian cells occurs at higher concentrations and, as we previously reported, results primarily from mitochondrial dysfunction and apoptotic cell death. CONCLUSIONS Our data show that short chain (C12) n-alkyl pyridinium bromides have a sufficiently large therapeutic window to be good microbicide candidates.
Collapse
Affiliation(s)
- Ângela S Inácio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Neuza S Domingues
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Alexandra Nunes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Patrícia T Martins
- Centro de Química de Coimbra and Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Maria J Moreno
- Centro de Química de Coimbra and Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Luís M Estronca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui Fernandes
- IBMC/HEMS - Instituto de Biologia Molecular e Celular/Histology and Electron Microscopy Service, Universidade do Porto, Porto, Portugal
| | | | - Maria J Borrego
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João P Gomes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Winchil L C Vaz
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Otília V Vieira
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
12
|
Coreta-Gomes FM, Martins PAT, Velazquez-Campoy A, Vaz WLC, Geraldes CFG, Moreno MJ. Interaction of Bile Salts with Model Membranes Mimicking the Gastrointestinal Epithelium: A Study by Isothermal Titration Calorimetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9097-9104. [PMID: 26241730 DOI: 10.1021/acs.langmuir.5b01810] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bile salts (BS) are biosurfactants synthesized in the liver and secreted into the intestinal lumen where they solubilize cholesterol and other hydrophobic compounds facilitating their gastrointestinal absorption. Partition of BS toward biomembranes is an important step in both processes. Depending on the loading of the secreted BS micelles with endogeneous cholesterol and on the amount of cholesterol from diet, this may lead to the excretion or absorption of cholesterol, from cholesterol-saturated membranes in the liver or to gastrointestinal membranes, respectively. The partition of BS toward the gastrointestinal membranes may also affect the barrier properties of those membranes affecting the permeability for hydrophobic and amphiphilic compounds. Two important parameters in the interaction of the distinct BS with biomembranes are their partition coefficient and the rate of diffusion through the membrane. Altogether, they allow the calculation of BS local concentrations in the membrane as well as their asymmetry in both membrane leaflets. The local concentration and, most importantly, its asymmetric distribution in the bilayer are a measure of induced membrane perturbation, which is expected to significantly affect its properties as a cholesterol donor and hydrophobic barrier. In this work we have characterized the partition of several BS, nonconjugated and conjugated with glycine, to large unilamellar vesicles (LUVs) in the liquid-disordered phase and with liquid-ordered/liquid-disordered phase coexistence, using isothermal titration calorimetry (ITC). The partition into the liquid-disordered bilayer was characterized by large partition coefficients and favored by enthalpy, while association with the more ordered membrane was weak and driven only by the hydrophobic effect. The trihydroxy BS partitions less efficiently toward the membranes but shows faster translocation rates, in agreement with a membrane protective effect of those BS. The rate of translocation through the more ordered membrane was faster, indicating accumulation of BS at specific locations in this membrane.
Collapse
Affiliation(s)
- Filipe M Coreta-Gomes
- Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra , 3004-535 Coimbra, Portugal
| | - Patrícia A T Martins
- Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra , 3004-535 Coimbra, Portugal
| | - Adrián Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI and Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza , 50018 Zaragoza, Spain
- Fundación ARAID, Diputación General de Aragón, 500018 Zaragoza, Spain
| | - Winchil L C Vaz
- Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra , 3004-535 Coimbra, Portugal
| | - Carlos F G Geraldes
- Coimbra Chemistry Center, University of Coimbra , 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra , 3001-401 Coimbra, Portugal
| | - Maria João Moreno
- Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra , 3004-535 Coimbra, Portugal
| |
Collapse
|
13
|
Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat Chem Biol 2015; 11:192-4. [DOI: 10.1038/nchembio.1733] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/14/2014] [Indexed: 11/08/2022]
|
14
|
High-throughput formation of lipid bilayer membrane arrays with an asymmetric lipid composition. Sci Rep 2014; 4:7076. [PMID: 25399694 PMCID: PMC4233334 DOI: 10.1038/srep07076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/30/2014] [Indexed: 12/02/2022] Open
Abstract
We present a micro-device in which more than 10,000 asymmetric lipid bilayer membranes are formed at a time on micro-chamber arrays. The arrayed asymmetric lipid bilayers, where lipid compositions are different between the inner and outer leaflets, are formed with high efficiency of over 97% by injecting several types of liquids into a micro-device that has hydrophilic-in-hydrophobic surfaces. The lipid compositional asymmetry is an intrinsic property of bio-membranes, and therefore, this micro-device extends the versatility of artificial lipid-bilayer systems, which were previously limited to symmetric bilayer formation, and could contribute to the understanding of the role of lipid compositional asymmetry in cell physiology and also to further analytical and pharmacological applications.
Collapse
|
15
|
Filipe HAL, Salvador A, Silvestre JM, Vaz WLC, Moreno MJ. Beyond Overton’s Rule: Quantitative Modeling of Passive Permeation through Tight Cell Monolayers. Mol Pharm 2014; 11:3696-706. [DOI: 10.1021/mp500437e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- H. A. L. Filipe
- Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
- Centro
de Neurociências e Biologia Celular, Universidade de Coimbra, 3000-214 Coimbra, Portugal
| | - A. Salvador
- Centro
de Neurociências e Biologia Celular, Universidade de Coimbra, 3000-214 Coimbra, Portugal
- Chemistry
Department, FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | - J. M. Silvestre
- Centro
de Neurociências e Biologia Celular, Universidade de Coimbra, 3000-214 Coimbra, Portugal
| | - W. L. C. Vaz
- Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
- Chemistry
Department, FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | - M. J. Moreno
- Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
- Centro
de Neurociências e Biologia Celular, Universidade de Coimbra, 3000-214 Coimbra, Portugal
- Chemistry
Department, FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
16
|
Estronca LMBB, Filipe HAL, Salvador A, Moreno MJ, Vaz WLC. Homeostasis of free cholesterol in the blood: a preliminary evaluation and modeling of its passive transport. J Lipid Res 2014; 55:1033-43. [PMID: 24711632 DOI: 10.1194/jlr.m043067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Indexed: 01/23/2023] Open
Abstract
The rate of noncatalyzed transfer of cholesterol (Chol) among lipoproteins and cells in the blood is of fundamental importance as a baseline to assess the role of active transport mechanisms, but remains unknown. Here we address this gap by characterizing the associa-tion of the Chol analog, ergosta-5,7,9(11),22-tetraen-3β-ol (DHE), with the lipoproteins VLDL, LDL, HDL2, and HDL3 Combining these results with data for the association of DHE with liposomes, we elaborated a kinetic model for the noncatalyzed exchange of free Chol among blood compartments. The computational results are in good agreement with experimental values. The small deviations are explained by the nonequilibrium distribution of unesterified Chol in vivo, due to esterification and entry of new unesterified Chol, and eventual effects introduced by incubations at low temperatures. The kinetic profile of the homeostasis of unesterified Chol in the blood predicted by the model developed in this work is in good agreement with the observations in vivo, highlighting the importance of passive processes.
Collapse
Affiliation(s)
- Luís M B B Estronca
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Hugo A L Filipe
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Armindo Salvador
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Maria João Moreno
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Winchil L C Vaz
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Filipe HAL, Coreta-Gomes FM, Velazquez-Campoy A, Almeida AR, Peixoto AF, Pereira MM, Vaz WLC, Moreno MJ. Synthesis and Characterization of a Lipidic Alpha Amino Acid: Solubility and Interaction with Serum Albumin and Lipid Bilayers. J Phys Chem B 2013; 117:3439-48. [DOI: 10.1021/jp307874v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hugo A. L. Filipe
- Departamento de
Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | | | - Adrian Velazquez-Campoy
- Institute of Biocomputation
and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Unidad Asociada BIFI-IQFR, CSIC, Zaragoza,
Spain
- Fundación ARAID, Diputación General de Aragón, Spain
| | - Ana R. Almeida
- Departamento de
Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Andreia F. Peixoto
- Departamento de
Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Mariette M. Pereira
- Departamento de
Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Winchil L. C. Vaz
- Departamento de
Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Maria J. Moreno
- Departamento de
Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
18
|
Martins PT, Velazquez-Campoy A, Vaz WLC, Cardoso RMS, Valério J, Moreno MJ. Kinetics and Thermodynamics of Chlorpromazine Interaction with Lipid Bilayers: Effect of Charge and Cholesterol. J Am Chem Soc 2012; 134:4184-95. [DOI: 10.1021/ja209917q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrícia T. Martins
- Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra,
Portugal
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation
and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain, Unidad Asociada BIFI-IQFR,
CSIC, Zaragoza, Spain
- Fundación ARAID, Diputación General de Aragón, Spain
| | - Winchil L. C. Vaz
- Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra,
Portugal
| | - Renato M. S. Cardoso
- Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra,
Portugal
| | - Joana Valério
- Instituto de Tecnologia Química e Biológica − UNL, Av.
da República-EAN, 2780-157 Oeiras, Portugal
| | - Maria João Moreno
- Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra,
Portugal
| |
Collapse
|
19
|
Filipe HAL, Moreno MJ, Loura LMS. Interaction of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled fatty amines with 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine bilayers: a molecular dynamics study. J Phys Chem B 2011; 115:10109-19. [PMID: 21749140 DOI: 10.1021/jp203532c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A complete homologous series of fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled fatty amines of varying alkyl chain length, NBD-C(n), inserted in 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, was studied using atomistic molecular dynamics (MD) simulations. For all amphiphiles, the NBD fluorophore locates near the glycerol backbone/carbonyl region of POPC and establishes stable hydrogen bonding with POPC ester oxygen atoms. Small differences observed in the transverse location of the fluorophore correlate with other calculated parameters and with small discrepancies recently measured in the photophysical properties of the molecules. The longer-chained NBD-C(n) amphiphiles show significant mass density near the bilayer midplane, and the chains of these derivatives interdigitate to some extent the opposite bilayer leaflet. This phenomenon leads to a slower lateral diffusion for the longer-chained derivatives (n > 12). Effects of these amphiphiles on the structure and dynamics of the host lipid were found to be relatively mild, in comparison with acyl-chain-labeled NBD probes. The molecular details obtained by this work allow the rationalization of the nonmonotonic behavior, recently obtained experimentally, for the photophysical parameters of the amphiphiles and the kinetic and thermodynamic parameters for their interaction with the POPC membranes.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Centro de Química de Coimbra, Universidade de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | | | | |
Collapse
|
20
|
Cardoso RMS, Martins PAT, Gomes F, Doktorovova S, Vaz WLC, Moreno MJ. Chain-length dependence of insertion, desorption, and translocation of a homologous series of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled aliphatic amines in membranes. J Phys Chem B 2011; 115:10098-108. [PMID: 21749127 DOI: 10.1021/jp203429s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a complete characterization of the kinetics of interaction between the homologous series of fluorescent fatty amines with the fluorescent moiety 7-nitrobenz-2-oxa-1,3-diazol-4-yl covalently bound to the amine group, NBD-C(n) (n = 8-16), and a lipid bilayer in the liquid disordered phase. The insertion into and the desorption from the lipid bilayer, as well as the rate of translocation across the two bilayer leaflets, has been measured at different temperatures, allowing an estimation of the thermodynamic parameters in the formation of the transition state. This is the first report on the complete characterization of the kinetics of the interaction of a large series of structurally homologous amphiphiles. In a recent paper from this research group, the equilibrium interaction of NBD-C(n) (n = 4-10) with POPC bilayers and serum albumin was reported. This information allows the calculation of the equilibrium distribution of the amphiphiles among the aqueous phase, serum proteins, and biomembranes. The data presented in this manuscript complement its characterization with information on the kinetics of the interactions, making possible the quantitative evaluation of their pharmacokinetics. The rate of translocation is shown to decrease with increasing alkyl chain length up to n = 12, becoming relatively insensitive to further increases in n. The Gibbs free energy variation associated with the rate of desorption from the lipid bilayer increased linearly with n, with ΔΔG(‡o) = 3.4 ± 0.5 kJ mol(-1) per methylene group. It was also found that the process of insertion in the lipid bilayer is not diffusion-limited, although it is close to this limit for the smaller amphiphiles in the homologous series at high temperatures.
Collapse
Affiliation(s)
- Renato M S Cardoso
- Departamento de Química, Faculdade de Ciencias e Tecnologia da Universidade de Coimbra (FCTUC), Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
21
|
In vitro surfactant structure-toxicity relationships: implications for surfactant use in sexually transmitted infection prophylaxis and contraception. PLoS One 2011; 6:e19850. [PMID: 21603626 PMCID: PMC3095630 DOI: 10.1371/journal.pone.0019850] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 04/18/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The need for woman-controlled, cheap, safe, effective, easy-to-use and easy-to-store topical applications for prophylaxis against sexually transmitted infections (STIs) makes surfactant-containing formulations an interesting option that requires a more fundamental knowledge concerning surfactant toxicology and structure-activity relationships. METHODOLOGY/PRINCIPAL FINDINGS We report in vitro effects of surfactant concentration, exposure time and structure on the viability of mammalian cell types typically encountered in the vagina, namely, fully polarized and confluent epithelial cells, confluent but non-polarized epithelial-like cells, dendritic cells, and human sperm. Representatives of the different families of commercially available surfactants--nonionic (Triton X-100 and monolaurin), zwitterionic (DDPS), anionic (SDS), and cationic (C(n)TAB (n = 10 to 16), C(12)PB, and C(12)BZK)--were examined. Triton X-100, monolaurin, DDPS and SDS were toxic to all cell types at concentrations around their critical micelle concentration (CMC) suggesting a non-selective mode of action involving cell membrane destabilization and/or destruction. All cationic surfactants were toxic at concentrations far below their CMC and showed significant differences in their toxicity toward polarized as compared with non-polarized cells. Their toxicity was also dependent on the chemical nature of the polar head group. Our results suggest an intracellular locus of action for cationic surfactants and show that their structure-activity relationships could be profitably exploited for STI prophylaxis in vaginal gel formulations. The therapeutic indices comparing polarized epithelial cell toxicity to sperm toxicity for all surfactants examined, except C(12)PB and C(12)BZK, does not justify their use as contraceptive agents. C(12)PB and C(12)BZK are shown to have a narrow therapeutic index recommending caution in their use in contraceptive formulations. CONCLUSIONS/SIGNIFICANCE Our results contribute to understanding the mechanisms involved in surfactant toxicity, have a predictive value with regard to their safety, and may be used to design more effective and less harmful surfactants for use in topical applications for STI prophylaxis.
Collapse
|
22
|
Plochberger B, Stockner T, Chiantia S, Brameshuber M, Weghuber J, Hermetter A, Schwille P, Schütz GJ. Cholesterol slows down the lateral mobility of an oxidized phospholipid in a supported lipid bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17322-9. [PMID: 20942393 PMCID: PMC2977985 DOI: 10.1021/la1026202] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/26/2010] [Indexed: 05/24/2023]
Abstract
We investigated the mobility and phase-partitioning of the fluorescent oxidized phospholipid analogue 1-palmitoyl-2-glutaroyl-sn-glycero-3-phospho-N-Alexa647-ethanolamine (PGPE-Alexa647) in supported lipid bilayers. Compared to the conventional phospholipid dihexadecanoylphosphoethanolamine (DHPE)-Bodipy we found consistently higher diffusion constants. The effect became dramatic when immobile obstacles were inserted into the bilayer, which essentially blocked the diffusion of DHPE-Bodipy but hardly influenced the movements of PGPE-Alexa647. In a supported lipid bilayer made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the differences in probe mobility leveled off with increasing cholesterol content. Using coarse-grained molecular dynamics simulations, we could ascribe this effect to increased interactions between the oxidized phospholipid and the membrane matrix, concomitant with a translation in the headgroup position of the oxidized phospholipid: at zero cholesterol content, its headgroup is shifted to the outside of the DOPC headgroup region, whereas increasing cholesterol concentrations pulls the headgroup into the bilayer plane.
Collapse
Affiliation(s)
- Birgit Plochberger
- Biophysics Institute, Johannes Kepler University Linz, A-4040 Linz, Austria
| | - Thomas Stockner
- Bioresources, Austrian Institute of Technology, Seibersdorf, A-2444, Austria
- Department of Medical Chemistry, Medical University of Vienna, A-1090 Vienna, Austria
| | - Salvatore Chiantia
- Technical University of Dresden, Biotechnologisches Zentrum, Dresden, Germany
| | - Mario Brameshuber
- Biophysics Institute, Johannes Kepler University Linz, A-4040 Linz, Austria
| | - Julian Weghuber
- Biophysics Institute, Johannes Kepler University Linz, A-4040 Linz, Austria
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Petra Schwille
- Technical University of Dresden, Biotechnologisches Zentrum, Dresden, Germany
| | - Gerhard J. Schütz
- Biophysics Institute, Johannes Kepler University Linz, A-4040 Linz, Austria
| |
Collapse
|
23
|
Buranda T, Wu Y, Perez D, Chigaev A, Sklar LA. Real-time partitioning of octadecyl rhodamine B into bead-supported lipid bilayer membranes revealing quantitative differences in saturable binding sites in DOPC and 1:1:1 DOPC/SM/cholesterol membranes. J Phys Chem B 2010; 114:1336-49. [PMID: 20043651 DOI: 10.1021/jp906648q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantitative analysis of the staining of cell membranes with the cationic amphiphile, octadecyl rhodamine B (R18), is confounded by probe aggregation and changes to the probes' absorption cross section and emission quantum yield. In this paper, flow cytometry, quantum-dot-based fluorescence calibration beads, and FRET were used to examine real-time transfer of R18 from water to two limiting models of the cellular plasma membrane, namely, a single-component disordered membrane, dioleoyl-L-alpha-phosphatidylcholine (DOPC), and a ternary mixture of DOPC, cholesterol, and sphingomyelin (DSC) membranes, reconstituted on spherical and monodisperse glass beads (lipobeads). The quenching of R18 was analyzed as the probe concentration was raised from 0 to 10 mol % in membranes. The data show a > 2-fold enhancement in the quenching level of the probes that were reconstituted in DSC relative to DOPC membranes at the highest concentration of R18. We have parametrized the propagation of concentration-dependent quenching as a function of real-time binding of R18 to lipobeads. In this way, phenomenological kinetics of serum-albumin-mediated transfer of R18 from the aqueous phase to DOPC and DSC membranes could be evaluated under optimal conditions where the critical aggregation concentration (CAC) of the probe is defined as 14 nM. The mass action kinetics of association of R18 with DOPC and DSC lipobeads are shown to be similar. However, the saturable capacity for accepting exogenous probes is found to be 37% higher in DOPC relative to that for DSC membranes. The difference is comparable to the disparity in the average molecular areas of DOPC and DSC membranes. Finally, this analysis shows little difference in the spectral overlap integrals of the emission spectrum of a fluorescein derivative donor and the absorption spectrum of either monomeric or simulated spectrum of dimeric R18. This approach represents a first step toward a nanoscale probing of membrane heterogeneity in living cells by analyzing differential local FRET among sites of unique receptor expression in living cells.
Collapse
Affiliation(s)
- Tione Buranda
- Department of Pathology and Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | |
Collapse
|
24
|
Moreno MJ, Bastos M, Velazquez-Campoy A. Partition of amphiphilic molecules to lipid bilayers by isothermal titration calorimetry. Anal Biochem 2009; 399:44-7. [PMID: 19925773 DOI: 10.1016/j.ab.2009.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/28/2022]
Abstract
The partition of the amphiphile sodium dodecyl sulfate (SDS) between an aqueous solution and a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer was followed by isothermal titration calorimetry (ITC) as a function of the total concentration of SDS. It was found that the obtained partition coefficient is strongly affected by the ligand concentration, even after correction for the charge imposed in the bilayer by the bound SDS. The partition coefficient decreased as the total concentration of SDS increased, with this effect being significant for local concentrations of SDS in the lipid bilayer above 5 molar%. At those high local concentrations, the properties of the lipid bilayer are strongly affected, leading to nonideal behavior and concentration-dependent apparent partition coefficients. It is shown that with the modern ITC instruments available, the concentrations of SDS can be drastically reduced while maintaining a good signal-to-noise ratio. The intrinsic parameters of the interaction with unperturbed membranes can be obtained from the asymptotic behavior of the apparent parameters as a function of the ligand concentration for both nonionic and ionic solutes. A detailed analysis is performed, and a spreadsheet is provided to obtain the interaction parameters with and without correction for electrostatics.
Collapse
Affiliation(s)
- Maria João Moreno
- Biological Chemistry Group, Department of Chemistry-FCTUC, University of Coimbra, 3004-535 Coimbra, Portugal.
| | | | | |
Collapse
|
25
|
Santos A, Rodrigues AM, Sobral AJFN, Monsanto PV, Vaz WLC, Moreno MJ. Early Events in Photodynamic Therapy: Chemical and Physical Changes in a POPC:Cholesterol Bilayer due to Hematoporphyrin IX-mediated Photosensitization. Photochem Photobiol 2009; 85:1409-17. [DOI: 10.1111/j.1751-1097.2009.00606.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Syed UM, Woo AF, Plakogiannis F, Jin T, Zhu H. Cochleates bridged by drug molecules. Int J Pharm 2008; 363:118-25. [DOI: 10.1016/j.ijpharm.2008.06.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 05/21/2008] [Accepted: 06/16/2008] [Indexed: 11/25/2022]
|
27
|
Vieira OV, Hartmann DO, Cardoso CMP, Oberdoerfer D, Baptista M, Santos MAS, Almeida L, Ramalho-Santos J, Vaz WLC. Surfactants as microbicides and contraceptive agents: a systematic in vitro study. PLoS One 2008; 3:e2913. [PMID: 18682796 PMCID: PMC2488369 DOI: 10.1371/journal.pone.0002913] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 07/17/2008] [Indexed: 11/19/2022] Open
Abstract
Background The urgent need for cheap and easy-to-use protection against both unwanted pregnancies and sexually transmitted diseases has stimulated considerable interest in the use of surfactants as microbicides, anti-viral, and contraceptive agents in recent years. In the present study we report a systematic in vitro evaluation of the microbicidal, anti-viral and contraceptive potential of cationic, anionic, zwitterionic, and non-ionic surfactants. Methodology/Principal Findings Toxicity was evaluated in mammalian columnar epithelial (MDCK) cells, human sperm cells, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Neisseria gonorrhoeae, Streptococcus agalactiae and Enterococcus faecalis. The inhibition of adenovirus and lentivirus infection of MDCK cells was also tested. A homologous series of cationic surfactants, alkyl-N,N,N-trimethylammonium bromides (CnTAB), with varying alkyl chains were shown to be bactericidal and fungicidal at doses that were related to the surfactant critical micelle concentrations (CMC), all of them at concentrations significantly below the CMC. In general, bacteria were more susceptible to this surfactant group than C. albicans and this organism, in turn, was more susceptible than MDCK cells. This suggests that the CnTAB may be useful as vaginal disinfectants only in so far as bacterial and fungal infections are concerned. None of the surfactants examined, including those that have been used in pre-clinical studies, showed inhibition of adenovirus or lentivirus infection of MDCK cells or spermicidal activity at doses that were sub-toxic to MDCK cells. Conclusions/Significance The results of this study lead us to propose that systematic analysis of surfactant toxicity, such as we report in the present work, be made a mandatory pre-condition for the use of these substances in pre-clinical animal and/or human studies.
Collapse
Affiliation(s)
- Otilia V Vieira
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Martins P, Gomes F, Vaz W, Moreno M. Binding of phospholipids to β-Lactoglobulin and their transfer to lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1308-15. [DOI: 10.1016/j.bbamem.2008.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/21/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|
29
|
Estronca LMBB, Moreno MJ, Vaz WLC. Kinetics and thermodynamics of the association of dehydroergosterol with lipid bilayer membranes. Biophys J 2007; 93:4244-53. [PMID: 17766353 PMCID: PMC2098731 DOI: 10.1529/biophysj.107.112847] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have examined the detailed kinetics and thermodynamics of the association of Ergosta-5,7,9(11),22-tetraen-3beta-ol (dehydroergosterol, DHE) with lipid bilayers prepared from 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), a 1:1 binary mixture of POPC and cholesterol (Chol), and a 6:4 binary mixture of egg sphingomyelin (SpM) and Chol. Association of DHE with all three membranes was shown to be entropically driven, most so in the case of SpM-Chol bilayers. Equilibrium partition coefficients for partitioning of DHE between the lipid phase and the aqueous phase were shown to be similar for POPC and POPC-Chol bilayers between 15 and 35 degrees C. Partitioning into the SpM-Chol bilayer is favored at higher temperatures and there is a crossover in solubility preference at approximately 25 degrees C. Insertion (k(+)) and desorption (k(-)) rate constants were shown to be very similar for POPC and POPC-Chol bilayer membranes, but were lower for SpM-Chol bilayers. Similar results were previously reported by us for the association of other amphiphiles with these membranes. We propose a model for the microscopic structure of a POPC-Chol (1:1) bilayer membrane that is consistent with these observations.
Collapse
|
30
|
Elvington SM, Nichols JW. Spontaneous, intervesicular transfer rates of fluorescent, acyl chain-labeled phosphatidylcholine analogs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:502-8. [PMID: 17198675 PMCID: PMC2020841 DOI: 10.1016/j.bbamem.2006.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/22/2006] [Accepted: 11/28/2006] [Indexed: 11/24/2022]
Abstract
It was recently shown that the structure of the fluorophore attached to the acyl chain of phosphatidylcholine analogs determines their mechanism of transport across the plasma membrane of yeast cells (Elvington et al., J. Biol Chem. 280:40957, 2005). In order to gain further insight into the physical properties of these fluorescent phosphatidylcholine (PC) analogs, the rate and mechanism of their intervesicular transport was determined. The rate of spontaneous exchange was measured for PC analogs containing either NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl), Bodipy FL (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene), Bodipy 530 (4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene), or Bodipy 581 (4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene) attached to a five or six carbon acyl chain in the sn-2 position. The rate of transfer between phospholipid vesicles was measured by monitoring the increase in fluorescence as the analogs transferred from donor vesicles containing self-quenching concentrations to unlabeled acceptor vesicles. Kinetic analysis indicated that the transfer of each analog occurred by diffusion through the water phase as opposed to transfer during vesicle collisions. The vesicle-to-monomer dissociation rate constants differed by over four orders of magnitude: NBD-PC (k(dis)=0.115 s(-1); t(1/2)=6.03 s); Bodipy FL-PC (k(dis)=5.2x10(-4); t(1/2)=22.2 min); Bodipy 530-PC (k(dis)=1.52x10(-5); t(1/2)=12.6 h); and Bodipy 581-PC (k(dis)=5.9x10(-6); t(1/2)=32.6 h). The large differences in spontaneous rates of transfer through the water measured for these four fluorescent PC analogs reflect their hydrophobicity and may account for their recognition by different mechanisms of transport across the plasma membrane of yeast.
Collapse
Affiliation(s)
| | - J. Wylie Nichols
- *To whom correspondence should be addressed: Department of Physiology, 605G Whitehead Building, 615 Michael Street, Emory University School of Medicine, Atlanta, GA 30322. Phone: (404) 727-7422, FAX: (404) 727-2648,
| |
Collapse
|
31
|
Moreno MJ, Estronca LMBB, Vaz WLC. Translocation of phospholipids and dithionite permeability in liquid-ordered and liquid-disordered membranes. Biophys J 2006; 91:873-81. [PMID: 16617082 PMCID: PMC1563774 DOI: 10.1529/biophysj.106.082115] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a detailed study of the translocation rate of two headgroup-labeled phospholipid derivatives, one with two acyl chains, NBD-DMPE, and the other with a single acyl chain, NBD-lysoMPE, in lipid bilayer membranes in the liquid-disordered state (POPC) and in the liquid-ordered states (POPC/cholesterol (Chol), molar ratio 1:1, and sphingomyelin (SpM)/Chol, molar ratio 6:4). The study was performed as a function of temperature and the thermodynamic parameters of the translocation process have been obtained. The most important findings are 1), the translocation of NBD-DMPE is significantly faster than the translocation of NBD-lysoMPE for all bilayer compositions and temperatures tested; and 2), for both phospholipid derivatives, the translocation in POPC bilayers is approximately 1 order of magnitude faster than in POPC/Chol (1:1) bilayers and approximately 2-3 orders of magnitude faster than in SpM/Chol (6:4) bilayers. The permeability of the lipid bilayers to dithionite has also been measured. In liquid disordered membranes, the permeability rate constant obtained is comparable to the translocation rate constant of NBD-DMPE. However, in liquid-ordered bilayers, the permeability of dithionite is significantly faster then the translocation of NBD-DMPE. The change in enthalpy and entropy associated with the formation of the activated state in the translocation and permeation processes has also been obtained.
Collapse
Affiliation(s)
- Maria João Moreno
- Departamento de Quimica, Universidade de Coimbra, 3004-535 Coimbra, Portugal.
| | | | | |
Collapse
|
32
|
Meder D, Moreno MJ, Verkade P, Vaz WLC, Simons K. Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc Natl Acad Sci U S A 2006; 103:329-34. [PMID: 16407160 PMCID: PMC1324955 DOI: 10.1073/pnas.0509885103] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is well described in model membranes, little is known about phase separation in biological membranes. Here, we provide evidence for a coexistence of at least two different lipid bilayer phases in the apical plasma membrane of epithelial cells. Phase connectivity was assessed by measuring long-range diffusion of several membrane proteins by fluorescence recovery after photobleaching in two polarized epithelial cell lines and one fibroblast cell line. In contrast to the fibroblast plasma membrane, in which all of the proteins diffused with similar characteristics, in the apical membrane of epithelial cells the proteins could be divided into two groups according to their diffusion characteristics. At room temperature ( approximately 25 degrees C), one group showed fast diffusion and complete recovery. The other diffused three to four times slower and, more importantly, displayed only partial recovery. Only the first group comprises proteins that are believed to be associated with lipid rafts. The partial recovery is not caused by topological constraints (microvilli, etc.), cytoskeletal constraints, or protein-protein interactions, because all proteins show 100% recovery in fluorescence recovery after photobleaching experiments at 37 degrees C. In addition, the raft-associated proteins cannot be coclustered by antibodies on the apical membrane at 12 degrees C. The interpretation that best fits these data is that the apical membrane of epithelial cells is a phase-separated system with a continuous (percolating) raft phase <25 degrees C in which isolated domains of the nonraft phase are dispersed, whereas at 37 degrees C the nonraft phase becomes the continuous phase with isolated domains of the raft phase dispersed in it.
Collapse
Affiliation(s)
- Doris Meder
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
33
|
van Meer G, Halter D, Sprong H, Somerharju P, Egmond MR. ABC lipid transporters: extruders, flippases, or flopless activators? FEBS Lett 2005; 580:1171-7. [PMID: 16376334 DOI: 10.1016/j.febslet.2005.12.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 12/06/2005] [Accepted: 12/06/2005] [Indexed: 01/02/2023]
Abstract
Many mammalian ABC transporters move membrane lipids to acceptor lipid assemblies in the extracellular aqueous milieu. Because the desorption from the membrane costs more energy than provided by two ATPs, the transporter probably only translocates the lipid to a partially hydrophilic site on its extracellular face. From this high-energy site, the lipid may efficiently move to the acceptor, which ideally is bound to the transporter, or, in the absence of an acceptor, fall back into the membrane. If the lipid originated from the cytosolic membrane surface, this represents lipid flop and is probably a side activity of the transporters.
Collapse
Affiliation(s)
- Gerrit van Meer
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|