1
|
Li M, Li J, Lu X, Schroder R, Chandramohan A, Wuelfing WP, Templeton AC, Xu W, Gindy M, Kesisoglou F, Ling J, Sawyer T, Verma CS, Partridge AW, Su Y. Molecular Mechanism of P53 Peptide Permeation through Lipid Membranes from Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. J Am Chem Soc 2024; 146:23075-23091. [PMID: 39110018 DOI: 10.1021/jacs.4c04230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Macrocyclic peptides show promise in targeting high-value therapeutically relevant binding sites due to their high affinity and specificity. However, their clinical application is often hindered by low membrane permeability, which limits their effectiveness against intracellular targets. Previous studies focused on peptide conformations in various solvents, leaving a gap in understanding their interactions with and translocation through lipid bilayers. Addressing this, our study explores the membrane interactions of stapled peptides, a subclass of macrocyclic peptides, using solid-state nuclear magnetic resonance (ssNMR) spectroscopy and molecular dynamics (MD) simulations. We conducted ssNMR measurements on ATSP-7041M, a prototypical stapled peptide, to understand its interaction with lipid membranes, leading to an MD-informed model for peptide membrane permeation. Our findings reveal that ATSP-7041M adopts a stable α-helical structure upon membrane binding, facilitated by a cation-π interaction between its phenylalanine side chain and the lipid headgroup. This interaction makes the membrane-bound state energetically favorable, facilitating membrane affinity and insertion. The bound peptide displayed asymmetric insertion depths, with the C-terminus penetrating deeper (approximately 9 Å) than the N-terminus (approximately 4.3 Å) relative to the lipid headgroups. Contrary to expectations, peptide dynamics was not hindered by membrane binding and exhibited rapid motions similar to cell-penetrating peptides. These dynamic interactions and peptide-lipid affinity appear to be crucial for membrane permeation. MD simulations indicated a thermodynamically stable transmembrane conformation of ATSP-7041M, reducing the energy barrier for translocation. Our study offers an in silico view of ATSP-7041M's translocation from the extracellular to the intracellular region, highlighting the significance of peptide-lipid interactions and dynamics in enabling peptide transit through membranes.
Collapse
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jianguo Li
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Singapore Eye Research Institute, 20 College Road Discovery Tower, Singapore 169856, Singapore
| | - Xingyu Lu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Ryan Schroder
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - W Peter Wuelfing
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Wei Xu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marian Gindy
- Small Molecule Science and Technology, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Filippos Kesisoglou
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomi Sawyer
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Chandra S Verma
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551, Singapore
| | | | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
2
|
Naito A, Kawamura I. Dynamic membrane interaction and amyloid fibril formation of glucagon, melittin and human calcitonin. Biophys Chem 2023; 298:107025. [PMID: 37127008 DOI: 10.1016/j.bpc.2023.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Glucagon is a 29-amino acid peptide hormone secreted by pancreatic α-cells and interacts with specific receptors located in various organs. Glucagon tends to form gel-like fibril aggregates that are cytotoxic. It is important to reveal the glucagon-membrane interaction to understand activity and cytotoxicity of glucagon and glucagon oligomers. In this review, first glucagon-membrane interactions are described as morphological changes in dimyristoylphosphatidylcholine (DMPC) bilayers containing glucagon in acidic and neutral conditions as compared to the case of melittin. Second, fibril formation by glucagon in acidic solution is discussed in light of morphological and structural changes. Third, kinetic analysis of glucagon fibril formation was performed using a two-step autocatalytic reaction mechanism, as investigated in the case of human calcitonin. The first step is a nuclear formation, and the second step is an autocatalytic fibril elongation. Forth, fibril formation of glucagon inside glucagon-DMPC bilayers in neutral solution under near physiological condition is described.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| |
Collapse
|
3
|
Tsukamoto M, Zappala E, Caputo GA, Kikuchi JI, Najarian K, Kuroda K, Yasuhara K. Mechanistic Study of Membrane Disruption by Antimicrobial Methacrylate Random Copolymers by the Single Giant Vesicle Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9982-9995. [PMID: 34378943 DOI: 10.1021/acs.langmuir.1c01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cationic amphiphilic polymers have been a platform to create new antimicrobial materials that act by disrupting bacterial cell membranes. While activity characterization and chemical optimization have been done in numerous studies, there remains a gap in our knowledge on the antimicrobial mechanisms of the polymers, which is needed to connect their chemical structures and biological activities. To that end, we used a single giant unilamellar vesicle (GUV) method to identify the membrane-disrupting mechanism of methacrylate random copolymers. The copolymers consist of random sequences of aminoethyl methacrylate and methyl (MMA) or butyl (BMA) methacrylate, with low molecular weights of 1600-2100 g·mol-1. GUVs consisting of an 8:2 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt (POPG) and those with only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were prepared to mimic the bacterial (Escherichia coli) or mammalian membranes, respectively. The disruption of bacteria and mammalian cell membrane-mimetic lipid bilayers in GUVs reflected the antimicrobial and hemolytic activities of the copolymers, suggesting that the copolymers act by disrupting cell membranes. The copolymer with BMA formed pores in the lipid bilayer, while that with MMA caused GUVs to burst. Therefore, we propose that the mechanism is inherent to the chemical identity or properties of hydrophobic groups. The copolymer with MMA showed characteristic sigmoid curves of the time course of GUV burst. We propose a new kinetic model with a positive feedback loop in the insertion of the polymer chains in the lipid bilayer. The novel finding of alkyl-dependent membrane-disrupting mechanisms will provide a new insight into the role of hydrophobic groups in the optimization strategy for antimicrobial activity and selectivity.
Collapse
Affiliation(s)
- Manami Tsukamoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| | - Emanuele Zappala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2800, United States
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Jun-Ichi Kikuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| | - Kayvan Najarian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2800, United States
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| |
Collapse
|
4
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
5
|
Tsuji G, Sunami T, Oki M, Ichihashi N. Exchange of Proteins in Liposomes through Streptolysin O Pores. Chembiochem 2021; 22:1966-1973. [PMID: 33586304 DOI: 10.1002/cbic.202100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Indexed: 01/10/2023]
Abstract
Liposomes, which are vesicles surrounded by lipid membranes, can be used as biochemical reactors by encapsulating various reactions. Accordingly, they are useful for studying cellular functions under controlled conditions that mimic the environment within a cell. However, one of the shortcomings of liposomes as biochemical reactors is the difficulty of introducing or removing proteins due to the impermeability of the membrane. In this study, we established a method for exchanging proteins in liposomes by forming reversible pores in the membrane. We used the toxic protein streptolysin O (SLO); this forms pores in membranes made of phospholipids containing cholesterol that can be closed by the addition of calcium ions. After optimizing the experimental procedure and lipid composition, we observed the exchange of fluorescent proteins (transferrin Alexa Fluor 488 and 647) in 9.9 % of liposomes. We also introduced T7 RNA polymerase, a 98-kDa enzyme, and observed RNA synthesis in ∼8 % of liposomes. Our findings establish a new method for controlling the internal protein composition of liposomes, thereby increasing their utility as bioreactors.
Collapse
Affiliation(s)
- Gakushi Tsuji
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.,Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
| | - Takeshi Sunami
- Institute for Academic InitiativesOsaka University, Osaka University (Japan), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.,Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Universal Biology Institute, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
6
|
Naito A. Fibril Formation by Glucagon in Solution and in Membrane Environments. Mol Pharmacol 2020. [DOI: 10.5772/intechopen.91681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glucagon is a 29-amino acid peptide hormone secreted by pancreatic α-cells and interacts with specific receptors located in various organs. Glucagon tends to form gel-like fibril aggregates that are cytotoxic because they activate apoptotic signaling pathways. First, fibril formation by glucagon in acidic solution is discussed in light of morphological and structural changes during elapsed time. Second, we provide kinetic analyses using a two-step autocatalytic reaction mechanism; the first step is a homogeneous nuclear formation process, and the second step is an autocatalytic heterogeneous fibril elongation process. Third, the processes of fibril formation by glucagon in a membrane environment are discussed based on the structural changes in the fibrils. In the presence of bicelles in acidic solution, glucagon interacts with the bicelles and forms fibril intermediates on the bicelle surface and grows into elongated fibrils. Glucagon-dimyristoylphosphatidylcholine (DMPC) bilayers in neutral solution mimic the environment for fibril formation by glucagon under near-physiological condition. Under these conditions, glucagon forms fibril intermediates that grow into elongated fibrils inside the lipid bilayer. Many days after preparing the glucagon-DMPC bilayer sample, the fibrils form networks inside and outside the bilayer. Furthermore, fibril intermediates strongly interact with lipid bilayers to form small particles.
Collapse
|
7
|
Haya K, Makino Y, Kikuchi-Kinoshita A, Kawamura I, Naito A. 31P and 13C solid-state NMR analysis of morphological changes of phospholipid bilayers containing glucagon during fibril formation of glucagon under neutral condition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183290. [DOI: 10.1016/j.bbamem.2020.183290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
|
8
|
The influence of the stereochemistry and C-end chemical modification of dermorphin derivatives on the peptide-phospholipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183066. [PMID: 31634444 DOI: 10.1016/j.bbamem.2019.183066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 11/23/2022]
Abstract
In this work the conformation of dermorphin, Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2, an opioid peptide and its analogues with different stereochemistry of alanine and different C-terminus is studied in aqueous and membrane environments. Using two-dimensional NMR techniques we demonstrate that in D2O/H2O peptides with D-alanine have extended conformation, while for the L-isomers more compact conformation is preferred. The analysis of ROESY HR MAS spectra of the peptides interacting with the DMPC bilayer indicates that both stereoisomers have still more extended conformation compared to aqueous phase, as shown by much weaker intermolecular interactions. The influence of Ala residue stereochemistry is also reflected in the interactions of the studied peptides with model membranes, as shown by the 31P NMR static spectra, in which the shapes of the phosphorus NMR signals originating from D-isomers correspond to spherically shaped vesicles in the presence of external magnetic field, in comparison to a more elongated ones observed for L-isomers, while TEM photographs shows that upon addition of D-isomers larger lipid vesicles are formed, in contrast to smaller ones for L-isomers. The location of aromatic fragments of dermorphins in the membrane is determined based on static 2H NMR and 1H1H RFDR MAS experiments. All aromatic rings were found to be inserted in the hydrophobic part of the bilayer, with the exception of the Tyr5 rings of D-Ala dermorphins. The influence of the C-terminal modification was found to be almost imperceptible.
Collapse
|
9
|
Naito A, Matsumori N, Ramamoorthy A. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy. Biochim Biophys Acta Gen Subj 2018; 1862:307-323. [PMID: 28599848 PMCID: PMC6384124 DOI: 10.1016/j.bbagen.2017.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/28/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 310-helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
10
|
Norisada K, Javkhlantugs N, Mishima D, Kawamura I, Saitô H, Ueda K, Naito A. Dynamic Structure and Orientation of Melittin Bound to Acidic Lipid Bilayers, As Revealed by Solid-State NMR and Molecular Dynamics Simulation. J Phys Chem B 2017; 121:1802-1811. [DOI: 10.1021/acs.jpcb.6b11207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazushi Norisada
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Namsrai Javkhlantugs
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- School
of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Daisuke Mishima
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Izuru Kawamura
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Hazime Saitô
- Department
of Life Science, University of Hyogo, Harima Science Garden City, Kamigori, Hyogo 678-1297, Japan
| | - Kazuyoshi Ueda
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Akira Naito
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
11
|
Pyne A, Pfeil MP, Bennett I, Ravi J, Iavicoli P, Lamarre B, Roethke A, Ray S, Jiang H, Bella A, Reisinger B, Yin D, Little B, Muñoz-García JC, Cerasoli E, Judge PJ, Faruqui N, Calzolai L, Henrion A, Martyna GJ, Grovenor CRM, Crain J, Hoogenboom BW, Watts A, Ryadnov MG. Engineering monolayer poration for rapid exfoliation of microbial membranes. Chem Sci 2016; 8:1105-1115. [PMID: 28451250 PMCID: PMC5369539 DOI: 10.1039/c6sc02925f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/25/2016] [Indexed: 12/04/2022] Open
Abstract
A novel mechanism of monolayer poration leading to the rapid exfoliation and lysis of microbial membranes is reported.
The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.
Collapse
Affiliation(s)
- Alice Pyne
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Marc-Philipp Pfeil
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Isabel Bennett
- London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Jascindra Ravi
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Patrizia Iavicoli
- European Commission , Joint Research Centre , Institute for Health and Consumer Protection , Ispra (VA) , Italy
| | - Baptiste Lamarre
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Anita Roethke
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Santanu Ray
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Haibo Jiang
- Centre for Microscopy , Characterisation and Analysis , The University of Western Australia , Crawley , Western Australia 6009 , Australia
| | - Angelo Bella
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Bernd Reisinger
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Daniel Yin
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Benjamin Little
- School of Physics and Astronomy , University of Edinburgh , Edinburgh EH9 3JZ , UK
| | | | - Eleonora Cerasoli
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Peter J Judge
- Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Nilofar Faruqui
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Luigi Calzolai
- European Commission , Joint Research Centre , Institute for Health and Consumer Protection , Ispra (VA) , Italy
| | - Andre Henrion
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Glenn J Martyna
- IBM T. J. Watson Research Center , Yorktown Heights , NY 10598 , USA
| | | | - Jason Crain
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,School of Physics and Astronomy , University of Edinburgh , Edinburgh EH9 3JZ , UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Anthony Watts
- Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Maxim G Ryadnov
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| |
Collapse
|
12
|
Sharma VK, Mamontov E, Tyagi M, Qian S, Rai DK, Urban VS. Dynamical and Phase Behavior of a Phospholipid Membrane Altered by an Antimicrobial Peptide at Low Concentration. J Phys Chem Lett 2016; 7:2394-401. [PMID: 27232190 DOI: 10.1021/acs.jpclett.6b01006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature no longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.
Collapse
Affiliation(s)
- V K Sharma
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Solid State Physics Division, Bhabha Atomic Research Centre , Mumbai 400085, India
| | - E Mamontov
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - M Tyagi
- National Institute of Standards and Technology Center for Neutron Research , Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - S Qian
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - D K Rai
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - V S Urban
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
13
|
Shintani M, Matubayasi N. Morphology study of DMPC/DHPC mixtures by solution-state 1H, 31P NMR, and NOE measurements. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Sustainable proliferation of liposomes compatible with inner RNA replication. Proc Natl Acad Sci U S A 2015; 113:590-5. [PMID: 26711996 DOI: 10.1073/pnas.1516893113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although challenging, the construction of a life-like compartment via a bottom-up approach can increase our understanding of life and protocells. The sustainable replication of genome information and the proliferation of phospholipid vesicles are requisites for reconstituting cell growth. However, although the replication of DNA or RNA has been developed in phospholipid vesicles, the sustainable proliferation of phospholipid vesicles has remained difficult to achieve. Here, we demonstrate the sustainable proliferation of liposomes that replicate RNA within them. Nutrients for RNA replication and membranes for liposome proliferation were combined by using a modified freeze-thaw technique. These liposomes showed fusion and fission compatible with RNA replication and distribution to daughter liposomes. The RNAs in daughter liposomes were repeatedly used as templates in the next RNA replication and were distributed to granddaughter liposomes. Liposome proliferation was achieved by 10 cycles of iterative culture operation. Therefore, we propose the use of culturable liposomes as an advanced protocell model with the implication that the concurrent supplement of both the membrane material and the nutrients of inner reactions might have enabled protocells to grow sustainably.
Collapse
|
15
|
Appadu A, Jelokhani-Niaraki M, DeBruin L. Conformational Changes and Association of Membrane-Interacting Peptides in Myelin Membrane Models: A Case of the C-Terminal Peptide of Proteolipid Protein and the Antimicrobial Peptide Melittin. J Phys Chem B 2015; 119:14821-30. [DOI: 10.1021/acs.jpcb.5b07375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashtina Appadu
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Lillian DeBruin
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
16
|
Sharma VK, Mamontov E, Anunciado DB, O'Neill H, Urban VS. Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: role of cholesterol and physical state of bilayer. SOFT MATTER 2015. [PMID: 26212615 DOI: 10.1039/c5sm01562f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Antimicrobial peptides are universal in all forms of life and are well known for their strong interaction with the cell membrane. This makes them a popular target for investigation of peptide-lipid interactions. Here we report the effect of melittin, an important antimicrobial peptide, on the dynamics of membranes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid in both the solid gel and fluid phases. To probe the phase transition, elastic neutron intensity temperature scans have been carried out on DMPC-based unilamellar vesicles (ULV) with and without melittin. We have found that addition of a small amount (0.2 mol%) melittin eliminates the steep fall in the elastic intensity at 296 K associated with the solid gel to fluid phase transition, which is observed for pure DMPC vesicles. Quasielastic neutron scattering (QENS) experiments have been carried out on DMPC ULV in the solid gel and fluid phases with and without 0.2 mol% melittin. The data analysis invariably shows the presence of lateral and internal motions of the DMPC molecule. We found that melittin does have a profound effect on the dynamics of lipid molecules, especially on the lateral motion, and affects it in a different way, depending on the phase of the bilayers. In the solid gel phase, it acts as a plasticizer, enhancing the lateral motion of DMPC. However, in the fluid phase it acts as a stiffening agent, restricting the lateral motion of the lipid molecules. These observations are consistent with the mean squared displacements extracted from the elastic intensity temperature scans. Their importance lies in the fact that many membrane processes, including signaling and energy transduction pathways, are controlled to a great extent by the lateral diffusion of lipids in the membrane. To investigate the effect of melittin on vesicles supplemented with cholesterol, QENS experiments have also been carried out on DMPC ULV with cholesterol in the presence and absence of 0.2 mol% melittin. Remarkably, the effects of melittin on the membrane dynamics disappear in the presence of 20 mol% cholesterol. Our measurements indicate that the destabilizing effect of the peptide melittin on membranes can be mitigated by the presence of cholesterol. This study might provide new insights into the mechanism of action of antimicrobial peptides and their selective toxicity towards foreign microorganisms.
Collapse
Affiliation(s)
- V K Sharma
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | |
Collapse
|
17
|
Lee DK, Bhunia A, Kotler SA, Ramamoorthy A. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Biochemistry 2015; 54:1897-907. [PMID: 25715195 DOI: 10.1021/bi501418m] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Multidrug resistance against the existing antibiotics is becoming a global threat, and any potential drug that can be designed using cationic antimicrobial peptides (AMP) could be an alternate solution to alleviate this existing problem. The mechanism of action of killing bacteria by an AMP differs drastically in comparison to that of small molecule antibiotics. The main target of AMPs is to interact with the lipid bilayer of the cell membrane and disrupt it to kill bacteria. Consequently, the modes of membrane interaction that lead to the selectivity of an AMP are very important to understand. Here, we have used different membrane compositions, such as negatively charged, zwitterionic, or mixed large unilamellar vesicles (LUVs), to study the interaction of four different synthetically designed cationic, linear antimicrobial peptides: MSI-78 (commercially known as pexiganan), MSI-367, MSI-594, and MSI-843. Our solid-state nuclear magnetic resonance (NMR) experiments confirmed that the MSI peptides fragmented LUVs through a detergent-like carpet mechanism depending on the amino acid sequence of the MSI peptide and/or the membrane composition of LUVs. Interestingly, the fragmented lipid aggregates such as SUVs or micelles are sufficiently small to produce an isotropic peak in the (31)P NMR spectrum. These fragmented lipid aggregates contain only MSI peptides bestowed with lipid molecules as confirmed by NMR in conjunction with circular dichroism spectroscopy. Our results also demonstrate that cholesterol, which is present only in the eukaryotic cell membrane, inhibits the MSI-induced fragmentation of LUVs, suggesting that the MSI peptides can discriminate the bacteria and the eukaryotic cell membranes, and this selectivity could be used for further development of novel antibiotics.
Collapse
Affiliation(s)
- Dong-Kuk Lee
- †Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Anirban Bhunia
- †Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States.,§Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Samuel A Kotler
- †Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Ayyalusamy Ramamoorthy
- †Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
18
|
Lee DK, Brender JR, Sciacca MFM, Krishnamoorthy J, Yu C, Ramamoorthy A. Lipid composition-dependent membrane fragmentation and pore-forming mechanisms of membrane disruption by pexiganan (MSI-78). Biochemistry 2013; 52:3254-63. [PMID: 23590672 DOI: 10.1021/bi400087n] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The potency and selectivity of many antimicrobial peptides (AMPs) are correlated with their ability to interact with and disrupt the bacterial cell membrane. In vitro experiments using model membranes have been used to determine the mechanism of membrane disruption of AMPs. Because the mechanism of action of an AMP depends on the ability of the model membrane to accurately mimic the cell membrane, it is important to understand the effect of membrane composition. Anionic lipids that are present in the outer membrane of prokaryotes but are less common in eukaryotic membranes are usually thought to be key for the bacterial selectivity of AMPs. We show by fluorescence measurements of peptide-induced membrane permeabilization that the presence of anionic lipids at high concentrations can actually inhibit membrane disruption by the AMP MSI-78 (pexiganan), a representative of a large class of highly cationic AMPs. Paramagnetic quenching studies suggest MSI-78 is in a surface-associated inactive mode in anionic sodium dodecyl sulfate micelles but is in a deeply buried and presumably more active mode in zwitterionic dodecylphosphocholine micelles. Furthermore, a switch in mechanism occurs with lipid composition. Membrane fragmentation with MSI-78 can be observed in mixed vesicles containing both anionic and zwitterionic lipids but not in vesicles composed of a single lipid of either type. These findings suggest membrane affinity and membrane permeabilization are not always correlated, and additional effects that may be more reflective of the actual cellular environment can be seen as the complexity of the model membranes is increased.
Collapse
Affiliation(s)
- Dong-Kuk Lee
- Departments of Biophysics and Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | | | | |
Collapse
|
19
|
Multiple membrane interactions and versatile vesicle deformations elicited by melittin. Toxins (Basel) 2013; 5:637-64. [PMID: 23594437 PMCID: PMC3705284 DOI: 10.3390/toxins5040637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/02/2013] [Accepted: 04/10/2013] [Indexed: 01/11/2023] Open
Abstract
Melittin induces various reactions in membranes and has been widely studied as a model for membrane-interacting peptide; however, the mechanism whereby melittin elicits its effects remains unclear. Here, we observed melittin-induced changes in individual giant liposomes using direct real-time imaging by dark-field optical microscopy, and the mechanisms involved were correlated with results obtained using circular dichroism, cosedimentation, fluorescence quenching of tryptophan residues, and electron microscopy. Depending on the concentration of negatively charged phospholipids in the membrane and the molecular ratio between lipid and melittin, melittin induced the “increasing membrane area”, “phased shrinkage”, or “solubilization” of liposomes. In phased shrinkage, liposomes formed small particles on their surface and rapidly decreased in size. Under conditions in which the increasing membrane area, phased shrinkage, or solubilization were mainly observed, the secondary structure of melittin was primarily estimated as an α-helix, β-like, or disordered structure, respectively. When the increasing membrane area or phased shrinkage occurred, almost all melittin was bound to the membranes and reached more hydrophobic regions of the membranes than when solubilization occurred. These results indicate that the various effects of melittin result from its ability to adopt various structures and membrane-binding states depending on the conditions.
Collapse
|
20
|
Tsutsumi A, Javkhlantugs N, Kira A, Umeyama M, Kawamura I, Nishimura K, Ueda K, Naito A. Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation. Biophys J 2012; 103:1735-43. [PMID: 23083717 DOI: 10.1016/j.bpj.2012.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022] Open
Abstract
Bovine lactoferrampin (LFampinB) is a newly discovered antimicrobial peptide found in the N1-domain of bovine lactoferrin (268-284), and consists of 17 amino-acid residues. It is important to determine the orientation and structure of LFampinB in bacterial membranes to reveal the antimicrobial mechanism. We therefore performed (13)C and (31)P NMR, (13)C-(31)P rotational echo double resonance (REDOR), potassium ion-selective electrode, and quartz-crystal microbalance measurements for LFampinB with mimetic bacterial membrane and molecular-dynamics simulation in acidic membrane. (31)P NMR results indicated that LFampinB caused a defect in mimetic bacterial membranes. Ion-selective electrode measurements showed that ion leakage occurred for the mimetic bacterial membrane containing cardiolipin. Quartz-crystal microbalance measurements revealed that LFampinB had greater affinity to acidic phospholipids than that to neutral phospholipids. (13)C DD-MAS and static NMR spectra showed that LFampinB formed an α-helix in the N-terminus region and tilted 45° to the bilayer normal. REDOR dephasing patterns between carbonyl carbon nucleus in LFampinB and phosphorus nuclei in lipid phosphate groups were measured by (13)C-(31)P REDOR and the results revealed that LFampinB is located in the interfacial region of the membrane. Molecular-dynamics simulation showed the tilt angle to be 42° and the rotation angle to be 92.5° for Leu(3), which are in excellent agreement with the experimental values.
Collapse
Affiliation(s)
- Atsushi Tsutsumi
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ningsih Z, Hossain MA, Wade JD, Clayton AHA, Gee ML. Slow insertion kinetics during interaction of a model antimicrobial peptide with unilamellar phospholipid vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2217-2224. [PMID: 22148887 DOI: 10.1021/la203770j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The mechanism of interaction between a model antimicrobial peptide and phospholipid unilamellar vesicle membranes was studied using fluorescence spectroscopy, fluorescence lifetime measurements, and light scattering. The peptide, a mellitin mutant, was labeled at position K14 with the polarity-sensitive probe AlexaFluor 430. The kinetics of the interaction of this derivative with various concentrations of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) vesicles was examined. Our work unveiled two novel aspects of peptide-lipid interactions. First, the AB plot or phasor analysis of the fluorescence lifetime studies revealed at least three different peptide states, the population of which depended on the lipid to peptide (L:P) concentration ratio. Second, complex fluorescence kinetics were observed over extended time-scales from 30 s to 2 h. The extended kinetics was only observed at particular lipid concentrations (L:P ratios 20:1 and 10:1) and not at others (30, 40, 50 and 100:1 L:P ratio). Analysis of the complex kinetics revealed several intermediates. We assign these to distinct states of the peptide formed during helix insertion into the vesicle membrane that are intermediate to lytic pore formation.
Collapse
Affiliation(s)
- Zubaidah Ningsih
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
22
|
Uekusa Y, Kamihira-Ishijima M, Sugimoto O, Ishii T, Kumazawa S, Nakamura K, Tanji KI, Naito A, Nakayama T. Interaction of epicatechin gallate with phospholipid membranes as revealed by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1654-60. [DOI: 10.1016/j.bbamem.2011.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/27/2011] [Accepted: 02/17/2011] [Indexed: 11/24/2022]
|
23
|
Toraya S, Javkhlantugs N, Mishima D, Nishimura K, Ueda K, Naito A. Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Biophys J 2010; 99:3282-9. [PMID: 21081076 PMCID: PMC2980745 DOI: 10.1016/j.bpj.2010.09.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 09/15/2010] [Accepted: 09/20/2010] [Indexed: 01/19/2023] Open
Abstract
Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes were determined by solid-state (31)P and (13)C NMR spectroscopy. (31)P NMR spectra showed that BLT2-DPPC membranes were disrupted into small particles below the gel-to-liquid crystalline phase transition temperature (T(c)) and fused to form a magnetically oriented vesicle system where the membrane surface is parallel to the magnetic fields above the T(c). (13)C NMR spectra of site-specifically (13)C-labeled BLT2 at the carbonyl carbons were observed and the chemical shift anisotropies were analyzed to determine the dynamic structure of BLT2 bound to the magnetically oriented vesicle system. It was revealed that the membrane-bound BLT2 adopted an α-helical structure, rotating around the membrane normal with the tilt angle of the helical axis at 33°. Interatomic distances obtained from rotational-echo double-resonance experiments further showed that BLT2 adopted a straight α-helical structure. Molecular dynamics simulation performed in the BLT2-DPPC membrane system showed that the BLT2 formed a straight α-helix and that the C-terminus was inserted into the membrane. The α-helical axis is tilted 30° to the membrane normal, which is almost the same as the value obtained from solid-state NMR. These results suggest that the membrane disruption induced by BLT2 is attributed to insertion of BLT2 into the lipid bilayers.
Collapse
Affiliation(s)
- Shuichi Toraya
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | | | - Daisuke Mishima
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | | | - Kazuyoshi Ueda
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - Akira Naito
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| |
Collapse
|
24
|
Sunami T, Caschera F, Morita Y, Toyota T, Nishimura K, Matsuura T, Suzuki H, Hanczyc MM, Yomo T. Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:15098-15103. [PMID: 20822108 DOI: 10.1021/la102689v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have developed a method to evaluate the fusion process of giant vesicles using a fluorescence-activated cell sorter (FACS). Three fluorescent markers and FACS technology were used to evaluate the extent of association and fusion of giant vesicles. Two fluorescent markers encapsulated in different vesicle populations were used as association markers; when these vesicles associate, the two independent markers should be observed simultaneously in a single detection event. The quenched fluorescent marker and the dequencher, which were encapsulated in separate vesicle populations, were used as the fusion marker. When the internal aqueous solutions mix, the quenched marker is liberated by the dequencher and emits the third fluorescent signal. Although populations of pure POPC vesicles showed no detectable association or fusion, the same populations, oppositely charged by the exogenous addition of charged amphiphiles, showed up to 50% association and 30% fusion upon population analysis of 100,000 giant vesicles. Although a substantial fraction of the vesicles associated in response to a small amount of the charged amphiphiles (5% mole fraction compared to POPC alone), a larger amount of the charged amphiphiles (25%) was needed to induce vesicle fusion. The present methodology also revealed that the association and fusion of giant vesicles was dependent on size, with larger giant vesicles associating and fusing more frequently.
Collapse
Affiliation(s)
- Takeshi Sunami
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yamadaoka 1-5, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park C, Lee DG. Melittin induces apoptotic features in Candida albicans. Biochem Biophys Res Commun 2010; 394:170-2. [DOI: 10.1016/j.bbrc.2010.02.138] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/22/2010] [Indexed: 11/27/2022]
|
26
|
Manna M, Mukhopadhyay C. Cause and effect of melittin-induced pore formation: a computational approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12235-12242. [PMID: 19754202 DOI: 10.1021/la902660q] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Melittin embedded in a palmitoyl oleyl phosphatidylcholine bilayer at a high peptide/lipid ratio (1:30) was simulated in the presence of explicit water and ions. The simulation results indicate the incipience of an ion-permeable water pore through collective membrane perturbation by bound peptides. The positively charged residues of melittin not only act as "anchors" but also disrupt the membrane, leading to cell lysis. A detailed analysis of the lipid tail order parameter profile depicts localized membrane perturbation. The lipids in the vicinity of the aqueous cavity adopt a tilted conformation, which allows local bilayer thinning. The prepore thus formed can be considered as the melittin-induced structural defects in the bilayer membrane. Because of the strong cationic nature, the melittin-induced prepore exhibits selectivity toward anions over cations. As Cl(-) ions entered into the prepore, they are electrostatically entrapped by positively charged residues located at its wall. The confined motion of the Cl(-) ions in the membrane interior is obvious from calculated diffusion coefficients. Moreover, reorientation of the local lipids occurs in such a way that few lipid heads along with peptide helices can line the surface of the penetrating aqueous phase. The flipping of lipids argued in favor of melittin-induced toroidal pore over a barrel-stave mechanism. Thus, our result provides atomistic level details of the mechanism of membrane disruption by antimicrobial peptide melittin.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700 009, India
| | | |
Collapse
|
27
|
Naito A. Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2009; 36:67-76. [PMID: 19647984 DOI: 10.1016/j.ssnmr.2009.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 05/28/2023]
Abstract
Solid-state NMR using magnetically oriented bilayer systems provides useful information on the structure and orientation of peptides and proteins bound to lipid bilayers. The ordering of the lipid bilayer along the magnetic field can be achieved in two ways. First, lipid can be macroscopically oriented by pressing lipid-water dispersion between flat glass plates, which is called a mechanically aligned system. Second, lipid molecules themselves can be aligned spontaneously in the magnetic field because of their diamagnetic anisotropy by forming bicelles or magnetically oriented vesicle systems. Structure and orientation of the membrane-associated peptides and proteins can be achieved by analyzing structural constraints obtained from anisotropic chemical shift interactions such as chemical shift oscillation or nuclear dipolar interactions such as dipolar wave and a combination of them such as PISA wheel. Detailed structure elucidation of various kinds of membrane peptides and proteins in such oriented bilayers is presented.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Japan.
| |
Collapse
|
28
|
Magnolol encapsulated by different acyl chain length of liposomes on inhibiting proliferation of smooth muscle cells. J Taiwan Inst Chem Eng 2009. [DOI: 10.1016/j.jtice.2008.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Park SH, Oh SG, Suh KD, Han SH, Chung DJ, Mun JY, Han SS, Kim JW. Control over micro-fluidity of liposomal membranes by hybridizing metal nanoparticles. Colloids Surf B Biointerfaces 2009; 70:108-13. [DOI: 10.1016/j.colsurfb.2008.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
|
30
|
Sheu SY, Schlag EW, Selzle HL, Yang DY. Hydrogen Bonds in Membrane Proteins. J Phys Chem B 2009; 113:5318-26. [DOI: 10.1021/jp810772a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sheh-Yi Sheu
- Department of Life Sciences and Institute of Biomedical Informatics, National Yang-Ming University, Taipei 112, Taiwan, Institut für Physikalische and Theoretische Chemie, TU-München, Lichtenbergstrasse 4, 85748 Garching, Germany, and Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan
| | - Edward W. Schlag
- Department of Life Sciences and Institute of Biomedical Informatics, National Yang-Ming University, Taipei 112, Taiwan, Institut für Physikalische and Theoretische Chemie, TU-München, Lichtenbergstrasse 4, 85748 Garching, Germany, and Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan
| | - Heinrich L. Selzle
- Department of Life Sciences and Institute of Biomedical Informatics, National Yang-Ming University, Taipei 112, Taiwan, Institut für Physikalische and Theoretische Chemie, TU-München, Lichtenbergstrasse 4, 85748 Garching, Germany, and Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan
| | - Dah-Yen Yang
- Department of Life Sciences and Institute of Biomedical Informatics, National Yang-Ming University, Taipei 112, Taiwan, Institut für Physikalische and Theoretische Chemie, TU-München, Lichtenbergstrasse 4, 85748 Garching, Germany, and Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
31
|
Strömstedt AA, Wessman P, Ringstad L, Edwards K, Malmsten M. Effect of lipid headgroup composition on the interaction between melittin and lipid bilayers. J Colloid Interface Sci 2007; 311:59-69. [PMID: 17383670 DOI: 10.1016/j.jcis.2007.02.070] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/25/2007] [Accepted: 02/25/2007] [Indexed: 11/29/2022]
Abstract
The effect of the lipid polar headgroup on melittin-phospholipid interaction was investigated by cryo-TEM, fluorescence spectroscopy, ellipsometry, circular dichroism, electrophoresis and photon correlation spectroscopy. In particular, focus was placed on the effect of the lipid polar headgroup on peptide adsorption to, and penetration into, the lipid bilayer, as well as on resulting colloidal stability effects for large unilamellar liposomes. The effect of phospholipid headgroup properties on melittin-bilayer interaction was addressed by comparing liposomes containing phosphatidylcholine, -acid, and -inositol at varying ionic strength. Increasing the bilayer negative charge leads to an increased liposome tolerance toward melittin which is due to an electrostatic arrest of melittin at the membrane interface. Balancing the electrostatic attraction between the melittin positive charges and the phospholipid negative charges through a hydration repulsion, caused by inositol, reduced this surface arrest and increased liposome susceptibility to the disruptive actions of melittin. Furthermore, melittin was demonstrated to induce liposome structural destabilization on a colloidal scale which coincided with leakage induction for both anionic and zwitterionic systems. The latter findings thus clearly show that coalescence, aggregation, and fragmentation contribute to melittin-induced liposome leakage, and that detailed molecular analyses of melittin pore formation are incomplete without considering also these colloidal aspects.
Collapse
Affiliation(s)
- Adam A Strömstedt
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
32
|
Chen LY, Cheng CW, Lin JJ, Chen WY. Exploring the effect of cholesterol in lipid bilayer membrane on the melittin penetration mechanism. Anal Biochem 2007; 367:49-55. [PMID: 17570332 DOI: 10.1016/j.ab.2007.04.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 02/27/2007] [Accepted: 04/24/2007] [Indexed: 11/22/2022]
Abstract
A vascular mimetic membrane system was used to investigate the effect of cholesterol content in lipid bilayer on the dynamics of the melittin-membrane penetration reaction with real-time monitoring by a piezoelectric sensor and the assessment morphology using atomic force microscopy (AFM). In the presence of 30% cholesterol in a noncharged phosphatidylcholine (PC) phospholipid membrane, KA1 (binding affinity constant) and KA2 (insertion affinity constant) derived from a two-step model decreased significantly. This result suggests that the high dose of cholesterol in phospholipid membrane inhibits both the binding and the insertion of melittin. Next, dynamic laser scattering and AFM were used to verify the structural changes of lipid bilayers in solutions and interfaces, respectively. The superstructures in both 0 and 10% cholesterol lipid bilayers were disrupted with penetration of melittin according to these verifications. However, kinetic analysis reveals that the different mechanisms are dependent on cholesterol, particularly for the insertion step.
Collapse
Affiliation(s)
- Liang-Yu Chen
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 333, Taiwan
| | | | | | | |
Collapse
|
33
|
Tamba Y, Ohba S, Kubota M, Yoshioka H, Yoshioka H, Yamazaki M. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes. Biophys J 2007; 92:3178-94. [PMID: 17293394 PMCID: PMC1852348 DOI: 10.1529/biophysj.106.097105] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tea catechins, which are flavonoids and the main components of green tea extracts, are thought to have antibacterial and antioxidant activity. Several studies indicate that lipid membranes are one of the targets of the antibacterial activity of catechins. Studies using a suspension of large unilamellar vesicles (LUVs) indicate that catechin causes gradual leakage of internal contents from LUVs. However, the detailed characteristics of the interaction of catechins with lipid membranes remain unclear. In this study, we investigated the interaction of (-)-epigallocatechin gallate (EGCg), a major catechin in tea extract, with single giant unilamellar vesicles (GUVs) of egg phosphatidylcholine (egg PC) using phase-contrast fluorescence microscopy and the single GUV method. We prepared GUVs of lipid membranes of egg PC in a physiological ion concentration ( approximately 150 mM NaCl) using the polyethylene glycol-lipid method. Low concentrations of EGCg at and above 30 muM induced rapid leakage of a fluorescent probe, calcein, from the inside of single egg PC-GUVs; after the leakage, the GUVs changed into small lumps of lipid membranes. On the other hand, phase-contrast microscopic images revealed the detailed process of the EGCg-induced burst of GUVs, the decrease in their diameter, and their transformation into small lumps. The dependence of the fraction of burst GUVs on EGCg concentration was almost the same as that of the fraction of leaked GUV. This correlation strongly indicates that the leakage of calcein from the inside to the outside of the GUV occurred as a result of the burst of the GUV. The fraction of completely leaked GUV and the fraction of the burst GUV increased with time and also increased with increasing EGCg concentration. We compared the EGCg-induced leakage from single GUVs with EGCg-induced leakage from a LUV suspension. The analysis of the EGCg-induced shape changes shows that the binding of EGCg to the external monolayer of the GUV increases its membrane area, inducing an increase in its surface pressure. Small angle x-ray scattering experiments indicate that the intermembrane distance of multilamellar vesicles of PC membrane greatly decreased at EGCg concentrations above the threshold, suggesting that neighboring membranes came in close contact with each other. On the basis of these results, we discuss the mechanism of the EGCg-induced bursting of vesicles.
Collapse
Affiliation(s)
- Yukihiro Tamba
- Innovative Joint Research Center, Shizuoka University, Oya, Hamamatsu 432-8011, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Umeyama M, Kira A, Nishimura K, Naito A. Interactions of bovine lactoferricin with acidic phospholipid bilayers and its antimicrobial activity as studied by solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1523-8. [PMID: 16884683 DOI: 10.1016/j.bbamem.2006.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Revised: 06/10/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
Bovine lactoferricin (LfcinB) is an antimicrobial peptide released by pepsin cleavage of lactoferrin. In this work, the interaction between LfcinB and acidic phospholipid bilayers with the weight percentage of 65% dimyristoylphosphatidylglycerol (DMPG), 10% cardiolipin (CL) and 25% dimyristoylphosphatidylcholine (DMPC) was investigated as a mimic of cell membrane of Staphylococcus aureus by means of quartz crystal microbalance (QCM) and solid-state (31)P and (1)H NMR spectroscopy. Moreover, we elucidated a molecular mechanism of the antimicrobial activity of LfcinB by means of potassium ion selective electrode (ISE). It turned out that affinity of LfcinB for acidic phospholipid bilayers was higher than that for neutral phospholipid bilayers. It was also revealed that the association constant of LfcinB was larger than that of lactoferrin as a result of QCM measurements. (31)P DD-static NMR spectra indicated that LfcinB interacted with acidic phospholipid bilayers and bilayer defects were observed in the bilayer systems because isotropic peaks were clearly appeared. Gel-to-liquid crystalline phase transition temperatures (Tc) in the mixed bilayer systems were determined by measuring the temperature variation of relative intensities of acyl chains in (1)H MAS NMR spectra. Tc values of the acidic phospholipid and LfcinB-acidic phospholipid bilayer systems were 21.5 degrees C and 24.0 degrees C, respectively. To characterize the bilayer defects, potassium ion permeation across the membrane was observed by ISE measurements. The experimental results suggest that LfcinB caused pores in the acidic phospholipid bilayers. Because these pores lead the permeability across the membrane, the molecular mechanism of the antimicrobial activity could be attributed to the pore formation in the bacterial membrane induced by LfcinB.
Collapse
Affiliation(s)
- Masako Umeyama
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | | | | | | |
Collapse
|