1
|
Lin HJ, James I, Hyer CD, Haderlie CT, Zackrison MJ, Bateman TM, Berg M, Park JS, Daley SA, Zuniga Pina NR, Tseng YJJ, Moody JD, Price JC. Quantifying In Situ Structural Stabilities of Human Blood Plasma Proteins Using a Novel Iodination Protein Stability Assay. J Proteome Res 2022; 21:2920-2935. [PMID: 36356215 PMCID: PMC9724711 DOI: 10.1021/acs.jproteome.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/12/2022]
Abstract
Many of the diseases that plague society today are driven by a loss of protein quality. One method to quantify protein quality is to measure the protein folding stability (PFS). Here, we present a novel mass spectrometry (MS)-based approach for PFS measurement, iodination protein stability assay (IPSA). IPSA quantifies the PFS by tracking the surface-accessibility differences of tyrosine, histidine, methionine, and cysteine under denaturing conditions. Relative to current methods, IPSA increases protein coverage and granularity to track the PFS changes of a protein along its sequence. To our knowledge, this study is the first time the PFS of human serum proteins has been measured in the context of the blood serum (in situ). We show that IPSA can quantify the PFS differences between different transferrin iron-binding states in near in vivo conditions. We also show that the direction of the denaturation curve reflects the in vivo surface accessibility of the amino acid residue and reproducibly reports a residue-specific PFS. Along with IPSA, we introduce an analysis tool Chalf that provides a simple workflow to calculate the residue-specific PFS. The introduction of IPSA increases the potential to use protein structural stability as a structural quality metric in understanding the etiology and progression of human disease. Data is openly available at Chorusproject.org (project ID 1771).
Collapse
Affiliation(s)
- Hsien-Jung
L. Lin
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Isabella James
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Chad D. Hyer
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Connor T. Haderlie
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Michael J. Zackrison
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Tyler M. Bateman
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Monica Berg
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Ji-Sun Park
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - S. Anisha Daley
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Nathan R. Zuniga Pina
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Yi-Jie J. Tseng
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - James D. Moody
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - John C. Price
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| |
Collapse
|
2
|
Lewkowicz E, Gursky O. Dynamic protein structures in normal function and pathologic misfolding in systemic amyloidosis. Biophys Chem 2022; 280:106699. [PMID: 34773861 PMCID: PMC9416430 DOI: 10.1016/j.bpc.2021.106699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Dynamic and disordered regions in native proteins are often critical for their function, particularly in ligand binding and signaling. In certain proteins, however, such regions can contribute to misfolding and pathologic deposition as amyloid fibrils in vivo. For example, dynamic and disordered regions can promote amyloid formation by destabilizing the native structure, by directly triggering the aggregation, by promoting protein condensation, or by acting as sites of early proteolytic cleavage that favor a release of aggregation-prone fragments or facilitate fibril maturation. At the same time, enhanced dynamics in the native protein state accelerates proteolytic degradation that counteracts amyloid accumulation in vivo. Therefore, the functional need for dynamic protein regions must be balanced against their inherently labile nature. How exactly this balance is achieved and how is it shifted upon amyloidogenic mutations or post-translational modifications? To illustrate possible scenarios, here we review the beneficial and pathologic roles of dynamic and disordered regions in the native states of three families of human plasma proteins that form amyloid precursors in systemic amyloidoses: immunoglobulin light chain, apolipoproteins, and serum amyloid A. Analysis of structure, stability and local dynamics of these diverse proteins and their amyloidogenic variants exemplifies how disordered/dynamic regions can provide a functional advantage as well as an Achilles heel in pathologic amyloid formation.
Collapse
|
3
|
Cho KH. Importance of Apolipoprotein A-I and A-II Composition in HDL and Its Potential for Studying COVID-19 and SARS-CoV-2. MEDICINES (BASEL, SWITZERLAND) 2021; 8:medicines8070038. [PMID: 34357154 PMCID: PMC8307872 DOI: 10.3390/medicines8070038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 05/12/2023]
Abstract
The composition and properties of apolipoprotein (apo) A-I and apoA-II in high-density lipoproteins (HDL) might be critical to SARS-CoV-2 infection via SR-BI and antiviral activity against COVID-19. HDL containing native apoA-I showed potent antiviral activity, while HDL containing glycated apoA-I or other apolipoproteins did not. However, there has been no report to elucidate the putative role of apoA-II in the antiviral activity of HDL.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Medical Innovation Complex, Korea Research Institute of Lipoproteins, Daegu 41061, Korea; ; Tel.: +82-53-964-1990; Fax: +82-53-965-1992
- LipoLab, Yeungnam University, Gyeongsan 712-749, Korea
| |
Collapse
|
4
|
Yamauchi K, Kawakami Y. The redox status of cysteine thiol residues of apolipoprotein E impacts on its lipid interactions. Biol Chem 2021; 401:617-627. [PMID: 31913846 DOI: 10.1515/hsz-2019-0414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/03/2020] [Indexed: 11/15/2022]
Abstract
Redox-mediated modulation of cysteine (Cys) thiols has roles in various pathophysiological functions. We recently found that formation of disulfide-linked complexes of apolipoprotein (apo) E3 prevented apoE3 from irreversible oxidation. In this report, the influence of modification of Cys thiols in apoE2 and apoE3 on interactions with lipids was investigated. The apoE redox status was examined by a band-shift assay using a maleimide compound, and interactions with lipids were evaluated by a kinetic assay using dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and non-denaturing polyacrylamide gel electrophoresis. A reduction in DMPC clearance activity of apoE2 and apoE3 but not apoE4 was observed. Although hydrogen peroxide-induced oxidation decreased the clearance activity of the isoforms, apoE2 showed the greatest residual activity. Both Cys thiol masking and dimerization decreased the activity of apoE2 and apoE3 but not apoE4. In contrast, apoAII preincubation markedly increased the activity (apoE2 > apoE3 > apoE4), in accordance with the formation of apoE-AII and apoAII-E2-AII complexes. ApoAII preincubation also reduced the particle size of apoE-DMPC liposome complexes, especially for apoE2. Redox-mediated modification of Cys thiols of apoE2 or apoE3, especially disulfide bond formation with apoAII, affects lipid metabolism and consequently may be responsible for the diverse isoform specificity of apoE.
Collapse
Affiliation(s)
- Kazuyoshi Yamauchi
- Department of Laboratory Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba305-8575, Japan
| | - Yasushi Kawakami
- Department of Laboratory Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba305-8575, Japan
| |
Collapse
|
5
|
Shinohara A, Pan C, Wang L, Shinmori H. Acid–base controllable singlet oxygen generation in supramolecular porphyrin–gold nanoparticle composites tethered by rotaxane linkers. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s108842461950086x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanically-interlocked photosensitizer–quencher systems based on free-base tetraphenylporphyrin (H2TPP)–gold nanoparticle (AuNP) composites has been designed and synthesized by utilizing a rotaxane architecture comprised of secondary ammonium and crown ether subunit. The H2TPP-substituted 24-crown-8 was able to shuttle along the alkanethiolate axle, triggered by deprotonation/protonation at the ammonium station, altering the H2TPP–AuNP distance and the photoexcitation energy transfer efficiency. Upon switching, quantum yields for photosensitized singlet oxygen (1O[Formula: see text] generation and fluorescence after deprotonation were quenched by 46% and 42%, respectively. External environment-responsive1O2generation based on such a protonation/deprotonation-driven molecular switch is potentially advantageous for a variety of applications including photodynamic therapies.
Collapse
Affiliation(s)
- Akira Shinohara
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Xueyuan Boulevard 1066, Nanshan, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Nanhai Boulevard 3688, Nanshan, Shenzhen 518060, China
- Department of Biotechnology, Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Chengjun Pan
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Xueyuan Boulevard 1066, Nanshan, Shenzhen 518055, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Xueyuan Boulevard 1066, Nanshan, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Nanhai Boulevard 3688, Nanshan, Shenzhen 518060, China
| | - Hideyuki Shinmori
- Department of Biotechnology, Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| |
Collapse
|
6
|
Takase H, Tanaka M, Nakamura Y, Morita SY, Yamada T, Mukai T. Effects of lipid composition on the structural properties of human serum amyloid A in reconstituted high-density lipoprotein particles. Chem Phys Lipids 2019; 221:8-14. [DOI: 10.1016/j.chemphyslip.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
|
7
|
Chaturvedi D, Mahalakshmi R. Position-Specific contribution of interface tryptophans on membrane protein energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:451-457. [PMID: 29128310 DOI: 10.1016/j.bbamem.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/11/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
Interface tryptophans are key residues that facilitate the folding and stability of membrane proteins. Escherichia coli OmpX possesses two unique interface tryptophans, namely Trp76, which is present at the interface and is solvent-exposed, and Trp140, which is relatively more lipid solvated than Trp76 in symmetric lipid membranes. Here, we address the requirement for tryptophan and the consequences of aromatic amino acid substitutions on the folding and stability of OmpX. Using spectroscopic measurements of OmpX-Trp/Tyr/Phe mutants, we show that the specific mutation W76→Y allows barrel assembly >1.5-fold faster than native OmpX, and increases stability by ~0.4kcalmol-1. In contrast, mutating W140→F/Y lowers OmpX thermodynamic stability by ~0.4kcalmol-1, without affecting the folding kinetics. We conclude that the stabilizing effect of tryptophan at the membrane interface can be position-and local environment-specific. We propose that the thermodynamic contributions for interface residues be interpreted with caution.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
8
|
Jayaraman S, Sánchez-Quesada JL, Gursky O. Triglyceride increase in the core of high-density lipoproteins augments apolipoprotein dissociation from the surface: Potential implications for treatment of apolipoprotein deposition diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1863:200-210. [PMID: 27768903 DOI: 10.1016/j.bbadis.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022]
Abstract
Lipids in the body are transported via lipoproteins that are nanoparticles comprised of lipids and amphipathic proteins termed apolipoproteins. This family of lipid surface-binding proteins is over-represented in human amyloid diseases. In particular, all major proteins of high-density lipoproteins (HDL), including apoA-I, apoA-II and serum amyloid A, can cause systemic amyloidoses in humans upon protein mutations, post-translational modifications or overproduction. Here, we begin to explore how the HDL lipid composition influences amyloid deposition by apoA-I and related proteins. First, we summarize the evidence that, in contrast to lipoproteins that are stabilized by kinetic barriers, free apolipoproteins are labile to misfolding and proteolysis. Next, we report original biochemical and biophysical studies showing that increase in triglyceride content in the core of plasma or reconstituted HDL destabilizes the lipoprotein assembly, making it more labile to various perturbations (oxidation, thermal and chemical denaturation and enzymatic hydrolysis), and promotes apoA-I release in a lipid-poor/free aggregation-prone form. Together, the results suggest that decreasing plasma levels of triglycerides will shift the dynamic equilibrium from the lipid-poor/free (labile) to the HDL-bound (protected) apolipoprotein state, thereby decreasing the generation of the protein precursor of amyloid. This prompts us to propose that triglyceride-lowering therapies may provide a promising strategy to alleviate amyloid diseases caused by the deposition of HDL proteins.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, USA
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, USA.
| |
Collapse
|
9
|
Jayaraman S, Haupt C, Gursky O. Paradoxical effects of SAA on lipoprotein oxidation suggest a new antioxidant function for SAA. J Lipid Res 2016; 57:2138-2149. [PMID: 27744369 DOI: 10.1194/jlr.m071191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/12/2016] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress and inflammation, which involve a dramatic increase in serum amyloid A (SAA) levels, are critical in the development of atherosclerosis. Most SAA circulates on plasma HDL particles, altering their cardioprotective properties. SAA-enriched HDL has diminished anti-oxidant effects on LDL, which may contribute to atherogenesis. We determined combined effects of SAA enrichment and oxidation on biochemical changes in HDL. Normal human HDLs were incubated with SAA, oxidized by various factors (Cu2+, myeloperoxidase, H2O2, OCl-), and analyzed for lipid and protein modifications and biophysical remodeling. Three novel findings are reported: addition of SAA reduces oxidation of HDL and LDL lipids; oxidation of SAA-containing HDL in the presence of OCl- generates a covalent heterodimer of SAA and apoA-I that resists the release from HDL; and mild oxidation promotes spontaneous release of proteins (SAA and apoA-I) from SAA-enriched HDL. We show that the anti-oxidant effects of SAA extend to various oxidants and are mediated mainly by the unbound protein. We propose that free SAA sequesters lipid hydroperoxides and delays lipoprotein oxidation, though much less efficiently than other anti-oxidant proteins, such as apoA-I, that SAA displaces from HDL. These findings prompt us to reconsider the role of SAA in lipid oxidation in vivo.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Christian Haupt
- Institute of Protein Biochemistry, University of Ulm, 89081 Ulm, Germany
| | - Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
10
|
Rodriguez PJ, Gillard BK, Barosh R, Gotto AM, Rosales C, Pownall HJ. Neo High-Density Lipoprotein Produced by the Streptococcal Serum Opacity Factor Activity against Human High-Density Lipoproteins Is Hepatically Removed via Dual Mechanisms. Biochemistry 2016; 55:5845-5853. [PMID: 27662183 DOI: 10.1021/acs.biochem.6b00946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injection of streptococcal serum opacity factor (SOF) into mice reduces the plasma cholesterol level by ∼40%. In vitro, SOF converts high-density lipoproteins (HDLs) into multiple products, including a small HDL, neo HDL. In vitro, neo HDL accounts for ∼60% of the protein mass of the SOF reaction products; in vivo, the accumulated mass of neo HDL is <1% of that observed in vitro. To identify the underlying cause of this difference, we determined the fate of neo HDL in plasma in vitro and in vivo. Following incubation with HDL, neo HDL-PC rapidly transfers to HDL, giving a small remnant, which fuses with HDL. An increased level of SR-B1 expression in Huh7 hepatoma cells and a reduced level of LDLR expression in CHO cells had little effect on neo HDL-[3H]CE uptake. Thus, the dominant receptors for neo HDL uptake are not LDLR or SR-B1. The in vivo metabolic fates of neo HDL-[3H]CE and HDL-[3H]CE were different. Thirty minutes after the injection of neo HDL-[3H]CE and HDL-[3H]CE into mice, plasma [3H]CE counts were 40 and 53%, respectively, of injected counts, with 10 times more [3H]CE appearing in the livers of neo HDL-[3H]CE-injected than in those of HDL-[3H]CE-injected mice. These data support a model of neo HDL-[3H]CE clearance by two parallel pathways. At early post-neo HDL-[3H]CE injection times, some neo HDL is directly removed by the liver; the remainder transfers its PC to HDL, leaving a remnant that fuses with HDL, which is also hepatically removed more slowly. Given that SR-B1 and SOF both remove CE from HDL, this novel mechanism may also underlie the metabolism of remnants released by hepatocytes following selective SR-B1-mediated uptake of HDL-CE.
Collapse
Affiliation(s)
- Perla J Rodriguez
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States.,Baylor College of Medicine , One Baylor Plaza, Houston, Texas 77030, United States
| | - Baiba K Gillard
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Rachel Barosh
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Antonio M Gotto
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Corina Rosales
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Henry J Pownall
- Houston Methodist Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| |
Collapse
|
11
|
Jayaraman S, Haupt C, Gursky O. Thermal transitions in serum amyloid A in solution and on the lipid: implications for structure and stability of acute-phase HDL. J Lipid Res 2015; 56:1531-42. [PMID: 26022803 DOI: 10.1194/jlr.m059162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase protein that circulates mainly on plasma HDL. SAA interactions with its functional ligands and its pathogenic deposition in reactive amyloidosis depend, in part, on the structural disorder of this protein and its propensity to oligomerize. In vivo, SAA can displace a substantial fraction of the major HDL protein, apoA-I, and thereby influence the structural remodeling and functions of acute-phase HDL in ways that are incompletely understood. We use murine SAA1.1 to report the first structural stability study of human plasma HDL that has been enriched with SAA. Calorimetric and spectroscopic analyses of these and other SAA-lipid systems reveal two surprising findings. First, progressive displacement of the exchangeable fraction of apoA-I by SAA has little effect on the structural stability of HDL and its fusion and release of core lipids. Consequently, the major determinant for HDL stability is the nonexchangeable apoA-I. A structural model explaining this observation is proposed, which is consistent with functional studies in acute-phase HDL. Second, we report an α-helix folding/unfolding transition in SAA in the presence of lipid at near-physiological temperatures. This new transition may have potentially important implications for normal functions of SAA and its pathogenic misfolding.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston MA 02118
| | - Christian Haupt
- Institute for Pharmaceutical Biotechnology, University of Ulm, 89081, Ulm, Germany
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston MA 02118
| |
Collapse
|
12
|
Rosales C, Patel N, Gillard BK, Yelamanchili D, Yang Y, Courtney HS, Santos RD, Gotto AM, Pownall HJ. Apolipoprotein AI deficiency inhibits serum opacity factor activity against plasma high density lipoprotein via a stabilization mechanism. Biochemistry 2015; 54:2295-302. [PMID: 25790332 DOI: 10.1021/bi501486z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction of Streptococcal serum opacity factor (SOF) against plasma high-density lipoproteins (HDL) produces a large cholesteryl ester-rich microemulsion (CERM), a smaller neo HDL that is apolipoprotein (apo) AI-poor, and lipid-free apo AI. SOF is active versus both human and mouse plasma HDL. In vivo injection of SOF into mice reduces plasma cholesterol ∼40% in 3 h while forming the same products observed in vitro, but at different ratios. Previous studies supported the hypothesis that labile apo AI is required for the SOF reaction vs HDL. Here we further tested that hypothesis by studies of SOF against HDL from apo AI-null mice. When injected into apo AI-null mice, SOF reduced plasma cholesterol ∼35% in 3 h. The reaction of SOF vs apo AI-null HDL in vitro produced a CERM and neo HDL, but no lipid-free apo. Moreover, according to the rate of CERM formation, the extent and rate of the SOF reaction versus apo AI-null mouse HDL were less than that against wild-type (WT) mouse HDL. Chaotropic perturbation studies using guanidine hydrochloride showed that apo AI-null HDL was more stable than WT HDL. Human apo AI added to apo AI-null HDL was quantitatively incorporated, giving reconstituted HDL. Both SOF and guanidine hydrochloride displaced apo AI from the reconstituted HDL. These results support the conclusion that apo AI-null HDL is more stable than WT HDL because it lacks apo AI, a labile protein that is readily displaced by physicochemical and biochemical perturbations. Thus, apo AI-null HDL is less SOF-reactive than WT HDL. The properties of apo AI-null HDL can be partially restored to those of WT HDL by the spontaneous incorporation of human apo AI. It remains to be determined what other HDL functions are affected by apo AI deletion.
Collapse
Affiliation(s)
- Corina Rosales
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Niket Patel
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Baiba K Gillard
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Dedipya Yelamanchili
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Yaliu Yang
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Harry S Courtney
- ‡Veterans Affairs Medical Center and Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38104, United States
| | - Raul D Santos
- §Heart Institute-INCOR, University of Sao Paulo, 05409-003 Sao Paulo, Brazil
| | - Antonio M Gotto
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States.,⊥Weill Cornell Medical College, 1305 York Avenue, New York, New York 10021, United States
| | - Henry J Pownall
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States.,⊥Weill Cornell Medical College, 1305 York Avenue, New York, New York 10021, United States
| |
Collapse
|
13
|
Structural stability and functional remodeling of high-density lipoproteins. FEBS Lett 2015; 589:2627-39. [PMID: 25749369 DOI: 10.1016/j.febslet.2015.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 12/28/2022]
Abstract
Lipoproteins are protein-lipid nanoparticles that transport lipids in circulation and are central in atherosclerosis and other disorders of lipid metabolism. Apolipoproteins form flexible structural scaffolds and important functional ligands on the particle surface and direct lipoprotein metabolism. Lipoproteins undergo multiple rounds of metabolic remodeling that is crucial to lipid transport. Important aspects of this remodeling, including apolipoprotein dissociation and particle fusion, are mimicked in thermal or chemical denaturation and are modulated by free energy barriers. Here we review the biophysical studies that revealed the kinetic mechanism of lipoprotein stabilization and unraveled its structural basis. The main focus is on high-density lipoprotein (HDL). An inverse correlation between stability and functions of various HDLs in cholesterol transport suggests the functional role of structural disorder. A mechanism for the conformational adaptation of the major HDL proteins, apoA-I and apoA-II, to the increasing lipid load is proposed. Together, these studies help understand why HDL forms discrete subclasses separated by kinetic barriers, which have distinct composition, conformation and functional properties. Understanding these properties may help improve HDL quality and develop novel therapies for cardiovascular disease.
Collapse
|
14
|
Hotta N, Abe-Dohmae S, Taguchi R, Yokoyama S. Preferential incorporation of shorter and less unsaturated acyl phospholipids into high density lipoprotein-like particles in the ABCA1- and ABCA7-mediated biogenesis with apoA-I. Chem Phys Lipids 2015; 187:1-9. [PMID: 25665932 DOI: 10.1016/j.chemphyslip.2015.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 11/27/2022]
Abstract
Molecular species of phosphatidylcholine (PC) and sphingomyelin (SPM) were globally analyzed for lipidomics in the nascent high-density lipoprotein (HDL)-like particles generated with human apolipoprotein A-I (apoA-I) form HEK293 cells where either human ATP binding cassette transporter (ABC) A1 or ABCA7 was transfected and overexpressed. SPM/PC ratio was higher in the ABCA1-mediated HDL than ABCA7-mediated HDL likely being related to their cholesterol content, while it was less than the ratio in the cell membrane in either case. Molecular species composition of hydrocarbon chain moiety in each phospholipid in the HDL largely reflected that in the cells the lipoprotein originated in, without remarkable difference between ABCA1 and ABCA7. Further analysis, however, revealed apparent preference for the molecules with shorter hydrocarbon chain length for both PC and SPM in their relative incorporation into HDL by ABCA1 and ABCA7. Likewise, it was in favor for less-unsaturated hydrocarbon chains of PC while this preference was not apparent for SPM. The results are consistent with the view that assembly of HDL particles with extracellular apoA-I is primarily with the cellular phospholipid molecules being regulated in part by their physicochemical nature.
Collapse
Affiliation(s)
- Noriko Hotta
- Graduate Schools of Pharmaceutical Sciences, Nagoya, Japan; Medical Sciences, Nagoya City University, Nagoya, Japan
| | | | - Ryo Taguchi
- Graduate Schools of Pharmaceutical Sciences, Nagoya, Japan; Nutritional Health Science Research Center, Chubu University, Kasugai, Japan
| | - Shinji Yokoyama
- Nutritional Health Science Research Center, Chubu University, Kasugai, Japan.
| |
Collapse
|
15
|
Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:175-211. [PMID: 26149931 DOI: 10.1007/978-3-319-17344-3_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apolipoproteins are protein constituents of lipoproteins that transport cholesterol and fat in circulation and are central to cardiovascular health and disease. Soluble apolipoproteins can transiently dissociate from the lipoprotein surface in a labile free form that can misfold, potentially leading to amyloid disease. Misfolding of apoA-I, apoA-II, and serum amyloid A (SAA) causes systemic amyloidoses, apoE4 is a critical risk factor in Alzheimer's disease, and apolipoprotein misfolding is also implicated in cardiovascular disease. To explain why apolipoproteins are over-represented in amyloidoses, it was proposed that the amphipathic α-helices, which form the lipid surface-binding motif in this protein family, have high amyloid-forming propensity. Here, we use 12 sequence-based bioinformatics approaches to assess amyloid-forming potential of human apolipoproteins and to identify segments that are likely to initiate β-aggregation. Mapping such segments on the available atomic structures of apolipoproteins helps explain why some of them readily form amyloid while others do not. Our analysis shows that nearly all amyloidogenic segments: (i) are largely hydrophobic, (ii) are located in the lipid-binding amphipathic α-helices in the native structures of soluble apolipoproteins, (iii) are predicted in both native α-helices and β-sheets in the insoluble apoB, and (iv) are predicted to form parallel in-register β-sheet in amyloid. Most of these predictions have been verified experimentally for apoC-II, apoA-I, apoA-II and SAA. Surprisingly, the rank order of the amino acid sequence propensity to form amyloid (apoB>apoA-II>apoC-II≥apoA-I, apoC-III, SAA, apoC-I>apoA-IV, apoA-V, apoE) does not correlate with the proteins' involvement in amyloidosis. Rather, it correlates directly with the strength of the protein-lipid association, which increases with increasing protein hydrophobicity. Therefore, the lipid surface-binding function and the amyloid-forming propensity are both rooted in apolipoproteins' hydrophobicity, suggesting that functional constraints make it difficult to completely eliminate pathogenic apolipoprotein misfolding. We propose that apolipoproteins have evolved protective mechanisms against misfolding, such as the sequestration of the amyloidogenic segments via the native protein-lipid and protein-protein interactions involving amphipathic α-helices and, in case of apoB, β-sheets.
Collapse
|
16
|
Differential contribution of tryptophans to the folding and stability of the attachment invasion locus transmembrane β-barrel from Yersinia pestis. Sci Rep 2014; 4:6508. [PMID: 25266561 PMCID: PMC4179465 DOI: 10.1038/srep06508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/15/2014] [Indexed: 11/08/2022] Open
Abstract
Attachment invasion locus (Ail) protein of Yersinia pestis is a crucial outer membrane protein for host invasion and determines bacterial survival within the host. Despite its importance in pathogenicity, surprisingly little is known on Ail biophysical properties. We investigate the contribution of micelle concentrations and interface tryptophans on the Ail β-barrel refolding and unfolding processes. Our results reveal that barrel folding is surprisingly independent of micelle amounts, but proceeds through an on-pathway intermediate that requires the interface W42 for cooperative barrel refolding. On the contrary, the unfolding event is strongly controlled by absolute micelle concentrations. We find that upon Trp → Phe substitution, protein stabilities follow the order W149F>WT>W42F for the refolding, and W42F>WT>W149F for unfolding. W42 confers cooperativity in barrel folding, and W149 clamps the post-folded barrel structure to its micelle environment. Our analyses reveal, for the first time, that interface tryptophan mutation can indeed render greater β-barrel stability. Furthermore, hysteresis in Ail stems from differential barrel-detergent interaction strengths in a micelle concentration-dependent manner, largely mediated by W149. The kinetically stabilized Ail β-barrel has strategically positioned tryptophans to balance efficient refolding and subsequent β-barrel stability, and may be evolutionarily chosen for optimal functioning of Ail during Yersinia pathogenesis.
Collapse
|
17
|
Shenkarev ZO, Lyukmanova EN, Paramonov AS, Panteleev PV, Balandin SV, Shulepko MA, Mineev KS, Ovchinnikova TV, Kirpichnikov MP, Arseniev AS. Lipid-protein nanodiscs offer new perspectives for structural and functional studies of water-soluble membrane-active peptides. Acta Naturae 2014; 6:84-94. [PMID: 25093115 PMCID: PMC4115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Lipid-protein nanodiscs (LPNs) are nanoscaled fragments of a lipid bilayer stabilized in solution by the apolipoprotein or a special membrane scaffold protein (MSP). In this work, the applicability of LPN-based membrane mimetics in the investigation of water-soluble membrane-active peptides was studied. It was shown that a pore-forming antimicrobial peptide arenicin-2 from marine lugworm (charge of +6) disintegrates LPNs containing both zwitterionic phosphatidylcholine (PC) and anionic phosphatidylglycerol (PG) lipids. In contrast, the spider toxin VSTx1 (charge of +3), a modifier of Kv channel gating, effectively binds to the LPNs containing anionic lipids (POPC/DOPG, 3 : 1) and does not cause their disruption. VSTx1 has a lower affinity to LPNs containing zwitterionic lipids (POPC), and it weakly interacts with the protein component of nanodiscs, MSP (charge of -6). The neurotoxin II (NTII, charge of +4) from cobra venom, an inhibitor of the nicotinic acetylcholine receptor, shows a comparatively low affinity to LPNs containing anionic lipids (POPC/DOPG, 3 : 1 or POPC/DOPS, 4 : 1), and it does not bind to LPNs/POPC. The obtained data show that NTII interacts with the LPN/POPC/DOPS surface in several orientations, and that the exchange process among complexes with different topologies proceeds fast on the NMR timescale. Only one of the possible NTII orientations allows for the previously proposed specific interaction between the toxin and the polar head group of phosphatidylserine from the receptor environment (Lesovoy et al., Biophys. J. 2009. V. 97. № 7. P. 2089-2097). These results indicate that LPNs can be used in structural and functional studies of water-soluble membrane-active peptides (probably except pore-forming ones) and in studies of the molecular mechanisms of peptide-membrane interaction.
Collapse
Affiliation(s)
- Z. O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - E. N. Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - A. S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - P. V. Panteleev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - S. V. Balandin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - M. A. Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
- Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1, Bldg. 12, 119991, Moscow, Russia
| | - K. S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - T. V. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Institutskii Pereulok, 9, 141700, Dolgoprudny, Moscow Region, Russia
| | - M. P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
- Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1, Bldg. 12, 119991, Moscow, Russia
| | - A. S. Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Institutskii Pereulok, 9, 141700, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
18
|
Gursky O. Hot spots in apolipoprotein A-II misfolding and amyloidosis in mice and men. FEBS Lett 2014; 588:845-50. [PMID: 24561203 DOI: 10.1016/j.febslet.2014.01.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/08/2014] [Accepted: 01/27/2014] [Indexed: 01/06/2023]
Abstract
ApoA-II is the second-major protein of high-density lipoproteins. C-terminal extension in human apoA-II or point substitutions in murine apoA-II cause amyloidosis. The molecular mechanism of apolipoprotein misfolding, from the native predominantly α-helical conformation to cross-β-sheet in amyloid, is unknown. We used 12 sequence-based prediction algorithms to identify two ten-residue segments in apoA-II that probably initiate β-aggregation. Previous studies of apoA-II fragments experimentally verify this prediction. Together, experimental and bioinformatics studies explain why the C-terminal extension in human apoA-II causes amyloidosis and why, unlike murine apoA-II, human apoA-II normally does not cause amyloidosis despite its unusually high sequence propensity for β-aggregation.
Collapse
Affiliation(s)
- Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, W329, 700 Albany Street, Boston, MA 02118, United States.
| |
Collapse
|
19
|
Maurya SR, Mahalakshmi R. Influence of protein-micelle ratios and cysteine residues on the kinetic stability and unfolding rates of human mitochondrial VDAC-2. PLoS One 2014; 9:e87701. [PMID: 24494036 PMCID: PMC3907894 DOI: 10.1371/journal.pone.0087701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/01/2014] [Indexed: 12/14/2022] Open
Abstract
Delineating the kinetic and thermodynamic factors which contribute to the stability of transmembrane β-barrels is critical to gain an in-depth understanding of membrane protein behavior. Human mitochondrial voltage-dependent anion channel isoform 2 (hVDAC-2), one of the key anti-apoptotic eukaryotic β-barrel proteins, is of paramount importance, owing to its indispensable role in cell survival. We demonstrate here that the stability of hVDAC-2 bears a strong kinetic contribution that is dependent on the absolute micellar concentration used for barrel folding. The refolding efficiency and ensuing stability is sensitive to the lipid-to-protein (LPR) ratio, and displays a non-linear relationship, with both low and high micellar amounts being detrimental to hVDAC-2 structure. Unfolding and aggregation process are sequential events and show strong temperature dependence. We demonstrate that an optimal lipid-to-protein ratio of 2600∶1 – 13000∶1 offers the highest protection against thermal denaturation. Activation energies derived only for lower LPRs are ∼17 kcal mol−1 for full-length hVDAC-2 and ∼23 kcal mol−1 for the Cys-less mutant, suggesting that the nine cysteine residues of hVDAC-2 impart additional malleability to the barrel scaffold. Our studies reveal that cysteine residues play a key role in the kinetic stability of the protein, determine barrel rigidity and thereby give rise to strong micellar association of hVDAC-2. Non-linearity of the Arrhenius plot at high LPRs coupled with observation of protein aggregation upon thermal denaturation indicates that contributions from both kinetic and thermodynamic components stabilize the 19-stranded β-barrel. Lipid-protein interaction and the linked kinetic contribution to free energy of the folded protein are together expected to play a key role in hVDAC-2 recycling and the functional switch at the onset of apoptosis.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
- * E-mail:
| |
Collapse
|
20
|
Auton M, Bassett GR, Gillard BK, Pownall HJ. Free cholesterol determines reassembled high-density lipoprotein phospholipid phase structure and stability. Biochemistry 2013; 52:4324-30. [PMID: 23721456 DOI: 10.1021/bi4006732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reassembled high-density lipoproteins (rHDL) of various sizes and compositions containing apo A-I or apo A-II as their sole protein, dimyristoylphosphatidylcholine (DMPC), and various amounts of free cholesterol (FC) have been isolated and analyzed by differential scanning calorimetry (DSC) and by circular dichroism to determine their stability and the temperature dependence of their helical content. Our data show that the multiple rHDL species obtained at each FC mole percent usually do not have the same FC mole percent as the starting mixture and that the size of the multiple species increases in a quantized way with their respective FC mole percent. DSC studies reveal multiple phases or domains that can be classified as virtual DMPC, which contains a small amount of DMPC that slightly reduces the melting temperature (Tm), a boundary phase that is adjacent to the apo A-I or apo A-II that circumscribes the discoidal rHDL, and a mixed FC/DMPC phase that has a Tm that increases with FC mole percent. Only the large rHDL contain virtual DMPC, whereas all contain boundary phase and various amounts of the mixed FC/DMPC phase according to increasing size and FC mole percent. As reported by others, FC stabilizes the rHDL. For rHDL (apo A-II) compared to rHDL (apo A-I), this occurs in spite of the reduced number of helical regions that mediate binding to the DMPC surface. This effect is attributed to the very high lipophilicity of apo A-II and the reduction in the polarity of the interface between DMPC and the aqueous phase with an increasing FC mole percent, an effect that is expected to increase the strength of the hydrophobic associations with the nonpolar face of the amphipathic helices of apo A-II. These data are relevant to the differential effects of FC and apolipoprotein species on intracellular and plasma membrane nascent HDL assembly and subsequent remodeling by plasma proteins.
Collapse
Affiliation(s)
- Matthew Auton
- Cardiovascular and Thrombosis Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | | | | | | |
Collapse
|
21
|
Ng KK, Lovell JF, Vedadi A, Hajian T, Zheng G. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications. ACS NANO 2013; 7:3484-3490. [PMID: 23464857 DOI: 10.1021/nn400418y] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The abilities to deliver and subsequently activate a therapeutic at the intended site of action are two important challenges in the synthesis of novel nanoparticles. Poor tumor permeability as a result of a dense microenvironment can impede the delivery of nanoparticles to the site of action. The design of a sub-40 nm activatable porphyrin nanodisc, based on protein-induced lipid constriction, is described. The biophotonic nanoparticle, self-assembled from aggregated porphyrin-lipid, is stabilized by an amphipathic alpha helical protein and becomes photoactive when its structure is perturbed. Enzymatic cleavage of the constricting protein leads to conversion of the particle from a disc- to a vesicle-shaped structure and provides further evidence that the apolipoprotein serves a functional role on the nanodisc. Fluorescence measurements of these nanodiscs in a detergent show that fluorescence is over 99% quenched in the intact state with a 12-fold increase in singlet oxygen generation upon disruption. Cellular fluorescence unquenching and dose-dependent phototoxicity demonstrate that these nanodiscs can be internalized and unquenched intracellularly. Finally, nanodiscs were found to display a 5-fold increase in diffusion coefficient when compared with the protein-free control ((3.5±0.1)×10(-7) vs (0.7±0.03)×10(-7) cm2 s(-1)). The ability to incorporate large amounts of photosensitizer drugs into its compact structure allows for phototherapeutic action, fluorescence diagnostic applications, and the potential to effectively deliver photosensitizers deep into poorly permeable tumors.
Collapse
Affiliation(s)
- Kenneth K Ng
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
22
|
Lu M, Gantz DL, Herscovitz H, Gursky O. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis. J Lipid Res 2012; 53:2175-2185. [PMID: 22855737 DOI: 10.1194/jlr.m029629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.
Collapse
Affiliation(s)
- Mengxiao Lu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118.
| | - Donald L Gantz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Haya Herscovitz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118.
| |
Collapse
|
23
|
Gao X, Yuan S, Jayaraman S, Gursky O. Role of apolipoprotein A-II in the structure and remodeling of human high-density lipoprotein (HDL): protein conformational ensemble on HDL. Biochemistry 2012; 51:4633-41. [PMID: 22631438 DOI: 10.1021/bi300555d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-density lipoproteins (HDL, or "good cholesterol") are heterogeneous nanoparticles that remove excess cell cholesterol and protect against atherosclerosis. The cardioprotective action of HDL and its major protein, apolipoprotein A-I (apoA-I), is well-established, yet the function of the second major protein, apolipoprotein A-II (apoA-II), is less clear. In this review, we postulate an ensemble of apolipoprotein conformations on various HDL. This ensemble is based on the crystal structure of Δ(185-243)apoA-I determined by Mei and Atkinson combined with the "double-hairpin" conformation of apoA-II(dimer) proposed in the cross-linking studies by Silva's team, and is supported by the wide array of low-resolution structural, biophysical, and biochemical data obtained by many teams over decades. The proposed conformational ensemble helps integrate and improve several existing HDL models, including the "buckle-belt" conformation of apoA-I on the midsize disks and the "trefoil/tetrafoil" arrangement on spherical HDL. This ensemble prompts us to hypothesize that endogenous apoA-II (i) helps confer lipid surface curvature during conversion of nascent discoidal HDL(A-I) and HDL(A-II) containing either apoA-I or apoA-II to mature spherical HDL(A-I/A-II) containing both proteins, and (ii) hinders remodeling of HDL(A-I/A-II) by hindering the expansion of the apoA-I conformation. Also, we report that, although endogenous apoA-II circulates mainly on the midsize spherical HDL(A-I/A-II), exogenous apoA-II can bind to HDL of any size, thereby slightly increasing this size and stabilizing the HDL assembly. This suggests distinctly different effects of the endogenous and exogenous apoA-II on HDL. Taken together, the existing results and models prompt us to postulate a new structural and functional role of apoA-II on human HDL.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
24
|
Ranaghan MJ, Schwall CT, Alder NN, Birge RR. Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J Am Chem Soc 2011; 133:18318-27. [PMID: 21951206 PMCID: PMC3218432 DOI: 10.1021/ja2070957] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over 4000 putative proteorhodopsins (PRs) have been identified throughout the oceans and seas of the Earth. The first of these eubacterial rhodopsins was discovered in 2000 and has expanded the family of microbial proton pumps to all three domains of life. With photophysical properties similar to those of bacteriorhodopsin, an archaeal proton pump, PRs are also generating interest for their potential use in various photonic applications. We perform here the first reconstitution of the minimal photoactive PR structure into nanoscale phospholipid bilayers (nanodiscs) to better understand how protein-protein and protein-lipid interactions influence the photophysical properties of PR. Spectral (steady-state and time-resolved UV-visible spectroscopy) and physical (size-exclusion chromatography and electron microscopy) characterization of these complexes confirms the preparation of a photoactive PR monomer within nanodiscs. Specifically, when embedded within a nanodisc, monomeric PR exhibits a titratable pK(a) (6.5-7.1) and photocycle lifetime (∼100-200 ms) that are comparable to the detergent-solubilized protein. These ndPRs also produce a photoactive blue-shifted absorbance, centered at 377 or 416 nm, that indicates that protein-protein interactions from a PR oligomer are required for a fast photocycle. Moreover, we demonstrate how these model membrane systems allow modulation of the PR photocycle by variation of the discoidal diameter (i.e., 10 or 12 nm), bilayer thickness (i.e., 23 or 26.5 Å), and degree of saturation of the lipid acyl chain. Nanodiscs also offer a highly stable environment of relevance to potential device applications.
Collapse
Affiliation(s)
- Matthew J. Ranaghan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Christine T. Schwall
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Robert R. Birge
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| |
Collapse
|
25
|
Lyukmanova EN, Shenkarev ZO, Khabibullina NF, Kopeina GS, Shulepko MA, Paramonov AS, Mineev KS, Tikhonov RV, Shingarova LN, Petrovskaya LE, Dolgikh DA, Arseniev AS, Kirpichnikov MP. Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:349-58. [PMID: 22056981 DOI: 10.1016/j.bbamem.2011.10.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/03/2011] [Accepted: 10/18/2011] [Indexed: 11/26/2022]
Abstract
Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems.
Collapse
Affiliation(s)
- E N Lyukmanova
- Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Guha M, Gursky O. Effects of oxidation on structural stability and remodeling of human very low density lipoprotein. Biochemistry 2011; 49:9584-93. [PMID: 20919745 DOI: 10.1021/bi101391z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Very low density lipoproteins (VLDL) are triglyceride-rich precursors of low-density lipoproteins (LDL) and a risk factor for atherosclerosis. The effects of oxidation on VLDL metabolism may be pro- or antiatherogenic. To understand the underlying biophysical basis, we determined the effects of copper (that preferentially oxidizes lipids) and hypochlorite (that preferentially oxidizes proteins) on the heat-induced VLDL remodeling. This remodeling involves VLDL fusion, rupture, and fission of apoE-containing high-density lipoprotein- (HDL-) like particles; HDL with similar size, density, and protein composition are formed upon VLDL remodeling by lipoprotein lipase, a key enzyme in triglyceride metabolism. Circular dichroism, turbidity, and electron microscopy show that mild oxidation promotes VLDL fusion and rupture, while advanced oxidation hampers these reactions. VLDL destabilization upon moderate oxidation results, in part, from the exchangeable apolipoprotein modifications, including proteolysis and limited cross-linking. VLDL stabilization against fusion and rupture upon advanced oxidation probably results from massive protein cross-linking on the particle surface. Electron microscopy and gel electrophoresis reveal that oxidation promotes fission of apoE-containing HDL-size particles; hydrolysis of apolar core lipids probably contributes to this effect. Copper and hypochlorite have similar effects on VLDL remodeling, suggesting that these effects may be produced by other oxidants. In summary, moderate oxidation that encompasses in vivo conditions destabilizes VLDL and promotes fission of HDL-size particles. Consequently, mild oxidation may be synergistic with lipoprotein lipase reaction and, hence, may help to accelerate VLDL metabolism.
Collapse
|
27
|
Jayaraman S, Jasuja R, Zakharov MN, Gursky O. Pressure perturbation calorimetry of lipoproteins reveals an endothermic transition without detectable volume changes. Implications for adsorption of apolipoprotein to a phospholipid surface. Biochemistry 2011; 50:3919-27. [PMID: 21452855 DOI: 10.1021/bi200090y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plasma lipoproteins are assemblies of lipids and apolipoproteins that mediate lipid transport and metabolism. High-density lipoproteins (HDL) remove excess cell cholesterol and provide protection against atherosclerosis. Important aspects of metabolic HDL remodeling, including apolipoprotein dissociation and lipoprotein fusion, are mimicked in thermal denaturation. We report the first study of the protein-lipid complexes by pressure perturbation calorimetry (PPC) beyond 100 °C. In PPC, volume expansion coefficient α(v)(T) is measured during heating; in proteins, α(v)(T) is dominated by hydration. Calorimetric studies of reconstituted HDL and of human high-density, low-density, and very low-density lipoproteins reveal that apolipoprotein unfolding, dissociation, and lipoprotein fusion are endothermic transitions without detectable volume changes. This may result from the limited applicability of PPC to slow kinetically controlled transitions such as thermal remodeling of lipoproteins and/or from the possibility that this remodeling causes no significant changes in the solvent structure and, hence, may not involve large transient solvent exposure of apolar moieties. Another conclusion is that apolipoprotein A-I in solution adsorbs to the phospholipid surface; protein hydration is preserved upon such adsorption. We posit that adsorption to a phospholipid surface helps recruit free apolipoprotein to the plasma membrane and facilitate HDL biogenesis.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, United States.
| | | | | | | |
Collapse
|
28
|
Strobach S, Kunert R, Stadlmann J, Messner P, Sevcsik E, Lhota G, Katinger H, Vorauer-Uhl K. Topological transformation of liposomes by a membrane-affecting domain of recombinant human erythropoietin. J Liposome Res 2010; 20:24-30. [PMID: 19522661 DOI: 10.3109/08982100903015033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recombinant human erythropoietin (rh-Epo) is well accepted as a hematopoietic drug, but many other pleiotropic properties are currently under investigation. Rh-Epo-induced receptor-mediated signal transductions are accompanied with membrane dynamic processes, which facilitate the activation of individual pathways. However, its direct effect on membrane dynamics is still unknown. In the present study, we have proven the capability of rh-Epo to associate to and transform artificial lipid membranes. Association studies using neutral, negatively, and positively charged liposomes with the native as well as modified rh-Epo were performed and analyzed by transmission electron microscopy and differential scanning calorimetry. By these studies, we demonstrated that rh-Epo has the capability to transform negatively charged unilamellar vesicles into so-called disc-like micelles. Rh-Epo association to the negatively charged head groups via lysine and arginine initiates this transformation. At physiological temperatures, conformational changes within the rh-Epo structure expose a defined amino-acid sequence, which is able to induce the formation of discoid membrane structures. Enzymatic digestion, analysis, and isolation of related peptides by rp-HPLC and characterization by MS/MS enabled the identification of the membrane-affecting domain of rh-Epo (MAD-E) that represents the exposed helix B of rh-Epo. Finally, association studies performed with these peptides confirmed that the MAD-E is responsible for the formation of disc-like micelles. Since this helix B of rh-Epo has recently been supposed to be involved in the activation of neuroprotective pathways, we believe that the membrane-transforming capacity of rh-Epo participates in the proliferative activity of rh-Epo.
Collapse
Affiliation(s)
- Stefanie Strobach
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Benjwal S, Gursky O. Pressure perturbation calorimetry of apolipoproteins in solution and in model lipoproteins. Proteins 2010; 78:1175-85. [PMID: 19927327 DOI: 10.1002/prot.22637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High-density lipoproteins (HDLs) are complexes of lipids and proteins (termed apolipoproteins) that remove cell cholesterol and protect from atherosclerosis. Apolipoproteins contain amphipathic alpha-helices that have high content (> or = 1/3) and distinct distribution of charged and apolar residues, adopt molten globule-like conformations in solution, and bind to lipid surfaces. We report the first pressure perturbation calorimetry (PPC) study of apolipoproteins. In solution, the main HDL protein, apoA-I, shows relatively large volume contraction, DeltaV(unf) = -0.33%, and an apparent reduction in thermal expansivity upon unfolding, Deltaalpha(unf) < or = 0, which has not been observed in other proteins. We propose that these values are dominated by increased charged residue hydration upon alpha-helical unfolding, which may result from disruption of multiple salt bridges. At 5 degrees C, apoA-I shows large thermal expansion coefficient, alpha(5 degrees) = 15.10(-4) K(-1), that rapidly declines upon heating from 5 to 40 degrees C, alpha(40 degrees) - alpha(5 degrees) = -4.10(-4) K(-1); apolipoprotein C-I shows similar values of alpha(5 degrees) and alpha(40 degrees). These values are larger than in globular proteins. They indicate dominant effect of charged residue hydration, which may modulate functional apolipoprotein interactions with a broad range of their protein and lipid ligands. The first PPC analysis of a protein-lipid complex is reported, which focuses on the chain melting transition in model HDL containing apoA-I or apoC-I, dimyristoyl phosphatidylcholine, and 0-20% cholesterol. The results may provide new insights into volumetric properties of HDL that modulate metabolic lipoprotein remodeling during cholesterol transport.
Collapse
Affiliation(s)
- Sangeeta Benjwal
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
30
|
Rosales C, Gillard BK, Courtney HS, Blanco-Vaca F, Pownall HJ. Apolipoprotein modulation of streptococcal serum opacity factor activity against human plasma high-density lipoproteins. Biochemistry 2009; 48:8070-6. [PMID: 19618959 DOI: 10.1021/bi901087z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human plasma HDL are the target of streptococcal serum opacity factor (SOF), a virulence factor that clouds human plasma. Recombinant (r) SOF transfers cholesteryl esters (CE) from approximately 400,000 HDL particles to a CE-rich microemulsion (CERM), forms a cholesterol-poor HDL-like particle (neo HDL), and releases lipid-free (LF) apo A-I. Whereas the rSOF reaction requires labile apo A-I, the modulation effects of other apos are not known. We compared the products and rates of the rSOF reaction against human HDL and HDL from mice overexpressing apos A-I and A-II. Kinetic studies showed that the reactivity of various HDL species is apo-specific. LpA-I reacts faster than LpA-I/A-II. Adding apos A-I and A-II inhibited the SOF reaction, an effect that was more profound for apo A-II. The rate of SOF-mediated CERM formation was slower against HDL from mice expressing human apos A-I and A-II than against WT mice HDL and slowest against HDL from apo A-II overexpressing mice. The lower reactivity of SOF against HDL containing human apos is due to the higher hydropathy of human apo A-I, particularly its C-terminus relative to mouse apo A-I, and the higher lipophilicity of human apo A-II. The SOF-catalyzed reaction is the first to target HDL rather than its transporters and receptors in a way that enhances reverse cholesterol transport (RCT). Thus, effects of apos on the SOF reaction are highly relevant. Our studies show that the "humanized" apo A-I-expressing mouse is a good animal model for studies of rSOF effects on RCT in vivo.
Collapse
Affiliation(s)
- Corina Rosales
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
31
|
Jayaraman S, Benjwal S, Gantz DL, Gursky O. Effects of cholesterol on thermal stability of discoidal high density lipoproteins. J Lipid Res 2009; 51:324-33. [PMID: 19700415 DOI: 10.1194/jlr.m000117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reverse cholesterol transport in plasma involves variations in HDL cholesterol concentration. To understand physicochemical and functional implications of such variations, we analyzed stability of reconstituted HDL containing human apolipoproteins (apoA-I, apoA-II, or apoC-I), phosphatidylcholines varying in chain length (12-18 carbons) and unsaturation (0 or 1), and 0-35 mol% cholesterol. Lipoprotein heat denaturation was monitored by circular dichroism for protein unfolding/dissociation and by light scattering for particle fusion. We found that cholesterol stabilizes relatively unstable complexes; for example, incorporation of 10-30 mol% cholesterol in apoC-I:dimyristoyl phosphatidylcholine complexes increased their kinetic stability by deltaDeltaG* congruent with 1 kcal/mol. In more stable complexes containing larger proteins and/or longer-chain lipids, incorporation of 10% cholesterol did not significantly alter the disk stability; however, 15% or more cholesterol destabilized the apoA-I-containing complexes and led to vesicle formation. Thus, cholesterol tends to stabilize less stable lipoproteins, apparently by enhancing favorable packing interactions, but in more stable lipoproteins, where such interactions are already highly optimized, the stabilizing effect of cholesterol decreases and, eventually, becomes destabilizing. These results help uncouple the functional roles of particle stability and chain fluidity and suggest that structural disorder in HDL surface, rather than chain fluidity, is an important physicochemical determinant of HDL function.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
32
|
Apolipophorin III interaction with model membranes composed of phosphatidylcholine and sphingomyelin using differential scanning calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2160-8. [PMID: 19647717 DOI: 10.1016/j.bbamem.2009.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/14/2009] [Accepted: 07/24/2009] [Indexed: 01/09/2023]
Abstract
Apolipophorin III (apoLp-III) from Locusta migratoria was employed as a model apolipoprotein to gain insight into binding interactions with lipid vesicles. Differential scanning calorimetry (DSC) was used to measure the binding interaction of apoLp-III with liposomes composed of mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and sphingomyelin (SM). Association of apoLp-III with multilamellar liposomes occurred over a temperature range around the liquid crystalline phase transition (L(alpha)). Qualitative and quantitative data were obtained from changes in the lipid phase transition upon addition of apoLp-III. Eleven ratios of DMPC and SM were tested from pure DMPC to pure SM. Broadness of the phase transition (T(1/2)), melting temperature of the phase transition (T(m)) and enthalpy were used to determine the relative binding affinity to the liposomes. Multilamellar vesicles composed of 40% DMPC and 60% SM showed the greatest interaction with apoLp-III, indicated by large T(1/2) values. Pure DMPC showed the weakest interaction and liposomes with lower percentage of DMPC retained domains of pure DMPC, even upon apoLp-III binding indicating demixing of liposome lipids. Addition of apoLp-III to rehydrated liposomes was compared to codissolved trials, in which lipids were rehydrated in the presence of protein, forcing the protein to interact with the lipid system. Similar trends between the codissolved and non-codissolved trials were observed, indicating a similar binding affinity except for pure DMPC. These results suggested that surface defects due to non-ideal packing that occur at the phase transition temperature of the lipid mixtures are responsible for apolipoprotein-lipid interaction in DMPC/SM liposomes.
Collapse
|
33
|
Characterization and purification of polydisperse reconstituted lipoproteins and nanolipoprotein particles. Int J Mol Sci 2009; 10:2958-2971. [PMID: 19742178 PMCID: PMC2738905 DOI: 10.3390/ijms10072958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/22/2009] [Indexed: 01/29/2023] Open
Abstract
Heterogeneity is a fact that plagues the characterization and application of many self-assembled biological constructs. The importance of obtaining particle homogeneity in biological assemblies is a critical goal, as bulk analysis tools often require identical species for reliable interpretation of the results—indeed, important tools of analysis such as x-ray diffraction typically require over 90% purity for effectiveness. This issue bears particular importance in the case of lipoproteins. Lipid-binding proteins known as apolipoproteins can self assemble with liposomes to form reconstituted high density lipoproteins (rHDLs) or nanolipoprotein particles (NLPs) when used for biotechnology applications such as the solubilization of membrane proteins. Typically, the apolipoprotein and phospholipids reactants are self assembled and even with careful assembly protocols the product often contains heterogeneous particles. In fact, size polydispersity in rHDLs and NLPs published in the literature are frequently observed, which may confound the accurate use of analytical methods. In this article, we demonstrate a procedure for producing a pure, monodisperse NLP subpopulation from a polydisperse self-assembly using size exclusion chromatography (SEC) coupled with high resolution particle imaging by atomic force microscopy (AFM). In addition, NLPs have been shown to self assemble both in the presence and absence of detergents such as cholate, yet the effects of cholate on NLP polydispersity and separation has not been systematically examined. Therefore, we examined the separation properties of NLPs assembled in both the absence and presence of cholate using SEC and native gel electrophoresis. From this analysis, NLPs prepared with and without cholate showed particles with well defined diameters spanning a similar size range. However, cholate was shown to have a dramatic affect on NLP separation by SEC and native gel electrophoresis. Furthermore, under conditions where different sized NLPs were not sufficiently separated or purified by SEC, AFM was used to deconvolute the elution pattern of different sized NLPs. From this analysis we were able to purify an NLP subpopulation to 90% size homogeneity by taking extremely fine elutions from the SEC. With this purity, we generate high quality NLP crystals that were over 100 μm in size with little precipitate, which could not be obtained utilizing the traditional size exclusion techniques. This purification procedure and the methods for validation are broadly applicable to other lipoprotein particles.
Collapse
|
34
|
Differential stability of high-density lipoprotein subclasses: effects of particle size and protein composition. J Mol Biol 2009; 387:628-38. [PMID: 19236880 DOI: 10.1016/j.jmb.2009.02.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 01/17/2023]
Abstract
High-density lipoproteins (HDLs) are complexes of proteins (mainly apoA-I and apoA-II) and lipids that remove cholesterol and prevent atherosclerosis. Understanding the distinct properties of the heterogeneous HDL population may aid the development of new diagnostic tools and therapies for atherosclerosis. Mature human HDLs form two major subclasses differing in particle diameter and metabolic properties, HDL(2) (large) and HDL(3) (small). These subclasses are comprised of HDL(A-I) containing only apoA-I, and HDL(A-I/A-II) containing apoA-I and apoA-II. ApoA-I is strongly cardioprotective, but the function of the smaller, more hydrophobic apoA-II is unclear. ApoA-II is thought to counteract the cardioprotective action of apoA-I by stabilizing HDL particles and inhibiting their remodeling. To test this notion, we performed the first kinetic stability study of human HDL subclasses. The results revealed that the stability of plasma spherical HDL decreases with increasing particle diameter; which may facilitate preferential cholesterol ester uptake from large lipid-loaded HDL(2). Surprisingly, size-matched plasma HDL(A-I/A-II) showed comparable or slightly lower stability than HDL(A-I); this is consistent with the destabilization of model discoidal HDL observed upon increasing the A-II to A-I ratio. These results clarify the roles of the particle size and protein composition in HDL remodeling, and help reconcile conflicting reports regarding the role of apoA-II in this remodeling.
Collapse
|
35
|
Guha M, Gao X, Jayaraman S, Gursky O. Correlation of structural stability with functional remodeling of high-density lipoproteins: the importance of being disordered. Biochemistry 2008; 47:11393-7. [PMID: 18839964 DOI: 10.1021/bi8014746] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.
Collapse
Affiliation(s)
- Madhumita Guha
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
36
|
Guha M, Gantz DL, Gursky O. Effects of acyl chain length, unsaturation, and pH on thermal stability of model discoidal HDLs. J Lipid Res 2008; 49:1752-61. [PMID: 18456639 DOI: 10.1194/jlr.m800106-jlr200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HDLs prevent atherosclerosis by removing excess cell cholesterol. Lipid composition affects HDL functions in cholesterol removal, yet its effects on the disk stability remain unclear. We hypothesize that reduced length or increased cis-unsaturation of phosphatidylcholine acyl chains destabilize discoidal HDL and promote protein dissociation and lipoprotein fusion. To test this hypothesis, we determined thermal stability of binary complexes reconstituted from apoC-I and diacyl PCs containing 12-18 carbons with 0-2 cis-double bonds. Kinetic analysis using circular dichroism shows that, for fully saturated PCs, chain length increase by two carbons stabilizes lipoprotein by deltaDeltaG* (37 degrees C) congruent with 1.4 kcal/mol, suggesting that hydrophobic interactions dominate the disk stability; distinct effects of pH and salt indicate contribution of electrostatic interactions. Similarly, apoA-I-containing disks show increased stability with increasing chain length. Acyl chain unsaturation reduces disk stability. In summary, stability of discoidal HDL correlates directly with fatty acyl chain length and saturation: the longer and more fully saturated are the chains, the more extensive are the stabilizing lipid-protein and lipid-lipid interactions and the higher is the free energy barrier for protein dissociation and lipoprotein fusion. This sheds new light on the existing data of cholesterol efflux to discoidal HDL and suggests that moderate lipoprotein destabilization facilitates cholesterol insertion.
Collapse
Affiliation(s)
- Madhumita Guha
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
37
|
Blanchette CD, Law R, Benner WH, Pesavento JB, Cappuccio JA, Walsworth V, Kuhn EA, Corzett M, Chromy BA, Segelke BW, Coleman MA, Bench G, Hoeprich PD, Sulchek TA. Quantifying size distributions of nanolipoprotein particles with single-particle analysis and molecular dynamic simulations. J Lipid Res 2008; 49:1420-30. [PMID: 18403317 DOI: 10.1194/jlr.m700586-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Self-assembly of purified apolipoproteins and phospholipids results in the formation of nanometer-sized lipoprotein complexes, referred to as nanolipoprotein particles (NLPs). These bilayer constructs are fully soluble in aqueous environments and hold great promise as a model system to aid in solubilizing membrane proteins. Size variability in the self-assembly process has been recognized for some time, yet limited studies have been conducted to examine this phenomenon. Understanding the source of this heterogeneity may lead to methods to mitigate heterogeneity or to control NLP size, which may be important for tailoring NLPs for specific membrane proteins. Here, we have used atomic force microscopy, ion mobility spectrometry, and transmission electron microscopy to quantify NLP size distributions on the single-particle scale, specifically focusing on assemblies with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and a recombinant apolipoprotein E variant containing the N-terminal 22 kDa fragment (E422k). Four discrete sizes of E422k/DMPC NLPs were identified by all three techniques, with diameters centered at approximately 14.5, 19, 23.5, and 28 nm. Computer simulations suggest that these sizes are related to the structure and number of E422k lipoproteins surrounding the NLPs and particles with an odd number of lipoproteins are consistent with the double-belt model, in which at least one lipoprotein adopts a hairpin structure.
Collapse
Affiliation(s)
- Craig D Blanchette
- Chemistry, Materials, and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jayaraman S, Gantz DL, Gursky O. Effects of protein oxidation on the structure and stability of model discoidal high-density lipoproteins. Biochemistry 2008; 47:3875-82. [PMID: 18302337 DOI: 10.1021/bi7023783] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by providing antioxidants for low-density lipoproteins. Oxidation of HDLs affects their functions via the complex mechanisms that involve multiple protein and lipid modifications. To differentiate between the roles of oxidative modifications in HDL proteins and lipids, we analyzed the effects of selective protein oxidation by hypochlorite (HOCl) on the structure, stability, and remodeling of discoidal HDLs reconstituted from human apolipoproteins (A-I, A-II, or C-I) and phosphatidylcholines. Gel electrophoresis and electron microscopy revealed that, at ambient temperatures, protein oxidation in discoidal complexes promotes their remodeling into larger and smaller particles. Thermal denaturation monitored by far-UV circular dichroism and light scattering in melting and kinetic experiments shows that protein oxidation destabilizes discoidal lipoproteins and accelerates protein unfolding, dissociation, and lipoprotein fusion. This is likely due to the reduced affinity of the protein for lipid resulting from oxidation of Met and aromatic residues in the lipid-binding faces of amphipathic alpha-helices and to apolipoprotein cross-linking into dimers and trimers on the particle surface. We conclude that protein oxidation destabilizes HDL disk assembly and accelerates its remodeling and fusion. This result, which is not limited to model discoidal but also extends to plasma spherical HDL, helps explain the complex effects of oxidation on plasma lipoproteins.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | |
Collapse
|
39
|
Surface rheology and adsorption kinetics reveal the relative amphiphilicity, interfacial activity, and stability of human exchangeable apolipoproteins. Biophys J 2007; 94:1735-45. [PMID: 17993480 DOI: 10.1529/biophysj.107.115220] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exchangeable apolipoproteins are located in the surface of lipoprotein particles and regulate lipid metabolism through direct protein-protein and protein-lipid interactions. These proteins are characterized by the presence of tandem repeats of amphiphatic alpha-helix segments and a high surface activity in monolayers and lipoprotein surfaces. A noteworthy aspect in the description of the function of exchangeable apolipoproteins is the requirement of a quantitative account of the relation between their physicochemical and structural characteristics and changes in the mesoscopic system parameters such as the maximum surface pressure and relative stability at interfaces. To comply with this demand, we set out to establish the relations among alpha-helix amphiphilicity, surface concentration, and surface rheology of apolipoproteins ApoA-I, ApoA-II, ApoC-I, ApoC-II, and ApoC-III adsorbed at the air-water interface. Our studies render further insights into the interfacial properties of exchangeable apolipoproteins, including the kinetics of their adsorption and the physical properties of the interfacial layer.
Collapse
|
40
|
Benjwal S, Jayaraman S, Gursky O. Role of secondary structure in protein-phospholipid surface interactions: reconstitution and denaturation of apolipoprotein C-I:DMPC complexes. Biochemistry 2007; 46:4184-94. [PMID: 17341095 PMCID: PMC2584444 DOI: 10.1021/bi062175c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding of protein to a phospholipid surface is commonly mediated by amphipathic alpha-helices. To understand the role of alpha-helical structure in protein-lipid interactions, we used discoidal lipoproteins reconstituted from dimyristoylphosphatidylcholine (DMPC) and human apolipoprotein C-I (apoC-I, 6 kDa) or its mutants containing single Pro substitutions along the sequence and differing in their alpha-helical content in solution (0-48%) and on DMPC (40-75%). Thermal denaturation revealed that lipoprotein stability correlates weakly with the protein helix content: proteins with higher alpha-helical content on DMPC may form more stable complexes. Lipoprotein reconstitution upon cooling from the heat-denatured state and DMPC clearance studies revealed that protein secondary structure in solution and on DMPC correlates strongly with the maximal temperature of lipoprotein reconstitution: more helical proteins can reconstitute lipoproteins at higher temperatures. Interestingly, at Tc = 24 degrees C of the DMPC gel-to-liquid crystal transition, the clearance rate is independent of the protein helical content. Consequently, if the packing defects at the phospholipid surface are readily available (e.g., at the lipid phase boundary), insertion of protein into these defects is independent of the secondary structure in solution. However, if hydrophobic defects are limited, protein binding and insertion are aided by other surface-bound proteins and depend on their helical propensity: the larger the propensity, the faster the binding and the broader its temperature range. This positive cooperativity in binding of alpha-helices to phospholipid surface, which may result from direct and/or lipid-mediated protein-protein interactions, may be important for lipoprotein metabolism and for protein-membrane binding.
Collapse
Affiliation(s)
- Sangeeta Benjwal
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
41
|
Benjwal S, Verma S, Röhm KH, Gursky O. Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Sci 2006; 15:635-9. [PMID: 16452626 PMCID: PMC2249783 DOI: 10.1110/ps.051917406] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Thermal unfolding monitored by spectroscopy or calorimetry is widely used to determine protein stability. Equilibrium thermodynamic analysis of such unfolding is often hampered by its irreversibility, which usually results from aggregation of thermally denatured protein. In addition, heat-induced protein misfolding and aggregation often lead to formation of amyloid-like structures. We propose a convenient method to monitor in real time protein aggregation during thermal folding/ unfolding transition by recording turbidity or 90 degrees light scattering data in circular dichroism (CD) spectroscopic experiments. Since the measurements of turbidity and 90 degrees light scattering can be done simultaneously with far- or near-UV CD data collection, they require no additional time or sample and can be directly correlated with the protein conformational changes monitored by CD. The results can provide useful insights into the origins of irreversible conformational changes and test the linkage between protein unfolding or misfolding and aggregation in various macromolecular systems, including globular proteins and protein-lipid complexes described in this study, as well as a wide range of amyloid-forming proteins and peptides.
Collapse
Affiliation(s)
- Sangeeta Benjwal
- Department of Physiology and Biophysics, Boston University School of Medicine, W329, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in structural studies of exchangeable human apolipoproteins and the insights they provide into lipoprotein action in cardiovascular and amyloid diseases. RECENT FINDINGS The high-resolution X-ray crystal structure of free apoA-II reveals a parallel helical array that may represent other lipid-poor apolipoproteins, and the structure in complex with detergent substantiates the belt model for the protein arrangement on lipoproteins. Nuclear magnetic resonance structures of apolipoprotein-detergent complexes show a repertoire of curved helical conformations, suggesting multiple helical arrangements on the lipid. Low-resolution spectroscopic analyses, interface studies and molecular modeling provide new insights into the 'hinge-domain' mechanism of apolipoprotein adaptation at variable lipoprotein surfaces. A kinetic mechanism for lipoprotein stabilization is proposed. SUMMARY Cumulative evidence supports the belt model that provides a general structural basis for understanding the molecular mechanisms of functional apolipoprotein reactions, such as binding to lipoprotein receptors, lipid transporters, and the activation of lipophilic enzymes. However, the detailed protein and lipid conformations on lipoproteins and the underlying molecular interactions are unclear. New insights will hopefully emerge once the first detailed lipoprotein structure is solved.
Collapse
Affiliation(s)
- Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, W329, Boston, Massachusetts 02118, USA.
| |
Collapse
|