1
|
de Lima LFF, Carvalho IGB, de Souza-Neto RR, Dos Santos LDS, Nascimento CA, Takita MA, Távora FTPK, Mehta A, de Souza AA. Antisense Oligonucleotide as a New Technology Application for CsLOB1 Gene Silencing Aiming at Citrus Canker Resistance. PHYTOPATHOLOGY 2024; 114:1802-1809. [PMID: 38748545 DOI: 10.1094/phyto-02-24-0058-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Citrus canker disease, caused by Xanthomonas citri subsp. citri, poses a significant threat to global citrus production. The control of the disease in the field relies mainly on the use of conventional tools such as copper compounds, which are harmful to the environment and could lead to bacterial resistance. This scenario stresses the need for new and sustainable technologies to control phytopathogens, representing a key challenge in developing studies that translate basic into applied knowledge. During infection, X. citri subsp. citri secretes a transcriptional activator-like effector that enters the nucleus of plant cells, activating the expression of the canker susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1). In this study, we explored the use of antisense oligonucleotides (ASOs) with phosphorothioate modifications to transiently inhibit the gene expression of CsLOB1 in Citrus sinensis. We designed and validated three potential ASO sequences, which led to a significant reduction in disease symptoms compared with the control. The selected ASO3-CsLOB1 significantly decreased the expression level of CsLOB1 when delivered through two distinct delivery methods, and the reduction of the symptoms ranged from approximately 15 to 83%. Notably, plants treated with ASO3 did not exhibit an increase in symptom development over the evaluation period. This study highlights the efficacy of ASO technology, based on short oligonucleotide chemically modified sequences, as a promising tool for controlling phytopathogens without the need for genetic transformation or plant regeneration. Our results demonstrate the potential of ASOs as a biotechnological tool for the management of citrus canker disease.
Collapse
Affiliation(s)
- Luiz Felipe Franco de Lima
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | | | - Reinaldo Rodrigues de Souza-Neto
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | | | | | - Marco Aurélio Takita
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
| | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, CEP 70770917, Brasília, Brazil
| | | |
Collapse
|
2
|
Banerjee D, Tateishi-Karimata H, Toplishek M, Ohyama T, Ghosh S, Takahashi S, Trajkovski M, Plavec J, Sugimoto N. In-Cell Stability Prediction of RNA/DNA Hybrid Duplexes for Designing Oligonucleotides Aimed at Therapeutics. J Am Chem Soc 2023; 145:23503-23518. [PMID: 37873979 DOI: 10.1021/jacs.3c06706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In cells, the formation of RNA/DNA hybrid duplexes regulates gene expression and modification. The environment inside cellular organelles is heterogeneously crowded with high concentrations of biomolecules that affect the structure and stability of RNA/DNA hybrid duplexes. However, the detailed environmental effects remain unclear. Therefore, the mechanistic details of the effect of such molecular crowding were investigated at the molecular level by using thermodynamic and nuclear magnetic resonance analyses, revealing structure-dependent destabilization of the duplexes under crowded conditions. The transition from B- to A-like hybrid duplexes due to a change in conformation of the DNA strand guided by purine-pyrimidine asymmetry significantly increased the hydration number, which resulted in greater destabilization by the addition of cosolutes. By quantifying the individual contributions of environmental factors and the bulk structure of the duplex, we developed a set of parameters that predict the stability of hybrid duplexes with conformational dissimilarities under diverse crowding conditions. A comparison of the effects of environmental conditions in living cells and in vitro crowded solutions on hybrid duplex formation using the Förster resonance energy transfer technique established the applicability of our parameters to living cells. Moreover, our derived parameters can be used to estimate the efficiency of transcriptional inhibition, genome editing, and silencing techniques in cells. This supports the usefulness of our parameters for the visualization of cellular mechanisms of gene expression and the development of nucleic acid-based therapeutics targeting different cells.
Collapse
Affiliation(s)
- Dipanwita Banerjee
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Maria Toplishek
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Saptarshi Ghosh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN → FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1001 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
3
|
Pandey E, Harris EN. Chloroquine and cytosolic galectins affect endosomal escape of antisense oligonucleotides after Stabilin-mediated endocytosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:430-443. [PMID: 37575283 PMCID: PMC10412722 DOI: 10.1016/j.omtn.2023.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Non-DNA-binding Stabilin-2/HARE receptors expressed on liver sinusoidal endothelial cells specifically bind to and internalize several classes of phosphorothioate antisense oligonucleotides (PS-ASOs). After Stabilin-mediated uptake, PS-ASOs are trafficked within endosomes (>97%-99%), ultimately resulting in destruction in the lysosome. The ASO entrapment in endosomes lowers therapeutic efficacy, thereby increasing the overall dose for patients. Here, we use confocal microscopy to characterize the intracellular route transverse by PS-ASOs after Stabilin receptor-mediated uptake in stable recombinant Stabilin-1 and -2 cell lines. We found that PS-ASOs as well as the Stabilin-2 receptor transverse the classic path: clathrin-coated vesicle-early endosome-late endosome-lysosome. Chloroquine exposure facilitated endosomal escape of PS-ASOs leading to target knockdown by more than 50% as compared to untreated cells, resulting in increased PS-ASO efficacy. We also characterize cytosolic galectins as novel contributor for PS-ASO escape. Galectins knockdown enhances ASO efficacy by more than 60% by modulating EEA1, Rab5C, and Rab7A mRNA expression, leading to a delay in the endosomal vesicle maturation process. Collectively, our results provide additional insight for increasing PS-ASO efficacy by enhancing endosomal escape, which can further be utilized for other nucleic acid-based modalities.
Collapse
Affiliation(s)
- Ekta Pandey
- University of Nebraska, Department of Biochemistry, Beadle Center, 1901 Vine St., Lincoln, NE 68588, USA
| | - Edward N. Harris
- University of Nebraska, Department of Biochemistry, Beadle Center, 1901 Vine St., Lincoln, NE 68588, USA
| |
Collapse
|
4
|
Rahman Chowdhury T, Taufiq T, Ishida K, Ariful Islam M, Kasahara Y, Osawa T, Obika S. Synthesis and biophysical properties of tetravalent PEG-conjugated antisense oligonucleotide. Bioorg Med Chem 2023; 78:117149. [PMID: 36587552 DOI: 10.1016/j.bmc.2022.117149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
This study was aimed at developing a novel platform for tetravalent conjugation of 4-arm polyethylene glycol (PEG) with an antisense oligonucleotide (ASO). The ASO technology has several limitations, such as low cellular uptake, poor nuclease stability, and short half-life. PEG-conjugated ASOs may result in an improvement in the pharmacokinetic behavior of the drug. Moreover, PEGylation can reduce enzymatic degradation and renal excretion of the conjugates, thereby, increasing its blood stability and retention time. In this study, we successfully synthesized PEG-ASO conjugate consisting of 4-arm-PEG and four molecules of ASO (4-arm-PEG-tetra ASO). Its hybridization ability with complementary RNA, enzymatic stability, and in vitro gene silencing ability were evaluated. No significant difference in hybridization ability was observed between 4-arm-PEG-tetra ASO and the parent ASO. In addition, gene silencing activity of the 4-arm-PEG-tetra ASO was observed in vitro. However, the in vitro activity of the 4-arm-PEG-tetra ASO was slightly reduced as that of the parent ASO. Moreover, the 4-arm-PEG-tetra ASO showed appreciable stability in cellular extract, suggesting that it hybridizes with mRNA in its intact form, without being cleaved in the cell, and exhibits ASO activity.
Collapse
Affiliation(s)
- Taslima Rahman Chowdhury
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tahia Taufiq
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenta Ishida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Md Ariful Islam
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University (OTRI), 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Jo SJ, Chae SU, Lee CB, Bae SK. Clinical Pharmacokinetics of Approved RNA Therapeutics. Int J Mol Sci 2023; 24:ijms24010746. [PMID: 36614189 PMCID: PMC9821128 DOI: 10.3390/ijms24010746] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
RNA-mediated drugs are a rapidly growing class of therapeutics. Over the last five years, the list of FDA-approved RNA therapeutics has expanded owing to their unique targets and prolonged pharmacological effects. Their absorption, distribution, metabolism, and excretion (ADME) have important clinical im-plications, but their pharmacokinetic properties have not been fully understood. Most RNA therapeutics have structural modifications to prevent rapid elimination from the plasma and are administered intravenously or subcutaneously, with some exceptions, for effective distribution to target organs. Distribution of drugs into tissues depends on the addition of a moiety that can be transported to the target and RNA therapeutics show a low volume of distribution because of their molecular size and negatively-charged backbone. Nucleases metabolize RNA therapeutics to a shortened chain, but their metabolic ratio is relatively low. Therefore, most RNA therapeutics are excreted in their intact form. This review covers not only ADME features but also clinical pharmacology data of the RNA therapeutics such as drug-drug interaction or population pharmacokinetic analyses. As the market of RNA therapeutics is expected to rapidly expand, comprehensive knowledge will contribute to interpreting and evaluating the pharmacological properties.
Collapse
|
6
|
Miller CM, Wan WB, Seth PP, Harris EN. Endosomal Escape of Antisense Oligonucleotides Internalized by Stabilin Receptors Is Regulated by Rab5C and EEA1 During Endosomal Maturation. Nucleic Acid Ther 2018; 28:86-96. [PMID: 29437530 PMCID: PMC5899299 DOI: 10.1089/nat.2017.0694] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Second-generation (Gen 2) Antisense oligonucleotides (ASOs) show increased nuclease stability and affinity for their RNA targets, which has translated to improved potency and therapeutic index in the clinic. Gen 2 ASOs are typically modified using the phosphorothioate (PS) backbone modification, which enhances ASO interactions with plasma, cell surface, and intracellular proteins. This facilitates ASO distribution to peripheral tissues and also promotes cellular uptake after injection into animals. Previous work identified that Stabilin receptors specifically internalize PS-ASOs in the sinusoidal endothelial cells of the liver and the spleen. By modulating expression of specific proteins involved in the trafficking and maturation of the endolysosomal compartments, we show that Rab5C and EEA1 in the early endosomal pathway, and Rab7A and lysobisphosphatidic acid in the late endosomal pathway, are important for trafficking of PS-ASOs and facilitate their escape from endolysosomal compartments after Stabilin-mediated internalization. In conclusion, this work identifies key rate-limiting proteins in the pathway for PS-ASO translocation and escape from the endosome.
Collapse
Affiliation(s)
- Colton M Miller
- 1 Department of Biochemistry, University of Nebraska , Lincoln, Nebraska
| | - W Brad Wan
- 2 Ionis Pharmaceuticals , Carlsbad, California
| | | | - Edward N Harris
- 1 Department of Biochemistry, University of Nebraska , Lincoln, Nebraska
| |
Collapse
|
7
|
Enhancing the cytotoxicity of chemoradiation with radiation-guided delivery of anti-MGMT morpholino oligonucleotides in non-methylated solid tumors. Cancer Gene Ther 2017; 24:348-357. [PMID: 28752860 PMCID: PMC5605678 DOI: 10.1038/cgt.2017.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 01/25/2023]
Abstract
The DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) is epigenetically silenced in some tumors by MGMT gene promoter methylation. MGMT-hypermethylated solid tumors have enhanced susceptibility to the cytotoxic effects of alkylating chemotherapy such as temozolomide, compared with non-methylated tumors. In glioblastoma, subjects with MGMT hypermethylation have significantly longer survival rates after chemoradiotherapy. We report the first successful use of a non-ablative dose of ionizing radiation to prime human cancer cells to enhance the uptake of unmodified anti-MGMT morpholino oligonucleotide (AMON) sequences. We demonstrate >40% reduction in the in vitro proliferation index and cell viability in radiation-primed MGMT-expressing human solid tumor cells treated with a single dose of AMONs and temozolomide. We further demonstrate the feasibility of using a non-ablative dose of radiation in vivo to guide and enhance the delivery of intravenously administered AMONs to achieve 50% MGMT knockdown only at radiation-primed tumor sites in a subcutaneous tumor model. Local upregulation of physiological endocytosis after radiation may have a role in radiation-guided uptake of AMONs. This approach holds direct translational significance in glioblastoma and brain metastases where radiation is part of the standard of care; our approach to silence MGMT could overcome the significant problem of MGMT-mediated chemoresistance.
Collapse
|
8
|
Bravo-Anaya LM, Pignon F, Martínez FAS, Rinaudo M. Rheological Properties of DNA Molecules in Solution: Molecular Weight and Entanglement Influences. Polymers (Basel) 2016; 8:E279. [PMID: 30974556 PMCID: PMC6432494 DOI: 10.3390/polym8080279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 02/04/2023] Open
Abstract
Molecular weight, stiffness, temperature, and polymer and ionic concentrations are known to widely influence the viscosity of polymer solutions. Additionally, polymer molecular weight-which is related to its dimensions in solution-is one of its most important characteristics. In this communication, low molecular weight DNA from salmon sperm was purified and then studied in solutions in a wide concentration range (between 0.5 and 1600 mg/mL). The intrinsic viscosity of this low molecular weight DNA sample was firstly determined and the evidence of the overlap concentration was detected around the concentration of 125 mg/mL. The chain characteristics of these short molecules were studied in terms of the influence of their molecular weight on the solution viscosities and on the overlap parameter CDNA[η]. Furthermore, to complete previously reported experimental data, solutions of a large molecular weight DNA from calf-thymus were studied in a high concentration range (up to 40 mg/mL). The rheological behavior is discussed in terms of the generalized master curve obtained from the variation of the specific viscosity at zero shear rate (ηsp,0) as a function of CDNA[η].
Collapse
Affiliation(s)
- Lourdes Mónica Bravo-Anaya
- Laboratoire Rhéologie et Procédés (LRP), University Grenoble Alpes, Grenoble F-38000, France.
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Rhéologie et Procédés (LRP), Grenoble F-38000, France.
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán, Guadalajara C.P. 44430, Mexico.
| | - Frédéric Pignon
- Laboratoire Rhéologie et Procédés (LRP), University Grenoble Alpes, Grenoble F-38000, France.
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Rhéologie et Procédés (LRP), Grenoble F-38000, France.
| | - Félix Armando Soltero Martínez
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán, Guadalajara C.P. 44430, Mexico.
| | - Marguerite Rinaudo
- Biomaterials applications, 6 rue Lesdiguières, Grenoble F-38000, France.
| |
Collapse
|
9
|
Roth CM. Delivery of Genes and Oligonucleotides. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
A Kinetic Model Explains Why Shorter and Less Affine Enzyme-recruiting Oligonucleotides Can Be More Potent. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e149. [PMID: 24549300 PMCID: PMC3951909 DOI: 10.1038/mtna.2013.72] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/29/2013] [Indexed: 02/07/2023]
Abstract
Antisense oligonucleotides complementary to RNA targets promise generality and ease of drug design. The first systemically administered antisense drug was recently approved for treatment and others are in clinical development. Chemical modifications that increase the hybridization affinity of oligonucleotides are reasoned to confer higher potency, i.e., modified oligonucleotides can be dosed at lower concentrations to achieve the same effect. Surprisingly, shorter and less affine oligonucleotides sometimes display increased potency. To explain this apparent contradiction, increased uptake or decreased propensity to form structures have been suggested as possible mechanisms. Here, we provide an alternative explanation that invokes only the kinetics behind oligonucleotide-mediated cleavage of RNA targets. A model based on the law of mass action predicts, and experiments support, the existence of an optimal binding affinity. Exaggerated affinity, and not length per se, is detrimental to potency. This finding clarifies how to optimally apply high-affinity modifications in the discovery of potent antisense oligonucleotide drugs.
Collapse
|
11
|
Brown PK, Qureshi AT, Moll AN, Hayes DJ, Monroe WT. Silver nanoscale antisense drug delivery system for photoactivated gene silencing. ACS NANO 2013; 7:2948-59. [PMID: 23473419 DOI: 10.1021/nn304868y] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The unique photophysical properties of noble metal nanoparticles contribute to their potential as photoactivated drug delivery vectors. Here we demonstrate the synthesis and characterization of 60-80 nm silver nanoparticles (SNPs) decorated with thiol-terminated photolabile DNA oligonucleotides. In vitro assays and fluorescent confocal microscopy of treated cell cultures show efficient UV-wavelength photoactivation of surface-tethered caged ISIS2302 antisense oligonucleotides possessing internal photocleavable linkers. As a demonstration of the advantages of these novel nanocarriers, we investigate properties including: enhanced stability to nucleases, increased hybridization activity upon photorelease, and efficient cellular uptake as compared to commercial transfection vectors. Their potential as multicomponent delivery agents for oligonucleotide therapeutics is shown through regulation of ICAM-1 (Intracellular Adhesion Molecule-1) silencing. Our results suggest a means to achieve light-triggered, spatiotemporally controlled gene silencing via nontoxic silver nanocarriers, which hold promise as tailorable platforms for nanomedicine, gene expression studies, and genetic therapies.
Collapse
Affiliation(s)
- Paige K Brown
- Biological and Agricultural Engineering, Louisiana State University and LSU AgCenter, Baton Rouge, Louisiana 70803, United States
| | | | | | | | | |
Collapse
|
12
|
Anusha AR, Chandra V. Prediction of antisense oligonucleotides using structural and thermodynamic motifs. Bioinformation 2012; 8:1162-6. [PMID: 23275713 PMCID: PMC3530885 DOI: 10.6026/97320630081162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/27/2012] [Indexed: 11/24/2022] Open
Abstract
Specific gene expression regulation strategy using antisense oligonucleotides occupy significant space in recent clinical trials. The therapeutical potential of oligos lies in the identification and prediction of accurate oligonucleotides against specific target mRNA. In this work we present a computational method that is built on Artificial Neural Network (ANN) which could recognize and predict oligonucleotides effectively. In this study first we identified 11 major parameters associated with oligo:mRNA duplex linkage. A feed forward multilayer perceptron ANN classifier is trained with a set of experimentally proven feature vectors. The classifier gives an exact prediction of the input sequences under 2 classes - oligo or non-oligo. On validation, our tool showed comparatively significant accuracy of 92.48% with 91.7% sensitivity and 92.09% specificity. This study was also able to reveal the relative impact of individual parameters we considered on antisense oligonucleotide predictions.
Collapse
Affiliation(s)
- Abdul Rahiman Anusha
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram - 695581, India
| | - Vinod Chandra
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram - 695581, India
- College of Engineering Trivandrum - 695016, Kerala, India
| |
Collapse
|
13
|
McMahon KM, Mutharasan RK, Tripathy S, Veliceasa D, Bobeica M, Shumaker DK, Luthi AJ, Helfand BT, Ardehali H, Mirkin CA, Volpert O, Thaxton CS. Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery. NANO LETTERS 2011; 11:1208-14. [PMID: 21319839 PMCID: PMC4077779 DOI: 10.1021/nl1041947] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy that combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy, and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery.
Collapse
Affiliation(s)
- Kaylin M. McMahon
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
- Institute for BioNanotechnology and Medicine (IBNAM), 303 E. Superior Ave., 11 Floor, Chicago, IL 60611
| | - R. Kannan Mutharasan
- Feinberg Cardiovascular Research Institute, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL 60611
| | - Sushant Tripathy
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
- Institute for BioNanotechnology and Medicine (IBNAM), 303 E. Superior Ave., 11 Floor, Chicago, IL 60611
| | - Dorina Veliceasa
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
| | - Mariana Bobeica
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
- Institute for BioNanotechnology and Medicine (IBNAM), 303 E. Superior Ave., 11 Floor, Chicago, IL 60611
| | - Dale K. Shumaker
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, 303 E. Superior Ave., Chicago, IL 60611
| | - Andrea J. Luthi
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208
- Northwestern University, International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, IL 60208
| | - Brian T. Helfand
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL 60611
| | - Chad A. Mirkin
- Robert H. Lurie Comprehensive Cancer Center, 303 E. Superior Ave., Chicago, IL 60611
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208
- Northwestern University, International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, IL 60208
| | - Olga Volpert
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
| | - C. Shad Thaxton
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, 303 E. Superior Ave., Chicago, IL 60611
- Institute for BioNanotechnology and Medicine (IBNAM), 303 E. Superior Ave., 11 Floor, Chicago, IL 60611
- Northwestern University, International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
14
|
Tarahovsky YS. Cell transfection by DNA-lipid complexes — Lipoplexes. BIOCHEMISTRY (MOSCOW) 2010; 74:1293-304. [DOI: 10.1134/s0006297909120013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Birtwistle MR, Kholodenko BN. Endocytosis and signalling: a meeting with mathematics. Mol Oncol 2009; 3:308-20. [PMID: 19596615 DOI: 10.1016/j.molonc.2009.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022] Open
Abstract
Although endocytosis has traditionally been understood as a signal attenuation mechanism, an emerging view considers endocytosis as an integral part of signal propagation and processing. On the short time scale, trafficking of endocytic vesicles contributes to signal propagation from the surface to distant targets, with bi-directional communication between signalling and trafficking. Mathematical modelling helps combine the mechanistic, molecular knowledge with rigorous analysis of the complex output dynamics of endocytosis in time and space. Simulations reveal novel roles for endocytosis, including the control of cell polarity, enhancing the spatial signal propagation, and controlling the signal magnitudes, kinetics, and synchronization with stimulus dynamics.
Collapse
Affiliation(s)
- Marc R Birtwistle
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
16
|
Abstract
Antisense oligonucleotides as a therapeutic platform have been slow to progress since the approval of the first antisense drug in 1998. Recently, there have been several examples of convincing antisense interventions in animal models and promising clinical trial data. This review considers the factors determining the success of antisense oligonucleotides as therapeutic agents. In order to produce target knockdown after systemic delivery, antisense oligonucleotides must avoid nuclease degradation, reticuloendothelial-system uptake and rapid renal excretion, and extravasate to the target cell type outside the vasculature. They then must enter the target cell, and escape the endosome-lysosome pathway so as to be free to interact with the target mRNA. We consider the significance of these limiting factors based on the literature and our own experience using systemic administration of antisense oligonucleotides.
Collapse
|
17
|
|
18
|
Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. NANO LETTERS 2007; 7:3818-21. [PMID: 17997588 PMCID: PMC8585332 DOI: 10.1021/nl072471q] [Citation(s) in RCA: 424] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The cellular internalization of oligonucleotide-modified nanoparticles is investigated. Uptake is dependent on the density of the oligonucleotide loading on the surface of the particles, where higher densities lead to greater uptake. Densely functionalized nanoparticles adsorb a large number of proteins on the nanoparticle surface. Nanoparticle uptake is greatest where a large number of proteins are associated with the particle.
Collapse
Affiliation(s)
| | | | | | | | | | - Chad A. Mirkin
- To whom correspondence should be addressed. Fax: (+1) 847-467-5123.
| |
Collapse
|
19
|
Sundaram S, Lee LK, Roth CM. Interplay of polyethyleneimine molecular weight and oligonucleotide backbone chemistry in the dynamics of antisense activity. Nucleic Acids Res 2007; 35:4396-408. [PMID: 17576672 PMCID: PMC1935005 DOI: 10.1093/nar/gkm450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The widespread utilization of gene silencing techniques, such as antisense, is impeded by the poor cellular delivery of oligonucleotides (ONs). Rational design of carriers for enhanced ON delivery demands a better understanding of the role of the vector on the extent and time course of antisense effects. The aim of this study is to understand the effects of polymer molecular weight (MW) and ON backbone chemistry on antisense activity. Complexes were prepared between branched polyethyleneimine (PEI) of various MWs and ONs of phosphodiester and phosphorothioate chemistries. We measured their physico-chemical properties and evaluated their ability to deliver ONs to cells, leading to an antisense response. Our key finding is that the antisense activity is not determined solely by PEI MW or by ON chemistry, but rather by the interplay of both factors. While the extent of target mRNA down-regulation was determined primarily by the polymer MW, dynamics were determined principally by the ON chemistry. Of particular importance is the strength of interactions between the carrier and the ON, which determines the rate at which the ONs are delivered intracellularly. We also present a mathematical model of the antisense process to highlight the importance of ON delivery to antisense down-regulation.
Collapse
Affiliation(s)
- Sumati Sundaram
- Department of Chemical and Biochemical Engineering and Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Li Kim Lee
- Department of Chemical and Biochemical Engineering and Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Charles M. Roth
- Department of Chemical and Biochemical Engineering and Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
- *To whom correspondence should be addressed. +732-445-4500+732-445-3753
| |
Collapse
|
20
|
Goss JR, Goins WF, Glorioso JC. Gene therapy applications for the treatment of neuropathic pain. Expert Rev Neurother 2007; 7:487-506. [PMID: 17492900 DOI: 10.1586/14737175.7.5.487] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuropathic pain is notoriously difficult to treat; currently available pharmaceutical drugs result in moderate analgesia in approximately a third of patients. As our understanding of the biological processes involved in the establishment and maintenance of neuropathic pain increases, so does the development of novel treatment options. Significant advancements have been made in the past few years in gene transfer, a very powerful potential therapy that can be used to directly target affected areas of the neuraxis or body tissues involved in neuropathic pain. Candidate gene products include directly analgesic proteins as well as proteins that interfere with pain-associated biochemical changes in nerve or other tissues underlying the disease process.
Collapse
Affiliation(s)
- James R Goss
- University of Pittsburgh, Molecular Genetics & Biochemistry, Pittsburgh, PA 15219, USA.
| | | | | |
Collapse
|
21
|
Lee LK, Williams CL, Devore D, Roth CM. Poly(propylacrylic acid) enhances cationic lipid-mediated delivery of antisense oligonucleotides. Biomacromolecules 2006; 7:1502-8. [PMID: 16677032 PMCID: PMC2525803 DOI: 10.1021/bm060114o] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The use of antisense oligodeoxynucleotides (ODNs) to inhibit the expression of specific mRNA targets represents a powerful technology for control of gene expression. Cationic lipids and polymers are frequently used to improve the delivery of ODNs to cells, but the resulting complexes often aggregate, bind to serum components, and are trafficked poorly within cells. We show that the addition of a synthetic, pH-sensitive, membrane-disrupting polyanion, poly(propylacrylic acid) (PPAA), improves the in vitro efficiency of the cationic lipid, DOTAP, with regard to oligonucleotide delivery and antisense activity. In characterization studies, ODN complexation with DOTAP/ODN was maintained even when substantial amounts of PPAA were added. The formulation also exhibited partial protection of phosphodiester oligonucleotides against enzymatic digestion. In Chinese hamster ovary (CHO) cells, incorporation of PPAA in DOTAP/ODN complexes improved 2- to 3-fold the cellular uptake of fluorescently tagged oligonucleotides. DOTAP/ODN complexes containing PPAA also maintained high levels of uptake into cells upon exposure to serum. Addition of PPAA to DOTAP/ODN complexes enhanced the antisense activity (using GFP as the target) over a range of PPAA concentrations in both serum-free, and to a lesser extent, serum-containing media. Thus, PPAA is a useful adjunct that improves the lipid-mediated delivery of oligonucleotides.
Collapse
Affiliation(s)
- Li Kim Lee
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854-8058, USA
| | | | | | | |
Collapse
|
22
|
Bartlett DW, Davis ME. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 2006; 34:322-33. [PMID: 16410612 PMCID: PMC1331994 DOI: 10.1093/nar/gkj439] [Citation(s) in RCA: 393] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Small interfering RNA (siRNA) molecules are potent effectors of post-transcriptional gene silencing. Using noninvasive bioluminescent imaging and a mathematical model of siRNA delivery and function, the effects of target-specific and treatment-specific parameters on siRNA-mediated gene silencing are monitored in cells stably expressing the firefly luciferase protein. In vitro, luciferase protein levels recover to pre-treatment values within <1 week in rapidly dividing cell lines, but take longer than 3 weeks to return to steady-state levels in nondividing fibroblasts. Similar results are observed in vivo, with knockdown lasting ∼10 days in subcutaneous tumors in A/J mice and 3–4 weeks in the nondividing hepatocytes of BALB/c mice. These data indicate that dilution due to cell division, and not intracellular siRNA half-life, governs the duration of gene silencing under these conditions. To demonstrate the practical use of the model in treatment design, model calculations are used to predict the dosing schedule required to maintain persistent silencing of target proteins with different half-lives in rapidly dividing or nondividing cells. The approach of bioluminescent imaging combined with mathematical modeling provides useful insights into siRNA function and may help expedite the translation of siRNA into clinically relevant therapeutics for disease treatment and management.
Collapse
Affiliation(s)
| | - Mark E. Davis
- To whom correspondence should be addressed. Tel: +1 626 395 4251; Fax: +1 626 568 8743;
| |
Collapse
|