1
|
Unnikrishnan AC, Shanmugam G. Isotope-edited vibrational circular dichroism study reveals a flexible N-terminal structure of islet amyloid peptide (NFGAIL) in amyloid fibril form: A site-specific local structural analysis. J Struct Biol 2022; 214:107910. [PMID: 36273786 DOI: 10.1016/j.jsb.2022.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
The short peptide fragment NFGAIL (IAPf) is a well-known amyloidogenic peptide (22-27), derived from human islet amyloid polypeptide(hIAPP), whose fibrillar structure is often used to better understand the wild-type hIAPP amyloid fibrils, associated with type II diabetes. Despite an extensive study, the fibrillar structure of IAPf at the amino acid residue level is still unclear. Herein, the vibrational circular dichroism(VCD) spectroscopic technique coupled with isotope labelling strategy has been used to study the site-specific local structure of IAPf amyloid fibrils. Two 13C labeled IAPfs were designed and used along with unlabelled IAPf to achieve this. The 13C labelled (on -C=O) glycine(IAPf-G) and phenylalanine (IAPf-F) residues were introduced into the IAPf sequence separately by replacing natural glycine (residue 24) and phenylalanine (residue 23), respectively. VCD spectral analysis on IAPf-G suggests that IAPf fibrils adopt parallel β-sheet conformation with glycine residues are part of β-sheet and in-register. Unlike IAPf-G, VCD analysis on IAPf-F reveals that phenylalanine residues exist in the turn/hairpin conformation rather than β-sheet region. Both VCD results thus suggest that IAPf amyloid fibril consists of a mixture of β-sheet as a major conformation involving GAIL and turn/hairpin as a minor conformation involving NF rather than an idealized β-sheet involving all the amino acids. While previous studies speculated that the full NFGAIL sequence could participate in the β-sheet formation, the present site-specific structural analysis of IAPf amyloid fibrils at residue level using isotope-edited VCD has gained significant attention. Such residue level information has important implications for understanding the role of NFGAIL sequence in the amyloid fibrillation of hIAPP.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India.
| |
Collapse
|
2
|
Garcia AM, Melchionna M, Bellotto O, Kralj S, Semeraro S, Parisi E, Iglesias D, D’Andrea P, De Zorzi R, Vargiu AV, Marchesan S. Nanoscale Assembly of Functional Peptides with Divergent Programming Elements. ACS NANO 2021; 15:3015-3025. [PMID: 33576622 PMCID: PMC8023796 DOI: 10.1021/acsnano.0c09386] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Self-assembling peptides are being applied both in the biomedical area and as building blocks in nanotechnology. Their applications are closely linked to their modes of self-assembly, which determine the functional nanostructures that they form. This work brings together two structural elements that direct nanoscale self-association in divergent directions: proline as a β-breaker and the β-structure-associated diphenylalanine motif, into a single tripeptide sequence. Amino acid chirality was found to resolve the tension inherent to these conflicting self-assembly instructions. Stereoconfiguration determined the ability of each of the eight possible Pro-Phe-Phe stereoisomers to self-associate into diverse nanostructures, including nanoparticles, nanotapes, or fibrils, which yielded hydrogels with gel-to-sol transition at a physiologically relevant temperature. Three single-crystal structures and all-atom molecular dynamics simulations elucidated the ability of each peptide to establish key interactions to form long-range assemblies (i,e., stacks leading to gelling fibrils), medium-range assemblies (i.e., stacks yielding nanotapes), or short-range assemblies (i.e., dimers or trimers that further associated into nanoparticles). Importantly, diphenylalanine is known to serve as a binding site for pathological amyloids, potentially allowing these heterochiral systems to influence the fibrillization of other biologically relevant peptides. To probe this hypothesis, all eight Pro-Phe-Phe stereoisomers were tested in vitro on the Alzheimer's disease-associated Aβ(1-42) peptide. Indeed, one nonfibril-forming stereoisomer effectively inhibited Aβ fibrillization through multivalent binding between diphenylalanine motifs. This work thus defined heterochirality as a useful feature to strategically develop future therapeutics to interfere with pathological processes, with the additional value of resistance to protease-mediated degradation and biocompatibility.
Collapse
Affiliation(s)
- Ana M. Garcia
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Michele Melchionna
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
- INSTM, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Ottavia Bellotto
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Slavko Kralj
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
- Materials
Synthesis Department, Jožef Stefan
Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Sabrina Semeraro
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Evelina Parisi
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Daniel Iglesias
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Paola D’Andrea
- Life
Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Rita De Zorzi
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Attilio V. Vargiu
- Physics
Department, University of Cagliari, S.P. 8, km. 0.700, 09042 Monserrato, Italy
| | - Silvia Marchesan
- Chemical
and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
- INSTM, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
3
|
Chowdhary S, Moschner J, Mikolajczak DJ, Becker M, Thünemann AF, Kästner C, Klemczak D, Stegemann A, Böttcher C, Metrangolo P, Netz RR, Koksch B. The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation. Chembiochem 2020; 21:3544-3554. [PMID: 33405360 PMCID: PMC7756607 DOI: 10.1002/cbic.202000373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/31/2020] [Indexed: 12/12/2022]
Abstract
The hexapeptide hIAPP22-27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild-type hIAPP's toxicity to β-cell death. In amyloid research, the role of hydrophobic and aromatic-aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic-aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) to study the impact of side-chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self-assembly process.
Collapse
Affiliation(s)
- Suvrat Chowdhary
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Johann Moschner
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Dorian J. Mikolajczak
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Maximilian Becker
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Andreas F. Thünemann
- Federal Institute for Materials Research and Testing (BAM)Unter den Eichen 8712205BerlinGermany
| | - Claudia Kästner
- Federal Institute for Materials Research and Testing (BAM)Unter den Eichen 8712205BerlinGermany
| | - Damian Klemczak
- Institute of PharmacyFreie Universität BerlinKönigin-Luise-Str. 2–414195BerlinGermany
| | - Anne‐Katrin Stegemann
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Christoph Böttcher
- Institute of Chemistry and Biochemistry and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | - Pierangelo Metrangolo
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanItaly
| | - Roland R. Netz
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Beate Koksch
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| |
Collapse
|
4
|
Zhai L, Otani Y, Ohwada T. Uncovering the Networks of Topological Neighborhoods in β-Strand and Amyloid β-Sheet Structures. Sci Rep 2019; 9:10737. [PMID: 31341215 PMCID: PMC6656768 DOI: 10.1038/s41598-019-47151-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/11/2019] [Indexed: 12/02/2022] Open
Abstract
Although multiple hydrophobic, aromatic π–π, and electrostatic interactions are proposed to be involved in amyloid fibril formation, the precise interactions within amyloid structures remain poorly understood. Here, we carried out detailed quantum theory of atoms-in-molecules (QTAIM) analysis to examine the hydrophobic core of amyloid parallel and antiparallel β-sheet structures, and found the presence of multiple inter-strand and intra-strand topological neighborhoods, represented by networks of through-space bond paths. Similar bond paths from side chain to side chain and from side chain to main chain were found in a single β-strand and in di- and tripeptides. Some of these bond-path networks were enhanced upon β-sheet formation. Overall, our results indicate that the cumulative network of weak interactions, including various types of hydrogen bonding (X-H—Y; X, Y = H, C, O, N, S), as well as non-H-non-H bond paths, is characteristic of amyloid β-sheet structure. The present study postulated that the presence of multiple through-space bond-paths, which are local and directional, can coincide with the attractive proximity effect in forming peptide assemblies. This is consistent with a new view of the van der Waals (vdW) interactions, one of the origins of hydrophobic interaction, which is updating to be a directional intermolecular force.
Collapse
|
5
|
Katyal N, Deep S. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view. Phys Chem Chem Phys 2018; 19:19120-19138. [PMID: 28702592 DOI: 10.1039/c7cp02912h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deposition of amyloid fibrils is the seminal event in the pathogenesis of numerous neurodegenerative diseases. The formation of this amyloid assembly is the manifestation of a cascade of structural transitions including toxic oligomer formation in the early stages of aggregation. Thus a viable therapeutic strategy involves the use of small molecular ligands to interfere with this assembly. In this perspective, we have explored the kinetics of aggregate formation of the fibril forming GNNQQNY peptide fragment from the yeast prion protein SUP35 using multiple all atom MD simulations with explicit solvent and provided mechanistic insights into the way trehalose, an experimentally known aggregation inhibitor, modulates the aggregation pathway. The results suggest that the assimilation process is impeded by different barriers at smaller and larger oligomeric sizes: the initial one being easily surpassed at higher temperatures and peptide concentrations. The kinetic profile demonstrates that trehalose delays the aggregation process by increasing both these activation barriers, specifically the latter one. It increases the sampling of small-sized aggregates that lack the beta sheet conformation. Analysis reveals that the barrier in the growth of larger stable oligomers causes the formation of multiple stable small oligomers which then fuse together bimolecularly. The PCA of 26 properties was carried out to deconvolute the events within the temporary lag phases, which suggested dynamism in lags involving an increase in interchain contacts and burial of SASA. The predominant growth route is monomer addition, which changes to condensation on account of a large number of depolymerisation events in the presence of trehalose. The favourable interaction of trehalose specifically with the sidechain of the peptide promotes crowding of trehalose molecules in its vicinity - the combination of both these factors imparts the observed behaviour. Furthermore, increasing trehalose concentration leads to faster expulsion of water molecules than interpeptide interactions. These expelled water molecules have larger translational movement, suggesting an entropy factor to favor the assembly process. Different conformations observed under this condition suggest the role of water molecules in guiding the morphology of the aggregates as well. A similar scenario exists on increasing peptide concentration.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| |
Collapse
|
6
|
Hoffmann W, Folmert K, Moschner J, Huang X, von Berlepsch H, Koksch B, Bowers MT, von Helden G, Pagel K. NFGAIL Amyloid Oligomers: The Onset of Beta-Sheet Formation and the Mechanism for Fibril Formation. J Am Chem Soc 2017; 140:244-249. [PMID: 29235867 DOI: 10.1021/jacs.7b09510] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hexapeptide NFGAIL is a highly amyloidogenic peptide, derived from the human islet amyloid polypeptide (hIAPP). Recent investigations indicate that presumably soluble hIAPP oligomers are one of the cytotoxic species in type II diabetes. Here we use thioflavin T staining, transmission electron microscopy, as well as ion mobility-mass spectrometry coupled to infrared (IR) spectroscopy to study the amyloid formation mechanism and the quaternary and secondary structure of soluble NFGAIL oligomers. Our data reveal that at neutral pH NFGAIL follows a nucleation dependent mechanism to form amyloid fibrils. During the lag phase, highly polydisperse, polymorph, and compact oligomers (oligomer number n = 2-13) as well as extended intermediates (n = 4-11) are present. IR secondary structural analysis reveals that compact conformations adopt turn-like structures, whereas extended oligomers exhibit a significant amount of β-sheet content. This agrees well with previous molecular dynamic simulations and provides direct experimental evidence that unordered off-pathway NFGAIL aggregates up to the size of at least the 13-mer as well as partially folded β-sheet containing oligomers are coexisting.
Collapse
Affiliation(s)
- Waldemar Hoffmann
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, Germany
| | - Kristin Folmert
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Johann Moschner
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Xing Huang
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, Germany
| | - Hans von Berlepsch
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Beate Koksch
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, Germany
| | - Kevin Pagel
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
7
|
Zou Y, Qian Z, Sun Y, Wei G, Zhang Q. Orcein-Related Small Molecule O4 Destabilizes hIAPP Protofibrils by Interacting Mostly with the Amyloidogenic Core Region. J Phys Chem B 2017; 121:9203-9212. [DOI: 10.1021/acs.jpcb.7b08652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Yunxiang Sun
- State
Key Laboratory of Surface Physics, Key Laboratory for Computational
Physical Sciences (MOE), and Department of Physics, Fudan University, 220
Handan Road, Shanghai 200433, China
| | - Guanghong Wei
- State
Key Laboratory of Surface Physics, Key Laboratory for Computational
Physical Sciences (MOE), and Department of Physics, Fudan University, 220
Handan Road, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | | |
Collapse
|
8
|
Singh J, Srivastava A, Sharma P, Pradhan P, Kundu B. DNA intercalators as amyloid assembly modulators: mechanistic insights. RSC Adv 2017. [DOI: 10.1039/c6ra26313e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DNA intercalators modulate amyloid assembly of proteins through specific hetero-aromatic interactions diverting them to form amorphous aggregates.
Collapse
Affiliation(s)
- Jasdeep Singh
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Pankaj Sharma
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Prashant Pradhan
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| |
Collapse
|
9
|
Cuesta IG, Sánchez de Merás AMJ. Energy interactions in amyloid-like fibrils from NNQQNY. Phys Chem Chem Phys 2014; 16:4369-77. [PMID: 24458317 DOI: 10.1039/c3cp53551g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We use large-scale MP2 calculations to analyze the interactions appearing in amyloid fibers, which are difficult to determine experimentally. To this end, dimers and trimers of the hexapeptide NNQQNY from the yeast prion-like protein Sup35 were considered as model systems. We studied the energy interactions present in the three levels of organization in which the formation of amyloid fibrils is structured. The structural changes in the hydrogen bonds were studied too. It was found that the most energetic process is the formation of the β-sheet, which is equally due to both hydrogen bonds and van der Waals interactions. The aromatic rings help stabilize these aggregates through stacking of the aromatic rings of tyrosine, the stability produced by the aromatics residues increasing with their aromaticity. The formation of the basic unit of the assembled proto-fiber, the steric zipper, is less energetic and is associated to both dispersion forces and hydrogen bonds. The interactions between pair of β-sheets across the peptide-to-peptide contact through the tyrosine rings are cooperative and due to dispersion effects. Moreover, the strength of this interaction can rationalize the variation of mobility of the aromatic ring in the tyrosine units found in solid NMR experiments.
Collapse
Affiliation(s)
- Inmaculada García Cuesta
- Instituto de Ciencia Molecular, Universidad de Valencia, P.O. Box 22085, E-46071 Valencia, Spain.
| | | |
Collapse
|
10
|
Guo J, Zhang Y, Ning L, Jiao P, Liu H, Yao X. Stabilities and structures of islet amyloid polypeptide (IAPP22–28) oligomers: From dimer to 16-mer. Biochim Biophys Acta Gen Subj 2014; 1840:357-66. [DOI: 10.1016/j.bbagen.2013.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/11/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
|
11
|
Cao M, Cao C, Zhang L, Xia D, Xu H. Tuning of peptide assembly through force balance adjustment. J Colloid Interface Sci 2013; 407:287-95. [DOI: 10.1016/j.jcis.2013.06.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 11/15/2022]
|
12
|
Mishra NK, Joshi KB, Verma S. Inhibition of human and bovine insulin fibril formation by designed peptide conjugates. Mol Pharm 2013; 10:3903-12. [PMID: 24070716 DOI: 10.1021/mp400364w] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aggregation of insulin, to afford amyloidogenic fibers, is a well-studied phenomenon, which has interesting biological ramifications and pharmaceutical implications. These fibers have been ascribed an intriguing role in certain disease states and stability of pharmaceutical formulations of this hormone. The present study describes the design and inhibitory effects of novel peptide conjugates toward fibrillation of insulin as investigated by thioflavin T assay, circular dichroism (CD), and atomic force microscopy (AFM). Possible interaction of insulin with peptide-based fibrillation inhibitors is also probed by other solution phase studies, which reveal an important role of aromatic π-π interactions in the inhibition process. CD studies suggest that a freshly prepared solution of insulin, rich in α-helices, transforms into a β-sheet structure upon aggregation, which gets perturbed in the presence of synthesized inhibitors. Therefore, these newly designed peptides could serve as potential leads as inhibitors of insulin aggregation.
Collapse
Affiliation(s)
- Narendra Kumar Mishra
- Department of Chemistry, DST Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur , Kanpur-208016 (UP), India
| | | | | |
Collapse
|
13
|
Guo J, Li J, Zhang Y, Jin X, Liu H, Yao X. Exploring the influence of carbon nanoparticles on the formation of β-sheet-rich oligomers of IAPP₂₂₋₂₈ peptide by molecular dynamics simulation. PLoS One 2013; 8:e65579. [PMID: 23755253 PMCID: PMC3674003 DOI: 10.1371/journal.pone.0065579] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/26/2013] [Indexed: 12/01/2022] Open
Abstract
Recent advances in nanotechnologies have led to wide use of nanomaterials in biomedical field. However, nanoparticles are found to interfere with protein misfolding and aggregation associated with many human diseases. It is still a controversial issue whether nanoparticles inhibit or promote protein aggregation. In this study, we used molecular dynamics simulations to explore the effects of three kinds of carbon nanomaterials including graphene, carbon nanotube and C60 on the aggregation behavior of islet amyloid polypeptide fragment 22–28 (IAPP22–28). The diverse behaviors of IAPP22–28 peptides on the surfaces of carbon nanomaterials were studied. The results suggest these nanomaterials can prevent β-sheet formation in differing degrees and further affect the aggregation of IAPP22–28. The π–π stacking and hydrophobic interactions are different in the interactions between peptides and different nanoparticles. The subtle differences in the interaction are due to the difference in surface curvature and area. The results demonstrate the adsorption interaction has competitive advantages over the interactions between peptides. Therefore, the fibrillation of IAPP22–28 may be inhibited at its early stage by graphene or SWCNT. Our study can not only enhance the understanding about potential effects of nanomaterials to amyloid formation, but also provide valuable information to develop potential β-sheet formation inhibitors against type II diabetes.
Collapse
Affiliation(s)
- Jingjing Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojie Jin
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
- * E-mail: (HL); (XY)
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
- * E-mail: (HL); (XY)
| |
Collapse
|
14
|
Galla D, de Gemmis P, Anesi L, Berto S, Dolcetta D, Hladnik U. An Italian cohort study identifies four new pathologic mutations in the ARSA gene. J Mol Neurosci 2013; 50:284-90. [PMID: 23559313 DOI: 10.1007/s12031-013-0006-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/18/2013] [Indexed: 11/28/2022]
Abstract
Metachromatic leukodystrophy is an autosomal recessive neurodegenerative disorder of the myelin metabolism due to the impaired function of the lysosomal enzyme arylsulfatase A. Three major clinical variants of metachromatic leukodystrophy (MLD) have been described: late infantile, juvenile, and late onset. The infantile form, whose clinical onset is usually before the age of 2 years, is the most frequent. The juvenile form manifests itself between 3 and 16 years and the late-onset form manifests at any time after puberty. As of today, more than 150 mutations causing MLD have been identified in the ARSA gene that encodes arylsulfatase A. In this paper, we report our experience with the diagnosis of MLD in seven Italian patients from unrelated families. We found 11 different mutations, four of which have not been previously described: c.1215_1223del9 (p.406_408del), c.601 T>C (p.Tyr201His), c.655 T>A (p.Phe219Ile), and c.87C>A (p.Asp29Glu). Our data show once more that there are still several mutations to be discovered in the ARSA gene and there are rarely repeating ones found in the population. The predictive value of the enzyme activity tests in regard to clinical manifestations is extremely limited.
Collapse
Affiliation(s)
- Daniela Galla
- Medical Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases-BIRD, Via B.Bizio, 1-36023 Costozza di Longare, Vicenza, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Anand U, Mukherjee M. Exploring the self-assembly of a short aromatic Aβ(16-24) peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2713-2721. [PMID: 23379750 DOI: 10.1021/la304585a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of self-assembling peptides as scaffolds for creating biomaterials has prompted the scientific community to carry out studies on short peptides as model systems. Short peptides help in dissecting contributions from different interactions, unlike large peptides, where multiple interactions make it difficult to dissect the contributions of individual interactions. This opens avenues for fine tuning peptides to carry out a wide range of physical or chemical properties. In this line of study Aβ(16-24) is a versatile building block not only as a scaffold for creating biomaterials but also because it forms the active core in the protein that forms amyloid plaques. In this study, we probe the self-assembly of peptide Aβ(16-24) using fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry, transmission electron microscopy, and atomic force microscopy. The process of self-assembly is dictated by the burial of phenyl alanines in the hydrophobic core and guided by nonbonding interactions and H-bonding. The process of fibril formation is enthalpically driven, and the fibrils showed blue and green luminescence without the addition of any external agent or sensitizer. Because these short peptides are known to bind with fully formed amyloid fibrils, this opens a route to the study of amyloid systems in vitro or isolated from patients suffering from Alzheimer's disease.
Collapse
Affiliation(s)
- Uttam Anand
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore By-pass Road, Bhauri, Bhopal 462 030, Madhya Pradesh, India
| | | |
Collapse
|
16
|
Verma S, Singh A, Mishra A. The effect of fulvic acid on pre‐ and postaggregation state of Aβ17–42: Molecular dynamics simulation studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:24-33. [DOI: 10.1016/j.bbapap.2012.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/25/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
|
17
|
Orbach R, Mironi-Harpaz I, Adler-Abramovich L, Mossou E, Mitchell EP, Forsyth VT, Gazit E, Seliktar D. The rheological and structural properties of Fmoc-peptide-based hydrogels: the effect of aromatic molecular architecture on self-assembly and physical characteristics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2015-22. [PMID: 22220968 DOI: 10.1021/la204426q] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Biocompatible hydrogels are of high interest as a class of biomaterials for tissue engineering, regenerative medicine, and controlled drug delivery. These materials offer three-dimensional scaffolds to support the growth of cells and development of hierarchical tissue structures. Fmoc-peptides were previously demonstrated as attractive building blocks for biocompatible hydrogels. Here, we further investigate the biophysical properties of Fmoc-peptide-based hydrogels for medical applications. We describe the structural and thermal properties of these Fmoc-peptides, as well as their self-assembly process. Additionally, we study the role of interactions between aromatic moieties in the self-assembly process and on the physical and structural properties of the hydrogels.
Collapse
Affiliation(s)
- Ron Orbach
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhao J, Yu X, Liang G, Zheng J. Heterogeneous Triangular Structures of Human Islet Amyloid Polypeptide (Amylin) with Internal Hydrophobic Cavity and External Wrapping Morphology Reveal the Polymorphic Nature of Amyloid Fibrils. Biomacromolecules 2011; 12:1781-94. [DOI: 10.1021/bm2001507] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun Zhao
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiang Yu
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Guizhao Liang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- Key Laboratory of Biorheological Science and Technology Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
19
|
Mishra A, Chauhan VS. Probing the role of aromaticity in the design of dipeptide based nanostructures. NANOSCALE 2011; 3:945-949. [PMID: 21221462 DOI: 10.1039/c0nr00691b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Self-assembly of peptide into nanostructures is believed to be stabilized primarily by aromatic interactions. Using a minimalistic approach, we probed the importance of aromatic interactions in the self-assembly of simple model dipeptides. Our results suggest that aromaticity may not be absolutely essential for self-assembly, even though it tends to provide directionality to the assembly. We found that peptides containing cyclic/linear side chain hydrophobic residues were also capable of forming stable self-assemblies that are stabilized by hydrophobic interactions. Our observations will find relevance in the design of small peptide based nanoparticles.
Collapse
Affiliation(s)
- Aseem Mishra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | |
Collapse
|
20
|
Zhao JH, Liu HL, Chuang CK, Liu KT, Tsai WB, Ho Y. Molecular dynamics simulations to investigate the stability and aggregation behaviour of the amyloid-forming peptide VQIVYK from tau protein. MOLECULAR SIMULATION 2010. [DOI: 10.1080/08927022.2010.499147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Nikolic A, Baud S, Rauscher S, Pomès R. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces. Proteins 2010; 79:1-22. [DOI: 10.1002/prot.22854] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/21/2010] [Accepted: 07/24/2010] [Indexed: 12/20/2022]
|
22
|
Chang LK, Zhao JH, Liu HL, Wu JW, Chuang CK, Liu KT, Chen JT, Tsai WB, Ho Y. The Importance of Steric Zipper on the Aggregation of the MVGGVV Peptide Derived from the Amyloid β Peptide. J Biomol Struct Dyn 2010; 28:39-50. [DOI: 10.1080/07391102.2010.10507342] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Scherzer-Attali R, Pellarin R, Convertino M, Frydman-Marom A, Egoz-Matia N, Peled S, Levy-Sakin M, Shalev DE, Caflisch A, Gazit E, Segal D. Complete phenotypic recovery of an Alzheimer's disease model by a quinone-tryptophan hybrid aggregation inhibitor. PLoS One 2010; 5:e11101. [PMID: 20559435 PMCID: PMC2885425 DOI: 10.1371/journal.pone.0011101] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/20/2010] [Indexed: 11/29/2022] Open
Abstract
The rational design of amyloid oligomer inhibitors is yet an unmet drug development need. Previous studies have identified the role of tryptophan in amyloid recognition, association and inhibition. Furthermore, tryptophan was ranked as the residue with highest amyloidogenic propensity. Other studies have demonstrated that quinones, specifically anthraquinones, can serve as aggregation inhibitors probably due to the dipole interaction of the quinonic ring with aromatic recognition sites within the amyloidogenic proteins. Here, using in vitro, in vivo and in silico tools we describe the synthesis and functional characterization of a rationally designed inhibitor of the Alzheimer's disease-associated β-amyloid. This compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp), combines the recognition capacities of both quinone and tryptophan moieties and completely inhibited Aβ oligomerization and fibrillization, as well as the cytotoxic effect of Aβ oligomers towards cultured neuronal cell line. Furthermore, when fed to transgenic Alzheimer's disease Drosophila model it prolonged their life span and completely abolished their defective locomotion. Analysis of the brains of these flies showed a significant reduction in oligomeric species of Aβ while immuno-staining of the 3rd instar larval brains showed a significant reduction in Aβ accumulation. Computational studies, as well as NMR and CD spectroscopy provide mechanistic insight into the activity of the compound which is most likely mediated by clamping of the aromatic recognition interface in the central segment of Aβ. Our results demonstrate that interfering with the aromatic core of amyloidogenic peptides is a promising approach for inhibiting various pathogenic species associated with amyloidogenic diseases. The compound NQTrp can serve as a lead for developing a new class of disease modifying drugs for Alzheimer's disease.
Collapse
Affiliation(s)
- Roni Scherzer-Attali
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Riccardo Pellarin
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marino Convertino
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Anat Frydman-Marom
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Nirit Egoz-Matia
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Sivan Peled
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Levy-Sakin
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Deborah E. Shalev
- Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail: (EG); (DS)
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail: (EG); (DS)
| |
Collapse
|
24
|
Morshedi D, Ebrahim-Habibi A, Moosavi-Movahedi AA, Nemat-Gorgani M. Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:714-22. [DOI: 10.1016/j.bbapap.2009.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 10/31/2009] [Accepted: 11/12/2009] [Indexed: 12/20/2022]
|
25
|
Todorova N, Hung A, Maaser SM, Griffin MDW, Karas J, Howlett GJ, Yarovsky I. Effects of mutation on the amyloidogenic propensity of apolipoprotein C-II60–70 peptide. Phys Chem Chem Phys 2010; 12:14762-74. [DOI: 10.1039/c0cp00299b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Lin YF, Zhao JH, Liu HL, Liu KT, Chen JT, Tsai WB, Ho Y. Structural stability and aggregation behavior of the VEALYL peptide derived from human insulin: A molecular dynamics simulation study. Biopolymers 2009; 94:269-78. [DOI: 10.1002/bip.21322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Tamamis P, Adler-Abramovich L, Reches M, Marshall K, Sikorski P, Serpell L, Gazit E, Archontis G. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations. Biophys J 2009; 96:5020-9. [PMID: 19527662 DOI: 10.1016/j.bpj.2009.03.026] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/25/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022] Open
Abstract
Studies of peptide-based nanostructures provide general insights into biomolecular self-assembly and can lead material engineering toward technological applications. The diphenylalanine peptide (FF) self-assembles into discrete, hollow, well ordered nanotubes, and its derivatives form nanoassemblies of various morphologies. Here we demonstrate for the first time, to our knowledge, the formation of planar nanostructures with beta-sheet content by the triphenylalanine peptide (FFF). We characterize these structures using various microscopy and spectroscopy techniques. We also obtain insights into the interactions and structural properties of the FF and FFF nanostructures by 0.4-micros, implicit-solvent, replica-exchange, molecular-dynamics simulations of aqueous FF and FFF solutions. In the simulations the peptides form aggregates, which often contain open or ring-like peptide networks, as well as elementary and network-containing structures with beta-sheet characteristics. The networks are stabilized by polar and nonpolar interactions, and by the surrounding aggregate. In particular, the charged termini of neighbor peptides are involved in hydrogen-bonding interactions and their aromatic side chains form "T-shaped" contacts, as in three-dimensional FF crystals. These interactions may assist the FF and FFF self-assembly at the early stage, and may also stabilize the mature nanostructures. The FFF peptides have higher network propensities and increased aggregate stabilities with respect to FF, which can be interpreted energetically.
Collapse
|
28
|
Mo Y, Lu Y, Wei G, Derreumaux P. Structural diversity of the soluble trimers of the human amylin(20-29) peptide revealed by molecular dynamics simulations. J Chem Phys 2009; 130:125101. [PMID: 19334894 DOI: 10.1063/1.3097982] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The human islet amyloid polypeptide (hIAPP) or amylin is a 37-residue hormone found as amyloid deposits in pancreatic extracts of nearly all type 2 diabetes patients. The fragment 20-29 of sequence SNNFGAILSS (hIAPP20-29) has been shown to be responsible for the amyloidogenic propensities of the full length protein. Various polymorphic forms of hIAPP20-29 fibrils were described by using Fourier transform infrared (FTIR) and solid-state NMR experiments: unseeded hIAPP20-29 fibril with out-of-register antiparallel beta-strands, and two forms of seeded hIAPP20-29 fibril, with in-register antiparallel or in-register parallel beta-strands. As a first step toward understanding this polymorphism, we explore the equilibrium structures of the soluble hIAPP20-29 trimer, using multiple molecular dynamics (MD) simulations with the Optimized Potential for Efficient structure Prediction (OPEP) coarse-grained implicit solvent force field for a total length of 3.2 micros. Although, the trimer is found mainly random coil, consistent with the signal measured experimentally during the lag phase of hIAPP20-29 fibril formation, the central FGAIL residues have a relative high propensity to form interpeptide beta-sheets and antiparallel beta-strands are more probable than parallel beta-strands. One MD-predicted out-of-register antiparallel three-stranded beta-sheet matches exactly the FTIR-derived unseeded hIAPP20-29 fibril model. Our simulations, however, do not reveal any evidence of in-register parallel or in-register antiparallel beta-sheets as reported for seeded hIAPP20-29 fibrils. All these results indicate that fibril polymorphism is partially encoded in a trimer.
Collapse
Affiliation(s)
- Yuxiang Mo
- Department of Physics and Surface Physics Laboratory, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | |
Collapse
|
29
|
Cognitive-Performance Recovery of Alzheimer's Disease Model Mice by Modulation of Early Soluble Amyloidal Assemblies. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802123] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Frydman-Marom A, Rechter M, Shefler I, Bram Y, Shalev D, Gazit E. Cognitive-Performance Recovery of Alzheimer's Disease Model Mice by Modulation of Early Soluble Amyloidal Assemblies. Angew Chem Int Ed Engl 2009; 48:1981-6. [DOI: 10.1002/anie.200802123] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
The binding of thioflavin T and its neutral analog BTA-1 to protofibrils of the Alzheimer's disease Abeta(16-22) peptide probed by molecular dynamics simulations. J Mol Biol 2008; 384:718-29. [PMID: 18851978 DOI: 10.1016/j.jmb.2008.09.062] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 11/22/2022]
Abstract
Thioflavin T (ThT) is a fluorescent dye commonly used to stain amyloid plaques, but the binding sites of this dye onto fibrils are poorly characterized. We present molecular dynamics simulations of the binding of ThT and its neutral analog BTA-1 [2-(4'-methylaminophenyl)benzothiazole] to model protofibrils of the Alzheimer's disease Abeta(16-22) (amyloid beta) peptide. Our simulations reveal two binding modes located at the grooves of the beta-sheet surfaces and at the ends of the beta-sheet. These simulations provide new insight into recent experimental work and allow us to characterize the high-capacity, micromolar-affinity site seen in experiment as binding to the beta-sheet surface grooves and the low-capacity, nanomolar-affinity site seen as binding to the beta-sheet extremities of the fibril. The structure-activity relationship upon mutating charged ThT to neutral BTA-1 in terms of increased lipophilicity and binding affinity was studied, with calculated solvation free energies and binding energies found to be in qualitative agreement with the experimental measurements.
Collapse
|
32
|
Hung A, Griffin MDW, Howlett GJ, Yarovsky I. Effects of oxidation, pH and lipids on amyloidogenic peptide structure: implications for fibril formation? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:99-110. [PMID: 18769912 DOI: 10.1007/s00249-008-0363-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
We have performed experimental and computational studies to investigate the influences of phospholipids, methionine oxidation and acidic pH on amyloid fibril formation by a peptide derived from human apolipoprotein C-II (apoC-II), a known component of proteinaceous atherosclerotic plaques. Fibril growth monitored by thioflavin T fluorescence revealed inhibition under lipid-rich and oxidising conditions. We subsequently performed fully-solvated atomistic molecular dynamics (MD) simulations of the peptide monomer to study its conformations under both fibril favouring (neutral and low pH) and inhibiting (lipid-rich and oxidising) conditions. Examination of the chain topology, backbone hydrogen-bonding patterns and aromatic sidechain orientations of the peptide under different conditions reveals that, while the peptide adopts similar structures under the fibril-favouring conditions, significantly different structures are obtained under fibril-disruptive conditions. Based on our results, we advance hypotheses for the roles of peptide conformation on aggregation and fibrillisation propensities.
Collapse
Affiliation(s)
- Andrew Hung
- School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, VIC 3001, Australia
| | | | | | | |
Collapse
|
33
|
Biancalana M, Makabe K, Koide A, Koide S. Aromatic cross-strand ladders control the structure and stability of beta-rich peptide self-assembly mimics. J Mol Biol 2008; 383:205-13. [PMID: 18762191 DOI: 10.1016/j.jmb.2008.08.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/05/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
Abstract
Though beta-rich self-assemblies comprise a major structural class of polypeptides, a detailed understanding of the determinants of their structure and stability is lacking. In particular, the roles of repetitive stretches of side chains running the long axis of these beta-sheets, termed "cross-strand ladders," remain poorly characterized due to the inherently insoluble and heterogeneous nature of self-assemblies. To overcome these experimental challenges, we have established a complementary experimental system termed "peptide self-assembly mimics" (PSAMs). The PSAMs capture a defined number of self-assembly-like peptide repeats within a soluble beta-rich protein, making structural and energetic studies possible. In this work, we investigated the role of cross-strand ladders containing aromatic residues, which are prominent in self-assembling peptides. A combination of solution data and high-resolution crystal structures revealed that a single cross-strand ladder consisting solely of Tyr significantly stabilized, rigidified, and flattened the PSAM beta-sheet. These characteristics would stabilize each beta-sheet layer of a self-assembly and direct sheet conformations compatible with lamination. Our results therefore provide a rationale for the abundance of aromatic amino acids in fibril-forming peptides and establish important roles of cross-strand Tyr ladders in the structure and stability of beta-rich peptide self-assemblies.
Collapse
Affiliation(s)
- Matthew Biancalana
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
34
|
Levy M, Porat Y, Bacharach E, Shalev DE, Gazit E. Phenolsulfonphthalein, but Not Phenolphthalein, Inhibits Amyloid Fibril Formation: Implications for the Modulation of Amyloid Self-Assembly. Biochemistry 2008; 47:5896-904. [DOI: 10.1021/bi800043d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michal Levy
- Department of Molecular Microbiology and Biotechnology and Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and The Wolfson Centre for Applied Structural Biology, Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Yair Porat
- Department of Molecular Microbiology and Biotechnology and Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and The Wolfson Centre for Applied Structural Biology, Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Eran Bacharach
- Department of Molecular Microbiology and Biotechnology and Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and The Wolfson Centre for Applied Structural Biology, Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Deborah E. Shalev
- Department of Molecular Microbiology and Biotechnology and Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and The Wolfson Centre for Applied Structural Biology, Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology and Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and The Wolfson Centre for Applied Structural Biology, Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
35
|
Structural elements regulating amyloidogenesis: a cholinesterase model system. PLoS One 2008; 3:e1834. [PMID: 18350169 PMCID: PMC2265548 DOI: 10.1371/journal.pone.0001834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/19/2008] [Indexed: 11/30/2022] Open
Abstract
Polymerization into amyloid fibrils is a crucial step in the pathogenesis of neurodegenerative syndromes. Amyloid assembly is governed by properties of the sequence backbone and specific side-chain interactions, since fibrils from unrelated sequences possess similar structures and morphologies. Therefore, characterization of the structural determinants driving amyloid aggregation is of fundamental importance. We investigated the forces involved in the amyloid assembly of a model peptide derived from the oligomerization domain of acetylcholinesterase (AChE), AChE586-599, through the effect of single point mutations on β-sheet propensity, conformation, fibrilization, surfactant activity, oligomerization and fibril morphology. AChE586-599 was chosen due to its fibrilization tractability and AChE involvement in Alzheimer's disease. The results revealed how specific regions and residues can control AChE586-599 assembly. Hydrophobic and/or aromatic residues were crucial for maintaining a high β-strand propensity, for the conformational transition to β-sheet, and for the first stage of aggregation. We also demonstrated that positively charged side-chains might be involved in electrostatic interactions, which could control the transition to β-sheet, the oligomerization and assembly stability. Further interactions were also found to participate in the assembly. We showed that some residues were important for AChE586-599 surfactant activity and that amyloid assembly might preferentially occur at an air-water interface. Consistently with the experimental observations and assembly models for other amyloid systems, we propose a model for AChE586-599 assembly in which a steric-zipper formed through specific interactions (hydrophobic, electrostatic, cation-π, SH-aromatic, metal chelation and polar-polar) would maintain the β-sheets together. We also propose that the stacking between the strands in the β-sheets along the fiber axis could be stabilized through π-π interactions and metal chelation. The dissection of the specific molecular recognition driving AChE586-599 amyloid assembly has provided further knowledge on such poorly understood and complicated process, which could be applied to protein folding and the targeting of amyloid diseases.
Collapse
|
36
|
Pappalardo G, Milardi D, Magrì A, Attanasio F, Impellizzeri G, La Rosa C, Grasso D, Rizzarelli E. Environmental factors differently affect human and rat IAPP: conformational preferences and membrane interactions of IAPP17-29 peptide derivatives. Chemistry 2008; 13:10204-15. [PMID: 17902185 DOI: 10.1002/chem.200700576] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interest in the 37-residue human islet amyloid polypeptide (hIAPP) is related to its ability to form amyloid deposits in patients affected by type II diabetes. Attempts to unravel the molecular features of this disease have indicated several regions of this polypeptide to be responsible for either the ability to form insoluble fibrils or the abnormal interaction with membranes. To extend these studies to peptides that enclose His18, whose ionization state is believed to play a key role in the aggregation of hIAPP, we report on the synthesis of two peptides, hIAPP17-29 and rIAPP17-29, encompassing the 17-29 sequences of human and rat IAPP, respectively, as well as on their conformational features in water and in several membrane-mimicking environments as revealed by circular dichroism (CD) and 2D-NMR studies. hIAPP17-29 adopts a beta-sheet structure in water and its solubility increases at low pH. Anionic sodium dodecyl sulfate (SDS) micelles promoted the formation of an alpha-helical structure in the peptide chain, which was poorly influenced by pH variations. rIAPP17-29 was soluble and unstructured in all the environments investigated, with a negligible effect of pH. The membrane interactions of hIAPP17-29 and rIAPP17-29 were assessed by recording differential scanning calorimetry (DSC) measurements aimed at elucidating the peptide-induced changes in the thermotropic behaviour of zwitterionic (DPPC) and negatively charged (DPPC/DPPS 3:1) model membranes (DPPC=1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPS=1,2-dipalmitoyl-sn-glycero-3-phosphoserine). Results of DSC experiments demonstrated the high potential of hIAPP17-29 to interact with DPPC membranes. hIAPP17-29 exhibited a negligible affinity for negatively charged DPPC/DPPS model membranes at neutral pH. On the other hand, rIAPP17-29 did not interact with neutral or negatively charged membranes. The role played by His18 in the modulation of the biophysical properties of this hIAPP region was assessed by synthesising and studying the R18HrIAPP17-29 peptide; the replacement of a single Arg with a His residue is not sufficient to induce either amyloidogenic propensity or membrane interaction in this region. The results show that the 17-29 domain of hIAPP has many properties of the full-length protein "in vitro" and this opens up new perspectives for both research and eventually therapy.
Collapse
Affiliation(s)
- Giuseppe Pappalardo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Morshedi D, Rezaei-Ghaleh N, Ebrahim-Habibi A, Ahmadian S, Nemat-Gorgani M. Inhibition of amyloid fibrillation of lysozyme by indole derivatives − possible mechanism of action. FEBS J 2007; 274:6415-25. [DOI: 10.1111/j.1742-4658.2007.06158.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Vitrenko YA, Pavon ME, Stone SI, Liebman SW. Propagation of the [PIN+] prion by fragments of Rnq1 fused to GFP. Curr Genet 2007; 51:309-19. [PMID: 17415568 PMCID: PMC2597802 DOI: 10.1007/s00294-007-0127-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 11/30/2022]
Abstract
Prions are viewed as enigmatic infectious entities whose genetic properties are enciphered solely in an array of self-propagating protein aggregate conformations. Rnq1, a yeast protein with yet unknown function, forms a prion named [PIN+] for its ability to facilitate the de novo induction of another prion, [PSI+]. Here we investigate a set of RNQ1 truncations that were designed to cover major Rnq1 sequence elements similar to those important for the propagation of other yeast prions: a region rich in asparagines and glutamines and several types of oligopeptide repeats. Proteins encoded by these RNQ1 truncations were tested for their ability to (a) join (decorate) pre-existing [PIN+] aggregates made of wild-type Rnq1 and (b) maintain the heritable aggregated state in the absence of wild-type RNQ1. While the possible involvement of particular sequence elements in the propagation of [PIN+] is discussed, the major result is that the efficiency of transmission of [PIN+] from wild-type Rnq1 to a fragment decreased with the fragment's length.
Collapse
Affiliation(s)
- Yakov A Vitrenko
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland M/C 567, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
39
|
Boucher G, Mousseau N, Derreumaux P. Aggregating the amyloid Abeta(11-25) peptide into a four-stranded beta-sheet structure. Proteins 2007; 65:877-88. [PMID: 17019697 DOI: 10.1002/prot.21134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present a detailed analysis of the structural properties of one monomer of Abeta(11-25) as well as of the aggregation mechanisms for four chains of Abeta(11-25) using the activation-relaxation technique coupled with a generic energy potential. Starting from a random distribution of these four chains, we find that the system assembles rapidly into a random globular state that evolves into three- and four-stranded antiparallel beta-sheets. The aggregation process is considerably accelerated by the presence of preformed dimers. We also find that the reptation mechanism already identified in shorter peptides plays a significant role here in allowing the structure to reorganize without having to fully dissociate.
Collapse
Affiliation(s)
- Geneviève Boucher
- Département de Physique and Centre Robert-Cedergren en bioinformatique, Université de Montréal, C.P. 6128, Succursale Centre-ville Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
40
|
Levy M, Garmy N, Gazit E, Fantini J. The minimal amyloid-forming fragment of the islet amyloid polypeptide is a glycolipid-binding domain. FEBS J 2007; 273:5724-35. [PMID: 17212787 DOI: 10.1111/j.1742-4658.2006.05562.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several proteins that interact with cell surface glycolipids share a common fold with a solvent-exposed aromatic residue that stacks onto a sugar ring of the glycolipid (CH-pi stacking interaction). Stacking interactions between aromatic residues (pi-pi stacking) also play a pivotal role in the assembly process, including many cases of amyloid fibril formation. We found a structural similarity between a typical glycolipid-binding domain (the V3 loop of HIV-1 gp120) and the minimal amyloid-forming fragment of the human islet amyloid polypeptide, i.e. the octapeptide core module NFGAILSS. In a monolayer assay at the air-water interface, the NFGAILSS peptide specifically interacted with the glycolipid lactosylceramide. The interaction appears to require an aromatic residue, as NLGAILSS was poorly recognized by lactosylceramide, whereas NYGAILSS behaved like NFGAILSS. In addition, we observed that the full-length human islet amyloid polypeptide (1-37) did interact with a monolayer of lactosylceramide, and that the glycolipid film significantly affected the aggregation process of the peptide. As glycolipid-V3 interactions are efficiently inhibited by suramin, a polyaromatic compound, we investigated the effects of suramin on amyloid formation by human islet amyloid polypeptide. We found that suramin inhibited amyloid fibril formation at low concentrations, but dramatically stimulated the process at high concentrations. Taken together, our results indicate that the minimal amyloid-forming fragment of human islet amyloid polypeptide is a glycolipid-binding domain, and provide further experimental support for the role of aromatic pi-pi and CH-pi stacking interactions in the molecular control of the amyloidogenesis process.
Collapse
Affiliation(s)
- Michal Levy
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
41
|
Gilead S, Wolfenson H, Gazit E. Molecular mapping of the recognition interface between the islet amyloid polypeptide and insulin. Angew Chem Int Ed Engl 2007; 45:6476-80. [PMID: 16960910 DOI: 10.1002/anie.200602034] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sharon Gilead
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
42
|
Gazit E. Self assembly of short aromatic peptides into amyloid fibrils and related nanostructures. Prion 2007; 1:32-5. [PMID: 19164892 DOI: 10.4161/pri.1.1.4095] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The formation of amyloid fibrils is the hallmark of more than twenty human disorders of unrelated etiology. In all these cases, ordered fibrillar protein assemblies with a diameter of 7-10 nm are being observed. In spite of the great clinical important of amyloid-associated diseases, the molecular recognition and self-assembly processes that lead to the formation of the fibrils are not fully understood. One direction to decipher the mechanism of amyloid formation is the use of short peptides fragments as model systems. Short peptide fragments, as short as pentapeptides, were shown to form typical amyloid assemblies in vitro that have ultrastructural, biophysical, and cytotoxic properties, as those of assemblies that are being formed by full length polypeptides. When we analyzed such short fragments, we identified the central role of aromatic moieties in the ability to aggregate into ordered nano-fibrillar structures. This notion allowed us to discover additional very short amyloidogenic peptides as well as other aromatic peptide motifs, which can form various assemblies at the nano-scale (including nanotubes, nanospheres, and macroscopic hydrogels with nano-scale order). Other practical utilization of this concept, together with novel beta breakage methods, is their use for the development of novel classes of amyloid formation inhibitors.
Collapse
Affiliation(s)
- Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
43
|
Gilead S, Wolfenson H, Gazit E. Molecular Mapping of the Recognition Interface between the Islet Amyloid Polypeptide and Insulin. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200602034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Zheng J, Ma B, Nussinov R. Consensus features in amyloid fibrils: sheet–sheet recognition via a (polar or nonpolar) zipper structure. Phys Biol 2006; 3:P1-4. [PMID: 17021379 DOI: 10.1088/1478-3975/3/3/p01] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amyloid fibrils characterized as highly intractable thread-like species are associated with many neurodegenerative diseases. Although neither the mechanism of amyloid formation nor the origin of amyloid toxicity is currently completely understood, the detailed three-dimensional atomic structures of the yeast protein Sup35 and Abeta amyloid protein determined by recent experiments provide the first and important step towards the comprehension of the pathogenesis and aggregation mechanisms of amyloid diseases. By analyzing these two amyloid peptides which have available crystal structures and other amyloid sequences with proposed structures using computational simulations, we delineate three common features in amyloid organizations and amyloid structures. These could contribute to an improved understanding of the molecular mechanism of amyloid formation, the nature of the aggregation driving forces that stabilize these structures and the development of potential therapeutic agents against amyloid diseases.
Collapse
Affiliation(s)
- Jie Zheng
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
45
|
Melquiond A, Mousseau N, Derreumaux P. Structures of soluble amyloid oligomers from computer simulations. Proteins 2006; 65:180-91. [PMID: 16894607 DOI: 10.1002/prot.21100] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alzheimer's, Parkinson's, and Creutzfeldt-Jakob's neurodegenerative diseases are all linked with the assembly of normally soluble proteins into amyloid fibrils. Because of experimental limitations, structural characterization of the soluble oligomers, which form early in the process of fibrillogenesis and are cytotoxic, remains to be determined. In this article, we study the aggregation paths of seven chains of the shortest amyloid-forming peptide, using an activitated method and a reduced atomic representation. Our simulations show that disordered KFFE monomers ultimately form three distinct topologies of similar energy: amorphous oligomers, incomplete rings with beta-barrel character, and cross-beta-sheet structures with the meridional but not the equatorial X-ray fiber reflections. The simulations also shed light on the pathways from misfolded aggregates to fibrillar-like structures. They also underline the multiplicity of building blocks that can lead to the formation of the critical nucleus from which rapid growth of the fibril occurs.
Collapse
Affiliation(s)
- Adrien Melquiond
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique et Université Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|
46
|
Flöck D, Rossetti G, Daidone I, Amadei A, Di Nola A. Aggregation of small peptides studied by molecular dynamics simulations. Proteins 2006; 65:914-21. [PMID: 16981204 DOI: 10.1002/prot.21168] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peptides and proteins tend to aggregate under appropriate conditions. The amyloid fibrils that are ubiquitously found among these structures are associated with major human diseases like Alzheimer's disease, type II diabetes, and various prion diseases. Lately, it has been observed that even very short peptides like tetra and pentapeptides can form ordered amyloid structures. Here, we present aggregation studies of three such small polypeptide systems, namely, the two amyloidogenic peptides DFNKF and FF, and a control (nonamyloidogenic) one, the AGAIL. The respective aggregation process is studied by all-atom Molecular Dynamics simulations, which allow to shed light on the fine details of the association and aggregation process. Our analysis suggests that naturally aggregating systems exhibit significantly diverse overall cluster shape properties and specific intermolecular interactions. Additional analysis was also performed on the previously studied NFGAIL system.
Collapse
Affiliation(s)
- Dagmar Flöck
- Department of Chemistry, University of Rome La Sapienza, Rome 00185, Italy.
| | | | | | | | | |
Collapse
|
47
|
Wu C, Lei H, Wang Z, Zhang W, Duan Y. Phenol red interacts with the protofibril-like oligomers of an amyloidogenic hexapeptide NFGAIL through both hydrophobic and aromatic contacts. Biophys J 2006; 91:3664-72. [PMID: 16935948 PMCID: PMC1630471 DOI: 10.1529/biophysj.106.081877] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyloid-associated diseases affect millions of people worldwide. Phenol red exhibits modest inhibition toward fibril formation of human Islet amyloid polypeptide (hIAPP) and its toxicity, which is associated with type II diabetes mellitus. However, the molecular level mechanisms of interactions remain elusive. The binding of phenol red molecules to the protofibrils of an amyloidogenic fragment (NFGAIL) of hIAPP has been investigated by molecular dynamics simulations with explicit solvent. The phenol red molecules were observed to bind primarily along either beta-sheet stacking or beta-strand directions. Through its three aromatic rings, the phenol red molecule preferentially interacted with the hydrophobic side chains of Phe, Leu, and Ile; and the polar sulfone and hydroxyl groups were mainly exposed in solvent. Thus, phenol red improves the solubility of the early protofibrils and represses further growth. Interestingly, there was no obvious preference toward the aromatic Phe residue in comparison to the hydrophobic Leu or Ile residues. The lack of binding along the hydrogen bond direction indicates that phenol red does not directly block the beta-sheet extension. Further free energy analysis suggested that a phenol red analog may potentially improve the binding affinity.
Collapse
Affiliation(s)
- Chun Wu
- Genome Center and Department of Applied Science, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
48
|
Bemporad F, Taddei N, Stefani M, Chiti F. Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase. Protein Sci 2006; 15:862-70. [PMID: 16600970 PMCID: PMC2242477 DOI: 10.1110/ps.051915806] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/05/2006] [Accepted: 01/13/2006] [Indexed: 10/24/2022]
Abstract
Among the many parameters that have been proposed to promote amyloid fibril formation is the pi-stacking of aromatic residues. We have studied the amyloid aggregation of several mutants of human muscle acylphosphatase in which an aromatic residue was substituted with a non-aromatic one. The aggregation rate was determined using the Thioflavin T test under conditions in which the variants populated initially an ensemble of partially unfolded conformations. Substitutions in aggregation-promoting fragments of the sequence result in a dramatically decreased aggregation rate of the protein, confirming the propensity of aromatic residues to promote this process. Nevertheless, a statistical analysis shows that the measured decrease of aggregation rate following mutation arises predominantly from a reduction of hydrophobicity and intrinsic beta-sheet propensity. This suggests that aromatic residues favor aggregation because of these factors rather than for their aromaticity.
Collapse
Affiliation(s)
- Francesco Bemporad
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, 50134, Firenze, Italy
| | | | | | | |
Collapse
|
49
|
Cecchini M, Curcio R, Pappalardo M, Melki R, Caflisch A. A molecular dynamics approach to the structural characterization of amyloid aggregation. J Mol Biol 2006; 357:1306-21. [PMID: 16483608 DOI: 10.1016/j.jmb.2006.01.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 11/21/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
A novel computational approach to the structural analysis of ordered beta-aggregation is presented and validated on three known amyloidogenic polypeptides. The strategy is based on the decomposition of the sequence into overlapping stretches and equilibrium implicit solvent molecular dynamics (MD) simulations of an oligomeric system for each stretch. The structural stability of the in-register parallel aggregates sampled in the implicit solvent runs is further evaluated using explicit water simulations for a subset of the stretches. The beta-aggregation propensity along the sequence of the Alzheimer's amyloid-beta peptide (Abeta(42)) is found to be highly heterogeneous with a maximum in the segment V(12)HHQKLVFFAE(22) and minima at S(8)G(9), G(25)S(26), G(29)A(30), and G(38)V(39), which are turn-like segments. The simulation results suggest that these sites may play a crucial role in determining the aggregation tendency and the fibrillar structure of Abeta(42). Similar findings are obtained for the human amylin, a 37-residue peptide that displays a maximal beta-aggregation propensity at Q(10)RLANFLVHSSNN(22) and two turn-like sites at G(24)A(25) and G(33)S(34). In the third application, the MD approach is used to identify beta-aggregation "hot-spots" within the N-terminal domain of the yeast prion Ure2p (Ure2p(1-94)) and to design a double-point mutant (Ure2p-N4748S(1-94)) with lower beta-aggregation propensity. The change in the aggregation propensity of Ure2p-N4748S(1-94) is verified in vitro using the thioflavin T binding assay.
Collapse
Affiliation(s)
- M Cecchini
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Gazit E. Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool. FEBS J 2006; 272:5971-8. [PMID: 16302962 DOI: 10.1111/j.1742-4658.2005.05022.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation of amyloid fibrils is associated with various human medical disorders of unrelated origin. Recent research indicates that self-assembled amyloid fibrils are also involved in physiological processes in several micro-organisms. Yet, the molecular basis for the recognition and self-assembly processes mediating the formation of such structures from their soluble protein precursors is not fully understood. Short peptide models have provided novel insight into the mechanistic issues of amyloid formation, revealing that very short peptides (as short as a tetrapeptide) contain all the necessary molecular information for forming typical amyloid fibrils. A careful analysis of short peptides has not only facilitated the identification of molecular recognition modules that promote the interaction and self-assembly of fibrils but also revealed that aromatic interactions are important in many cases of amyloid formation. The realization of the role of aromatic moieties in fibril formation is currently being used to develop novel inhibitors that can serve as therapeutic agents to treat amyloid-associated disorders.
Collapse
Affiliation(s)
- Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|