1
|
Lilliu E, Hackl B, Zabrodska E, Gewessler S, Karge T, Marksteiner J, Sauer J, Putz EM, Todt H, Hilber K, Koenig X. Cell size induced bias of current density in hypertrophic cardiomyocytes. Channels (Austin) 2024; 18:2361416. [PMID: 38836323 PMCID: PMC11155701 DOI: 10.1080/19336950.2024.2361416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
Alterations in ion channel expression and function known as "electrical remodeling" contribute to the development of hypertrophy and to the emergence of arrhythmias and sudden cardiac death. However, comparing current density values - an electrophysiological parameter commonly utilized to assess ion channel function - between normal and hypertrophied cells may be flawed when current amplitude does not scale with cell size. Even more, common routines to study equally sized cells or to discard measurements when large currents do not allow proper voltage-clamp control may introduce a selection bias and thereby confound direct comparison. To test a possible dependence of current density on cell size and shape, we employed whole-cell patch-clamp recording of voltage-gated sodium and calcium currents in Langendorff-isolated ventricular cardiomyocytes and Purkinje myocytes, as well as in cardiomyocytes derived from trans-aortic constriction operated mice. Here, we describe a distinct inverse relationship between voltage-gated sodium and calcium current densities and cell capacitance both in normal and hypertrophied cells. This inverse relationship was well fit by an exponential function and may be due to physiological adaptations that do not scale proportionally with cell size or may be explained by a selection bias. Our study emphasizes the need to consider cell size bias when comparing current densities in cardiomyocytes of different sizes, particularly in hypertrophic cells. Conventional comparisons based solely on mean current density may be inadequate for groups with unequal cell size or non-proportional current amplitude and cell size scaling.
Collapse
Affiliation(s)
- Elena Lilliu
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eva Zabrodska
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stefanie Gewessler
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Tobias Karge
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Jessica Marksteiner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jakob Sauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eva M. Putz
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Zhang X, Ni H, Morotti S, Smith C, Sato D, Louch W, Edwards A, Grandi E. Mechanisms of spontaneous Ca 2+ release-mediated arrhythmia in a novel 3D human atrial myocyte model: I. Transverse-axial tubule variation. J Physiol 2023; 601:2655-2683. [PMID: 36094888 PMCID: PMC10008525 DOI: 10.1113/jp283363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Intracellular calcium (Ca2+ ) cycling is tightly regulated in the healthy heart ensuring effective contraction. This is achieved by transverse (t)-tubule membrane invaginations that facilitate close coupling of key Ca2+ -handling proteins such as the L-type Ca2+ channel and Na+ -Ca2+ exchanger (NCX) on the cell surface with ryanodine receptors (RyRs) on the intracellular Ca2+ store. Although less abundant and regular than in the ventricle, t-tubules also exist in atrial myocytes as a network of transverse invaginations with axial extensions known as the transverse-axial tubule system (TATS). In heart failure and atrial fibrillation, there is TATS remodelling that is associated with aberrant Ca2+ -handling and Ca2+ -induced arrhythmic activity; however, the mechanism underlying this is not fully understood. To address this, we developed a novel 3D human atrial myocyte model that couples electrophysiology and Ca2+ -handling with variable TATS organization and density. We extensively parameterized and validated our model against experimental data to build a robust tool examining TATS regulation of subcellular Ca2+ release. We found that varying TATS density and thus the localization of key Ca2+ -handling proteins has profound effects on Ca2+ handling. Following TATS loss, there is reduced NCX that results in increased cleft Ca2+ concentration through decreased Ca2+ extrusion. This elevated Ca2+ increases RyR open probability causing spontaneous Ca2+ releases and the promotion of arrhythmogenic waves (especially in the cell interior) leading to voltage instabilities through delayed afterdepolarizations. In summary, the present study demonstrates a mechanistic link between TATS remodelling and Ca2+ -driven proarrhythmic behaviour that probably reflects the arrhythmogenic state observed in disease. KEY POINTS: Transverse-axial tubule systems (TATS) modulate Ca2+ handling and excitation-contraction coupling in atrial myocytes, with TATS remodelling in heart failure and atrial fibrillation being associated with altered Ca2+ cycling and subsequent arrhythmogenesis. To investigate the poorly understood mechanisms linking TATS variation and spontaneous Ca2+ release, we built, parameterized and validated a 3D human atrial myocyte model coupling electrophysiology and spatially-detailed subcellular Ca2+ handling governed by the TATS. Simulated TATS loss causes diastolic Ca2+ and voltage instabilities through reduced Na+ -Ca2+ exchanger-mediated Ca2+ removal, cleft Ca2+ accumulation and increased ryanodine receptor open probability, resulting in spontaneous Ca2+ release and promotion of arrhythmogenic waves and delayed afterdepolarizations. At fast electrical rates typical of atrial tachycardia/fibrillation, spontaneous Ca2+ releases are larger and more frequent in the cell interior than at the periphery. Our work provides mechanistic insight into how atrial TATS remodelling can lead to Ca2+ -driven instabilities that may ultimately contribute to the arrhythmogenic state in disease.
Collapse
Affiliation(s)
- X. Zhang
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - H. Ni
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - S. Morotti
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C.E.R. Smith
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - D. Sato
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - W.E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - A.G. Edwards
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Simula Research Laboratory, Lysaker, Norway
| | - E. Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
3
|
Smith CER, Pinali C, Eisner DA, Trafford AW, Dibb KM. Enhanced calcium release at specialised surface sites compensates for reduced t-tubule density in neonatal sheep atrial myocytes. J Mol Cell Cardiol 2022; 173:61-70. [PMID: 36038009 DOI: 10.1016/j.yjmcc.2022.08.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/23/2022] [Indexed: 01/06/2023]
Abstract
Cardiac myocytes rely on transverse (t)-tubules to facilitate a rapid rise in calcium throughout the cell. However, despite their importance in triggering synchronous Ca2+ release, t-tubules are highly labile structures. They develop postnatally, increase in density during exercise training and are lost in diseases such as heart failure (HF). In the majority of settings, an absence of t-tubules decreases function. Here we show that despite reduced t-tubule density due to immature t-tubules, the newborn atrium is highly specialised to maintain Ca2+ release. To compensate for fewer t-tubules triggering a central rise in Ca2+, Ca2+ release at sites on the cell surface is enhanced in the newborn, exceeding that at all Ca2+ release sites in the adult. Using electron and super resolution microscopy to investigate myocyte ultrastructure, we found that newborn atrial cells had enlarged surface sarcoplasmic reticulum and larger, more closely spaced surface and central ryanodine receptor clusters. We suggest that these adaptations mediate enhanced Ca2+ release at the sarcolemma and aid propagation to compensate for reduced t-tubule density in the neonatal atrium.
Collapse
Affiliation(s)
- Charlotte E R Smith
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Christian Pinali
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - David A Eisner
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom.
| |
Collapse
|
4
|
Lamonzie E, Vaillant F, Abell E, Charron S, El Hamrani D, Quesson B, Brette F. Assessment of Cardiac Toxicity of Manganese Chloride for Cardiovascular Magnetic Resonance. Front Physiol 2022; 13:952043. [PMID: 35874541 PMCID: PMC9302587 DOI: 10.3389/fphys.2022.952043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
MRI is widely used in cardiology to characterize the structure and function of the heart. Currently, gadolinium-based contrast agents are widely used to improve sensitivity and specificity of diagnostic images. Recently, Manganese, a calcium analogue, has emerged as a complementary contrast agent with the potential to reveal remaining viable cells within altered tissue. Imaging applications may be limited by substantial toxicity of manganese. Indeed, cardiac safety of manganese is not yet comprehensively assessed. In this study we investigated the effect of MnCl2 (1–100 µM) on cardiac function. Hemodynamic function was determined ex vivo using an isolated working rat heart preparation. HL-1 cardiac myocytes were used to investigate cell viability (calcein AM) and calcium cycling (Cal-520 a.m.). Rat ventricular cardiomyocytes were dissociated by enzymatic digestion. Action potentials and calcium currents were recorded using the patch clamp technique. MRI experiments were performed at 1.5T on formalin-fixed rat hearts, previously perfused with MnCl2. MnCl2 perfusion from 1 up to 100 µM in isolated working hearts did not alter left ventricular hemodynamic parameters. Contractility and relaxation index were not altered up to 50 µM MnCl2. In HL-1 cardiac myocytes, incubation with increasing concentrations of MnCl2 did not impact cell viability. The amplitude of the calcium transients were significantly reduced at 50 and 100 µM MnCl2. In freshly isolated ventricular myocytes, action potential duration at 20, 50 and 90% of repolarization were not modified up to 10 µM of MnCl2. L-type calcium current amplitude was significantly decreased by 50 and 100 µM of MnCl2. MRI on heart perfused with 25 and 100 µM of MnCl2 showed a dose dependent decrease in the T1 relaxation time. In conclusion, our results show that low concentrations of MnCl2 (up to 25 µM) can be used as a contrast agent in MRI, without significant impact on cardiac hemodynamic or electrophysiology parameters.
Collapse
Affiliation(s)
- Elodie Lamonzie
- Univ, Bordeaux, CRCTB, Inserm, Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux, France
| | - Fanny Vaillant
- Univ, Bordeaux, CRCTB, Inserm, Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux, France
| | - Emma Abell
- Univ, Bordeaux, CRCTB, Inserm, Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux, France
| | | | - Dounia El Hamrani
- Univ, Bordeaux, CRCTB, Inserm, Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux, France
| | - Bruno Quesson
- Univ, Bordeaux, CRCTB, Inserm, Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux, France
| | - Fabien Brette
- Univ, Bordeaux, CRCTB, Inserm, Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux, France
- *Correspondence: Fabien Brette,
| |
Collapse
|
5
|
Švecová O, Bébarová M, Šimurdová M, Šimurda J. Fraction of the T-Tubular Membrane as an Important Parameter in Cardiac Cellular Electrophysiology: A New Way of Estimation. Front Physiol 2022; 13:837239. [PMID: 35620609 PMCID: PMC9127156 DOI: 10.3389/fphys.2022.837239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
The transverse-axial tubular system (t-tubules) plays an essential role in excitation-contraction coupling in cardiomyocytes. Its remodelling is associated with various cardiac diseases. Numerous attempts were made to analyse characteristics essential for proper understanding of the t-tubules and their impact on cardiac cell function in health and disease. The currently available methodical approaches related to the fraction of the t-tubular membrane area produce diverse data. The widely used detubulation techniques cause irreversible cell impairment, thus, distinct cell samples have to be used for estimation of t-tubular parameters in untreated and detubulated cells. Our proposed alternative method is reversible and allows repetitive estimation of the fraction of t-tubular membrane (f t) in cardiomyocytes using short-term perfusion of the measured cell with a low-conductive isotonic sucrose solution. It results in a substantial increase in the electrical resistance of t-tubular lumen, thus, electrically separating the surface and t-tubular membranes. Using the whole-cell patch-clamp measurement and the new approach in enzymatically isolated rat atrial and ventricular myocytes, a set of data was measured and evaluated. The analysis of the electrical equivalent circuit resulted in the establishment of criteria for excluding measurements in which perfusion with a low conductivity solution did not affect the entire cell surface. As expected, the final average f t in ventricular myocytes (0.337 ± 0.017) was significantly higher than that in atrial myocytes (0.144 ± 0.015). The parameter f t could be estimated repetitively in a particular cell (0.345 ± 0.021 and 0.347 ± 0.023 in ventricular myocytes during the first and second sucrose perfusion, respectively). The new method is fast, simple, and leaves the measured cell intact. It can be applied in the course of experiments for which it is useful to estimate both the surface and t-tubular capacitance/area in a particular cell.
Collapse
Affiliation(s)
- Olga Švecová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Markéta Bébarová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Milena Šimurdová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiří Šimurda
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
6
|
Lang D, Medvedev RY, Ratajczyk L, Zheng J, Yuan X, Lim E, Han OY, Valdivia HH, Glukhov AV. Region-specific distribution of transversal-axial tubule system organization underlies heterogeneity of calcium dynamics in the right atrium. Am J Physiol Heart Circ Physiol 2022; 322:H269-H284. [PMID: 34951544 PMCID: PMC8782648 DOI: 10.1152/ajpheart.00381.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The atrial myocardium demonstrates the highly heterogeneous organization of the transversal-axial tubule system (TATS), although its anatomical distribution and region-specific impact on Ca2+ dynamics remain unknown. Here, we developed a novel method for high-resolution confocal imaging of TATS in intact live mouse atrial myocardium and applied a custom-developed MATLAB-based computational algorithm for the automated analysis of TATS integrity. We observed a twofold higher (P < 0.01) TATS density in the right atrial appendage (RAA) than in the intercaval regions (ICR, the anatomical region between the superior vena cava and atrioventricular junction and between the crista terminalis and interatrial septum). Whereas RAA predominantly consisted of well-tubulated myocytes, ICR showed partially tubulated/untubulated cells. Similar TATS distribution was also observed in healthy human atrial myocardium sections. In both mouse atrial preparations and isolated mouse atrial myocytes, we observed a strong anatomical correlation between TATS distribution and Ca2+ transient synchronization and rise-up time. This region-specific difference in Ca2+ transient morphology disappeared after formamide-induced detubulation. ICR myocytes showed a prolonged action potential duration at 80% of repolarization as well as a significantly lower expression of RyR2 and Cav1.2 proteins but similar levels of NCX1 and Cav1.3 compared with RAA tissue. Our findings provide a detailed characterization of the region-specific distribution of TATS in mouse and human atrial myocardium, highlighting the structural foundation for anatomical heterogeneity of Ca2+ dynamics and contractility in the atria. These results could indicate different roles of TATS in Ca2+ signaling at distinct anatomical regions of the atria and provide mechanistic insight into pathological atrial remodeling.NEW & NOTEWORTHY Mouse and human atrial myocardium demonstrate high variability in the organization of the transversal-axial tubule system (TATS), with more organized TATS expressed in the right atrial appendage. TATS distribution governs anatomical heterogeneity of Ca2+ dynamics and thus could contribute to integral atrial contractility, mechanics, and arrhythmogenicity.
Collapse
Affiliation(s)
- Di Lang
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Lucas Ratajczyk
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jingjing Zheng
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Xiaoyu Yuan
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Evi Lim
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Owen Y Han
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Hector H Valdivia
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
7
|
Mellor NG, Pham T, Tran K, Loiselle DS, Ward M, Taberner AJ, Crossman DJ, Han J. Disruption of transverse-tubular network reduces energy efficiency in cardiac muscle contraction. Acta Physiol (Oxf) 2021; 231:e13545. [PMID: 32757472 DOI: 10.1111/apha.13545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022]
Abstract
AIM Altered organization of the transverse-tubular network is an early pathological event occurring even prior to the onset of heart failure. Such t-tubular remodelling disturbs the synchrony and signalling between membranous and intracellular ion channels, exchangers, receptors and ATPases essential in the dynamics of excitation-contraction coupling, leading to ionic abnormality and mechanical dysfunction in heart disease progression. In this study, we investigated whether a disrupted t-tubular network has a direct effect on cardiac mechano-energetics. Our aim was to understand the fundamental link between t-tubular remodelling and impaired energy metabolism, both of which are characteristics of heart failure. We thus studied healthy tissue preparations in which cellular processes are not altered by any disease event. METHODS We exploited the "formamide-detubulation" technique to acutely disrupt the t-tubular network in rat left-ventricular trabeculae. We assessed the energy utilization by cellular Ca2+ cycling and by crossbridge cycling, and quantified the change of energy efficiency following detubulation. For these measurements, trabeculae were mounted in a microcalorimeter where force and heat output were simultaneously measured. RESULTS Following structural disorganization from detubulation, muscle heat output associated with Ca2+ cycling was reduced, indicating impaired intracellular Ca2+ homeostasis. This led to reduced force production and heat output by crossbridge cycling. The reduction in force-length work was not paralleled by proportionate reduction in the heat output and, as such, energy efficiency was reduced. CONCLUSIONS These results reveal the direct energetic consequences of disrupted t-tubular network, linking the energy disturbance and the t-tubular remodelling typically observed in heart failure.
Collapse
Affiliation(s)
- Nicholas G. Mellor
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
| | - Toan Pham
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
| | - Denis S. Loiselle
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
- Department of Physiology The University of Auckland Auckland New Zealand
| | - Marie‐Louise Ward
- Department of Physiology The University of Auckland Auckland New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
- Department of Engineering Science The University of Auckland Auckland New Zealand
| | - David J. Crossman
- Department of Physiology The University of Auckland Auckland New Zealand
| | - June‐Chiew Han
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
| |
Collapse
|
8
|
Gross P, Johnson J, Romero CM, Eaton DM, Poulet C, Sanchez-Alonso J, Lucarelli C, Ross J, Gibb AA, Garbincius JF, Lambert J, Varol E, Yang Y, Wallner M, Feldsott EA, Kubo H, Berretta RM, Yu D, Rizzo V, Elrod J, Sabri A, Gorelik J, Chen X, Houser SR. Interaction of the Joining Region in Junctophilin-2 With the L-Type Ca 2+ Channel Is Pivotal for Cardiac Dyad Assembly and Intracellular Ca 2+ Dynamics. Circ Res 2021; 128:92-114. [PMID: 33092464 PMCID: PMC7790862 DOI: 10.1161/circresaha.119.315715] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after β-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cats
- Cells, Cultured
- Disease Models, Animal
- Excitation Contraction Coupling
- Humans
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Kinetics
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Mutation
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organelle Biogenesis
- Protein Binding
- Protein Interaction Domains and Motifs
- Rats, Sprague-Dawley
- Ryanodine Receptor Calcium Release Channel
- Rats
Collapse
Affiliation(s)
- Polina Gross
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Jaslyn Johnson
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Carlos M. Romero
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Deborah M. Eaton
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Claire Poulet
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Jose Sanchez-Alonso
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Carla Lucarelli
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Jean Ross
- Bioimaging Center Research, Delaware Biotechnology Institute, Newark
| | - Andrew A. Gibb
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Joanne F. Garbincius
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Jonathan Lambert
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Erdem Varol
- Columbia University, Center for Theoretical Neuroscience, Department of Statistics, New York, NY
| | - Yijun Yang
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Markus Wallner
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
- Medical University of Graz, Division of Cardiology, Graz, Austria
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria
| | - Eric A. Feldsott
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Hajime Kubo
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Remus M. Berretta
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Daohai Yu
- Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia
| | - Victor Rizzo
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - John Elrod
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Abdelkarim Sabri
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Julia Gorelik
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Xiongwen Chen
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Steven R. Houser
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| |
Collapse
|
9
|
Celestino-Montes A, Pérez-Treviño P, Sandoval-Herrera MD, Gómez-Víquez NL, Altamirano J. Relative role of T-tubules disruption and decreased SERCA2 on contractile dynamics of isolated rat ventricular myocytes. Life Sci 2021; 264:118700. [PMID: 33130073 DOI: 10.1016/j.lfs.2020.118700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
AIMS Ventricular myocytes (VM) depolarization activates L-type Ca2+ channels (LCC) allowing Ca2+ influx (ICa) to synchronize sarcoplasmic reticulum (SR) Ca2+ release, via Ca2+-release channels (RyR2). The resulting whole-cell Ca2+ transient triggers contraction, while cytosolic Ca2+ removal by SR Ca2+ pump (SERCA2) and sarcolemmal Na+/Ca2+ exchanger (NCX) allows relaxation. In diseased hearts, extensive VM remodeling causes heterogeneous, blunted and slow Ca2+ transients. Among remodeling changes are: A) T-tubules disorganization. B) Diminished SERCA2 and low SR Ca2+. However, those often overlap, hindering their relative contribution to contractile dysfunction (CD). Furthermore, few studies have assessed their specific impact on the spatiotemporal Ca2+ transient properties and contractile dynamics simultaneously. Therefore, we sought to perform a quantitative comparison of how heterogeneous and slow Ca2+ transients, with different underlying determinants, affect contractile performance. METHODS We used two experimental models: A) formamide-induced acute "detubulation", where VM retain functional RyR2 and SERCA2, but lack T-tubules-associated LCC and NCX. B) Intact VM from hypothyroid rats, presenting decreased SERCA2 and SR Ca2+, but maintained T-tubules. By confocal imaging of Fluo-4-loaded VM, under field-stimulation, simultaneously acquired Ca2+ transients and shortening, allowing direct correlations. KEY FINDINGS We found near-linear correlations among key parameters of altered Ca2+ transients, caused independently by T-tubules disruption or decreased SR Ca2+, and shortening and relaxation, SIGNIFICANCE: Unrelated structural and molecular alterations converge in similarly abnormal Ca2+ transients and CD, highlighting the importance of independently reproduce disease-specific alterations, to quantitatively assess their impact on Ca2+ signaling and contractility, which would be valuable to determine potential disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Antonio Celestino-Montes
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Maya D Sandoval-Herrera
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Norma L Gómez-Víquez
- Departamento de Farmacobiologia, CINVESTAV-IPN sede Sur, Mexico, D.F. 14330, Mexico
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico.
| |
Collapse
|
10
|
Rog-Zielinska EA, Scardigli M, Peyronnet R, Zgierski-Johnston CM, Greiner J, Madl J, O'Toole ET, Morphew M, Hoenger A, Sacconi L, Kohl P. Beat-by-Beat Cardiomyocyte T-Tubule Deformation Drives Tubular Content Exchange. Circ Res 2020; 128:203-215. [PMID: 33228470 PMCID: PMC7834912 DOI: 10.1161/circresaha.120.317266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Supplemental Digital Content is available in the text. The sarcolemma of cardiomyocytes contains many proteins that are essential for electromechanical function in general, and excitation-contraction coupling in particular. The distribution of these proteins is nonuniform between the bulk sarcolemmal surface and membrane invaginations known as transverse tubules (TT). TT form an intricate network of fluid-filled conduits that support electromechanical synchronicity within cardiomyocytes. Although continuous with the extracellular space, the narrow lumen and the tortuous structure of TT can form domains of restricted diffusion. As a result of unequal ion fluxes across cell surface and TT membranes, limited diffusion may generate ion gradients within TT, especially deep within the TT network and at high pacing rates.
Collapse
Affiliation(s)
- Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, and Faculty of Medicine, University of Freiburg, Germany (E.A.R.-Z., R.P., C.M.Z.-J., J.G., J.M., L.S., P.K.)
| | - Marina Scardigli
- European Laboratory for Non-Linear Spectroscopy, National Institute of Optics, National Research Council, Sesto Fiorentino (Florence), Italy (M.S., L.S.)
| | - Remi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, and Faculty of Medicine, University of Freiburg, Germany (E.A.R.-Z., R.P., C.M.Z.-J., J.G., J.M., L.S., P.K.)
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, and Faculty of Medicine, University of Freiburg, Germany (E.A.R.-Z., R.P., C.M.Z.-J., J.G., J.M., L.S., P.K.)
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, and Faculty of Medicine, University of Freiburg, Germany (E.A.R.-Z., R.P., C.M.Z.-J., J.G., J.M., L.S., P.K.)
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, and Faculty of Medicine, University of Freiburg, Germany (E.A.R.-Z., R.P., C.M.Z.-J., J.G., J.M., L.S., P.K.)
| | - Eileen T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder (E.T.O., M.M., A.H.)
| | - Mary Morphew
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder (E.T.O., M.M., A.H.)
| | - Andreas Hoenger
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder (E.T.O., M.M., A.H.)
| | - Leonardo Sacconi
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, and Faculty of Medicine, University of Freiburg, Germany (E.A.R.-Z., R.P., C.M.Z.-J., J.G., J.M., L.S., P.K.).,European Laboratory for Non-Linear Spectroscopy, National Institute of Optics, National Research Council, Sesto Fiorentino (Florence), Italy (M.S., L.S.)
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, and Faculty of Medicine, University of Freiburg, Germany (E.A.R.-Z., R.P., C.M.Z.-J., J.G., J.M., L.S., P.K.).,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany (P.K.)
| |
Collapse
|
11
|
Park SH, Kim A, An J, Cho HS, Kang TM. Nanoscale imaging of rat atrial myocytes by scanning ion conductance microscopy reveals heterogeneity of T-tubule openings and ultrastructure of the cell membrane. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:529-543. [PMID: 33093274 PMCID: PMC7585588 DOI: 10.4196/kjpp.2020.24.6.529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/15/2022]
Abstract
In contrast to ventricular myocytes, the structural and functional importance of atrial transverse tubules (T-tubules) is not fully understood. Therefore, we investigated the ultrastructure of T-tubules of living rat atrial myocytes in comparison with ventricular myocytes. Nanoscale cell surface imaging by scanning ion conductance microscopy (SICM) was accompanied by confocal imaging of intracellular T-tubule network, and the effect of removal of T-tubules on atrial excitation-contraction coupling (EC-coupling) was observed. By SICM imaging, we classified atrial cell surface into 4 subtypes. About 38% of atrial myocytes had smooth cell surface with no clear T-tubule openings and intracellular T-tubules (smooth-type). In 33% of cells, we found a novel membrane nanostructure running in the direction of cell length and named it 'longitudinal fissures' (LFs-type). Interestingly, T-tubule openings were often found inside the LFs. About 17% of atrial cells resembled ventricular myocytes, but they had smaller T-tubule openings and a lower Z-groove ratio than the ventricle (ventricular-type). The remaining 12% of cells showed a mixed structure of each subtype (mixed-type). The LFs-, ventricular-, and mixed-type had an appreciable amount of reticular form of intracellular T-tubules. Formamide-induced detubulation effectively removed atrial T-tubules, which was confirmed by both confocal images and decreased cell capacitance. However, the LFs remained intact after detubulation. Detubulation reduced action potential duration and L-type Ca2+channel (LTCC) density, and prolonged relaxation time of the myocytes. Taken together, we observed heterogeneity of rat atrial T-tubules and membranous ultrastructure, and the alteration of atrial EC-coupling by disruption of T-tubules.
Collapse
Affiliation(s)
- Sun Hwa Park
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Ami Kim
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jieun An
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hyun Sung Cho
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Tong Mook Kang
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
12
|
Left Ventricular Hypertrophy Increases Susceptibility to Bupivacaine-induced Cardiotoxicity through Overexpression of Transient Receptor Potential Canonical Channels in Rats. Anesthesiology 2020; 133:1077-1092. [PMID: 32915958 DOI: 10.1097/aln.0000000000003554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Local anesthetics, particularly potent long acting ones such as bupivacaine, can cause cardiotoxicity by inhibiting sodium ion channels; however, the impact of left ventricular hypertrophy on the cardiotoxicity and the underlying mechanisms remain undetermined. Transient receptor potential canonical (TRPC) channels are upregulated in left ventricular hypertrophy. Some transient receptor potential channel subtypes have been reported to pass relatively large cations, including protonated local anesthetics; this is known as the "pore phenomenon." The authors hypothesized that bupivacaine-induced cardiotoxicity is more severe in left ventricular hypertrophy due to upregulated TRPC channels. METHODS The authors used a modified transverse aortic constriction model as a left ventricular hypertrophy. Cardiotoxicity caused by bupivacaine was compared between sham and aortic constriction male rats, and the underlying mechanisms were investigated by recording sodium ion channel currents and immunocytochemistry of TRPC protein in cardiomyocytes. RESULTS The time to cardiac arrest by bupivacaine was shorter in aortic constriction rats (n =11) than in sham rats (n = 12) (mean ± SD, 1,302 ± 324 s vs. 1,034 ± 211 s; P = 0.030), regardless of its lower plasma concentration. The half-maximal inhibitory concentrations of bupivacaine toward sodium ion currents were 4.5 and 4.3 μM, which decreased to 3.9 and 2.6 μM in sham and aortic constriction rats, respectively, upon coapplication of 1-oleoyl-2-acetyl-sn-glycerol, a TRPC3 channel activator. In both groups, sodium ion currents were unaffected by QX-314, a positively charged lidocaine derivative, that hardly permeates the cell membrane, but was significantly decreased with QX-314 and 1-oleoyl-2-acetyl-sn-glycerol coapplication (sham: 79 ± 10% of control; P = 0.004; aortic constriction: 47± 27% of control; P = 0.020; n = 5 cells per group). Effects of 1-oleoyl-2-acetyl-sn-glycerol were antagonized by a specific TRPC3 channel inhibitor. CONCLUSIONS Left ventricular hypertrophy exacerbated bupivacaine-induced cardiotoxicity, which could be a consequence of the "pore phenomenon" of TRPC3 channels upregulated in left ventricular hypertrophy. EDITOR’S PERSPECTIVE
Collapse
|
13
|
Christé G, Bonvallet R, Chouabe C. Accounting for cardiac t-tubule increase with age and myocyte volume to improve measurements of its membrane area and ionic current densities. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:40-53. [DOI: 10.1016/j.pbiomolbio.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 02/02/2023]
|
14
|
Jin B, Ji F, Zuo A, Liu H, Qi L, He Y, Wang Q, Zhao P. Destructive Role of TMAO in T-Tubule and Excitation-Contraction Coupling in the Adult Cardiomyocytes. Int Heart J 2020; 61:355-363. [PMID: 32173700 DOI: 10.1536/ihj.19-372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heart failure (HF) is a disease with high morbidity and mortality. In patients with HF, decreased cardiac output and blood redistribution results in decreased intestinal perfusion and destruction of intestinal barrier. Microorganisms and endotoxins can migrate into the blood circulation, aggravating systemic inflammation and HF. Trimethylamine N-oxide (TMAO) is highly closed to the occurrence of HF. However, the exact mechanism between TMAO and HF remains unclear.To investigate the role of TMAO in transverse-tubule (T-tubule) in the cultured cardiomyocytes.T-tubule imaging and analysis detected T-tubule network in cardiomyocytes. Ca2+ handling dysfunction was identified by confocal Ca2+ imaging. Tubulin densification and polymerization were assessed by western blot and immunofluorescent staining of cardiomyocytes.TMAO induced T-tubule network damage in cardiomyocytes and Ca2+ handling dysfunction in cardiomyocytes under the TMAO stress via promoting tubulin densification and polymerization and therefore Junctophilin-2 (JPH2) redistribution. Mice treated with TMAO represented cardiac dysfunction and T-tubule network disorganization.TMAO impairs cardiac function via the promotion of tubulin polymerization, subsequent translocation of JPH2, and T-tubule remodeling, which provides a novel mechanism for the relationship between HF and elevated TMAO.
Collapse
Affiliation(s)
- Bu Jin
- Department of Pathology, the Affiliated Hospital of Qingdao University.,Department of Forensic Medicine, School of Basic Medicine, Qingdao University
| | - Fangfang Ji
- The Medical Examination Center of Shandong Province Sanatorium
| | - Anjun Zuo
- Department of General Surgery, the Affiliated Hospital of Qingdao University
| | - Huiting Liu
- Department of Pathology, the Affiliated Hospital of Qingdao University.,Department of Forensic Medicine, School of Basic Medicine, Qingdao University
| | - Lin Qi
- Department of Pathology, the Affiliated Hospital of Qingdao University.,Department of Forensic Medicine, School of Basic Medicine, Qingdao University
| | - Yun He
- Department of Pathology, the Affiliated Hospital of Qingdao University.,Department of Forensic Medicine, School of Basic Medicine, Qingdao University
| | - Qingyao Wang
- Department of Pathology, the Affiliated Hospital of Qingdao University.,Department of Forensic Medicine, School of Basic Medicine, Qingdao University
| | - Peng Zhao
- Department of Pathology, the Affiliated Hospital of Qingdao University.,Department of Forensic Medicine, School of Basic Medicine, Qingdao University
| |
Collapse
|
15
|
Abu-Khousa M, Fiegle DJ, Sommer ST, Minabari G, Milting H, Heim C, Weyand M, Tomasi R, Dendorfer A, Volk T, Seidel T. The Degree of t-System Remodeling Predicts Negative Force-Frequency Relationship and Prolonged Relaxation Time in Failing Human Myocardium. Front Physiol 2020; 11:182. [PMID: 32231589 PMCID: PMC7083140 DOI: 10.3389/fphys.2020.00182] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/17/2020] [Indexed: 01/28/2023] Open
Abstract
The normally positive cardiac force-frequency relationship (FFR) becomes flat or negative in chronic heart failure (HF). Here we explored if remodeling of the cardiomyocyte transverse tubular system (t-system) is associated with alterations in FFR and contractile kinetics in failing human myocardium. Left-ventricular myocardial slices from 13 failing human hearts were mounted into a biomimetic culture setup. Maximum twitch force (F), 90% contraction duration (CD90), time to peak force (TTP) and time to relaxation (TTR) were determined at 37°C and 0.2–2 Hz pacing frequency. F1Hz/F0.5Hz and F2Hz/F0.5Hz served as measures of FFR, intracellular cardiomyocyte t-tubule distance (ΔTT) as measure of t-system remodeling. Protein levels of SERCA2, NCX1, and PLB were quantified by immunoblotting. F1Hz/F0.5Hz (R2 = 0.82) and F2Hz/F0.5Hz (R2 = 0.5) correlated negatively with ΔTT, i.e., samples with severe t-system loss exhibited a negative FFR and reduced myocardial wall tension at high pacing rates. PLB levels also predicted F1Hz/F0.5Hz, but to a lesser degree (R2 = 0.49), whereas NCX1 was not correlated (R2 = 0.02). CD90 correlated positively with ΔTT (R2 = 0.39) and negatively with SERCA2/PLB (R2 = 0.42), indicating that both the t-system and SERCA activity are important for contraction kinetics. Surprisingly, ΔTT was not associated with TTP (R2 = 0) but rather with TTR (R2 = 0.5). This became even more pronounced when interaction with NCX1 expression was added to the model (R2 = 0.79), suggesting that t-system loss impairs myocardial relaxation especially when NCX1 expression is low. The degree of t-system remodeling predicts FFR inversion and contraction slowing in failing human myocardium. Moreover, together with NCX, the t-system may be important for myocardial relaxation.
Collapse
Affiliation(s)
- Maha Abu-Khousa
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik J Fiegle
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sophie T Sommer
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ghazali Minabari
- Department of Cardiac Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Christian Heim
- Department of Cardiac Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Tomasi
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Dendorfer
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Tilmann Volk
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Seidel
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
A fundamental evaluation of the electrical properties and function of cardiac transverse tubules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118502. [PMID: 31269418 DOI: 10.1016/j.bbamcr.2019.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 11/20/2022]
Abstract
This work discusses active and passive electrical properties of transverse (T-)tubules in ventricular cardiomyocytes to understand the physiological roles of T-tubules. T-tubules are invaginations of the lateral membrane that provide a large surface for calcium-handling proteins to facilitate sarcomere shortening. Higher heart rates correlate with higher T-tubular densities in mammalian ventricular cardiomyocytes. We assess ion dynamics in T-tubules and the effects of sodium current in T-tubules on the extracellular potential, which leads to a partial reduction of the sodium current in deep segments of a T-tubule. We moreover reflect on the impact of T-tubules on macroscopic conduction velocity, integrating fundamental principles of action potential propagation and conduction. We also theoretically assess how the conduction velocity is affected by different T-tubular sodium current densities. Lastly, we critically assess literature on ion channel expression to determine whether action potentials can be initiated in T-tubules.
Collapse
|
17
|
Bourcier A, Barthe M, Bedioune I, Lechêne P, Miled HB, Vandecasteele G, Fischmeister R, Leroy J. Imipramine as an alternative to formamide to detubulate rat ventricular cardiomyocytes. Exp Physiol 2019; 104:1237-1249. [PMID: 31116459 DOI: 10.1113/ep087760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can imipramine, an antidepressant agent that is a cationic amphiphilic drug that interferes with the phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) interactions with proteins maintaining the tubular system, be validated as a new detubulating tool? What is the main finding and its importance? Imipramine was validated as a more efficient and less toxic detubulating agent of cardiomyocytes than formamide. New insights are provided on how PI(4,5)P2 is crucial to maintaining T-tubule attachment to the cell surface and on the cardiotoxic effects of imipramine overdoses. ABSTRACT Cardiac T-tubules are membrane invaginations essential for excitation-contraction coupling (ECC). Imipramine, like other cationic amphiphilic drugs, interferes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) interactions with proteins maintaining the tubular system connected to the cell surface. Our main purpose was to validate imipramine as a new detubulating agent in cardiomyocytes. Staining adult rat ventricular myocytes (ARVMs) with di-4-ANEPPS, we showed that unlike formamide, imipramine induces a complete detubulation with no impact on cell viability. Using the patch-clamp technique, we observed a ∼40% decrease in cell capacitance after imipramine pretreatment and a reduction of ICa,L amplitude by ∼72%. These parameters were not affected in atrial cells, excluding direct side effects of imipramine. β-Adrenergic receptor (β-AR) stimulation of the remaining ICa,L with isoproterenol (Iso) was still effective. ECC was investigated in ARVMs loaded with Fura-2 and paced at 1 Hz, allowing simultaneous measurement of the Ca2+ transient (CaT) and sarcomere shortening (SS). Amplitude of both CaT and SS was decreased by imipramine and partially restored by Iso. Furthermore, detubulated cells exhibited Ca2+ homeostasis perturbations. Real-time cAMP variations induced by Iso using a Förster resonance energy transfer biosensor revealed ∼27% decreased cAMP elevation upon β-AR stimulation. To conclude, we validated a new cardiomyocyte detubulation method using imipramine, which is more efficient and less toxic than formamide. This antidepressant agent induces the hallmark effects of detubulation on ECC and its β-AR stimulation. Besides, we provide new insights on how an imipramine overdose may affect cardiac function and suggest that PI(4,5)P2 is crucial for maintaining T-tubule structure.
Collapse
Affiliation(s)
- Aurelia Bourcier
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Marion Barthe
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Ibrahim Bedioune
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Patrick Lechêne
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Hela Ben Miled
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Grégoire Vandecasteele
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Rodolphe Fischmeister
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Jérôme Leroy
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| |
Collapse
|
18
|
Superior Efficacy of Lipid Emulsion Infusion Over Serum Alkalinization in Reversing Amitriptyline-Induced Cardiotoxicity in Guinea Pig. Anesth Analg 2019; 126:1159-1169. [PMID: 29239964 DOI: 10.1213/ane.0000000000002707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Tricyclic antidepressants (TCAs) are a major cause of fatal drug poisoning due to their cardiotoxicity. Alkalinization by sodium bicarbonate (NaHCO3) administration, the first-line therapy for TCA-induced cardiotoxicity, can occasionally yield insufficient efficacy in severe cases. Because most TCAs are highly lipophilic, lipid emulsion may be more effective than alkalinization. However, it remains to be determined whether lipid emulsion is more beneficial than alkalinization in reversing amitriptyline-induced cardiotoxicity. METHODS Hemodynamic variables were recorded from in vivo guinea pig models and Langendorff-perfused hearts. Whole-cell patch-clamp experiments were conducted on enzymatically isolated ventricular cardiomyocytes to record fast sodium currents (INa). Lipid solutions were prepared using 20% Intralipid. The pH of the alkaline solution was set at 7.55. We assessed the effect of lipid emulsion on reversing amitriptyline-induced cardiotoxicity, in vivo and in vitro, compared to alkalinization. The data were evaluated by Student t test, 1-way repeated-measures analysis of variance, or analysis of covariance (covariate = amitriptyline concentration); we considered data statistically significant when P < .05. RESULTS In the in vivo model, intervention with lipids significantly reversed the amitriptyline-induced depression of mean arterial pressure and prolongation of QRS duration on electrocardiogram more than alkalinization (mean arterial pressure, mean difference [95% confidence interval]: 19.0 mm Hg [8.5-29.4]; QRS duration, mean difference [95% confidence interval] -12.0 milliseconds [-16.1 to -7.8]). In the Langendorff experiments, perfusion with 1% and 2% lipid solutions demonstrated significant recovery in left ventricular developed pressure (LVdevP), maximum change rate of increase of LVdevP (dP/dtmax) and rate-pressure product compared with alkaline solution (LVdevP [mm Hg], alkaline 57 ± 35, 1% lipid 94 ± 12, 2% lipid 110 ± 14; dP/dtmax [mm Hg/s], alkaline 748 ± 441, 1% lipid 1502 ± 334, 2% lipid 1753 ± 389; rate-pressure product [mm Hg·beats·minute], alkaline 11,214 ± 8272, 1% lipid 19,025 ± 8427, 2% lipid 25,261 ± 4803 with analysis of covariance). Furthermore, lipid solutions (0.5%-4%) resulted in greater recovery of hemodynamic parameters at 3 μM amitriptyline. Amitriptyline inhibited INa in a dose-dependent manner: the half-maximal inhibitory concentration (IC50) was 0.39 μM. The IC50 increased to 0.75 μM in the alkaline solution, 3.2 μM in 1% lipid solution, and 6.1 μM in 2% lipid solution. Furthermore, the lipid solution attenuated the use-dependent block of sodium channels by amitriptyline more than alkaline solution. On 30 consecutive pulses at 1 Hz, the current decreased to 50.1 ± 2.1, 60.3 ± 1.9, and 90.4% ± 1.8% in standard, alkaline, and 1% lipid solution, respectively. Even 0.5% lipid solution showed greater effects than the alkaline solution in all experiments. CONCLUSIONS Lipid emulsion significantly suppressed amitriptyline-induced INa, inhibition, which was likely related to the marked improvement in hemodynamic status observed in vivo and in isolated perfused hearts. These results suggest the superiority of lipid emulsion as the first-line therapy for TCA-induced cardiotoxicity compared to alkalinization therapy.
Collapse
|
19
|
Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, Dibb KM. Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Front Physiol 2018; 9:1380. [PMID: 30337881 PMCID: PMC6180171 DOI: 10.3389/fphys.2018.01380] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Atrial fibrillation (AF) is commonly associated with heart failure. A bidirectional relationship exists between the two-AF exacerbates heart failure causing a significant increase in heart failure symptoms, admissions to hospital and cardiovascular death, while pathological remodeling of the atria as a result of heart failure increases the risk of AF. A comprehensive understanding of the pathophysiology of AF is essential if we are to break this vicious circle. In this review, the latest evidence will be presented showing a fundamental role for calcium in both the induction and maintenance of AF. After outlining atrial electrophysiology and calcium handling, the role of calcium-dependent afterdepolarizations and atrial repolarization alternans in triggering AF will be considered. The atrial response to rapid stimulation will be discussed, including the short-term protection from calcium overload in the form of calcium signaling silencing and the eventual progression to diastolic calcium leak causing afterdepolarizations and the development of an electrical substrate that perpetuates AF. The role of calcium in the bidirectional relationship between heart failure and AF will then be covered. The effects of heart failure on atrial calcium handling that promote AF will be reviewed, including effects on both atrial myocytes and the pulmonary veins, before the aspects of AF which exacerbate heart failure are discussed. Finally, the limitations of human and animal studies will be explored allowing contextualization of what are sometimes discordant results.
Collapse
Affiliation(s)
- Nathan C. Denham
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | - Katharine M. Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Structural heterogeneity of the rat pulmonary vein myocardium: consequences on intracellular calcium dynamics and arrhythmogenic potential. Sci Rep 2018; 8:3244. [PMID: 29459735 PMCID: PMC5818479 DOI: 10.1038/s41598-018-21671-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/08/2018] [Indexed: 11/09/2022] Open
Abstract
Mechanisms underlying ectopic activity in the pulmonary vein (PV) which triggers paroxysmal atrial fibrillation are unknown. Although several studies have suggested that calcium signalling might be involved in these arrhythmias, little is known about calcium cycling in PV cardiomyocytes (CM). We found that individual PV CM showed a wide range of transverse tubular incidence and organization, going from their virtual absence, as described in atrial CM, to well transversally organised tubular systems, like in ventricular CM. These different types of CM were found in groups scattered throughout the tissue. The variability of the tubular system was associated with cell to cell heterogeneity of calcium channel (Cav1.2) localisation and, thereby, of Cav1.2-Ryanodine receptor coupling. This was responsible for multiple forms of PV CM calcium transient. Spontaneous calcium sparks and waves were not only more abundant in PV CM than in LA CM but also associated with a higher depolarising current. In conclusion, compared with either the atrium or the ventricle, PV myocardium presents marked structural and functional heterogeneity.
Collapse
|
21
|
Crossman DJ, Jayasinghe ID, Soeller C. Transverse tubule remodelling: a cellular pathology driven by both sides of the plasmalemma? Biophys Rev 2017; 9:919-929. [PMID: 28695473 DOI: 10.1007/s12551-017-0273-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023] Open
Abstract
Transverse (t)-tubules are invaginations of the plasma membrane that form a complex network of ducts, 200-400 nm in diameter depending on the animal species, that penetrates deep within the cardiac myocyte, where they facilitate a fast and synchronous contraction across the entire cell volume. There is now a large body of evidence in animal models and humans demonstrating that pathological distortion of the t-tubule structure has a causative role in the loss of myocyte contractility that underpins many forms of heart failure. Investigations into the molecular mechanisms of pathological t-tubule remodelling to date have focused on proteins residing in the intracellular aspect of t-tubule membrane that form linkages between the membrane and myocyte cytoskeleton. In this review, we shed light on the mechanisms of t-tubule remodelling which are not limited to the intracellular side. Our recent data have demonstrated that collagen is an integral part of the t-tubule network and that it increases within the tubules in heart failure, suggesting that a fibrotic mechanism could drive cardiac junctional remodelling. We examine the evidence that the linkages between the extracellular matrix, t-tubule membrane and cellular cytoskeleton should be considered as a whole when investigating the mechanisms of t-tubule pathology in the failing heart.
Collapse
Affiliation(s)
- David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| | | | - Christian Soeller
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Biomedical Physics, University of Exeter, Exeter, UK
| |
Collapse
|
22
|
Gadeberg HC, Kong CHT, Bryant SM, James AF, Orchard CH. Sarcolemmal distribution of ICa and INCX and Ca 2+ autoregulation in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 2017; 313:H190-H199. [PMID: 28476922 PMCID: PMC5538864 DOI: 10.1152/ajpheart.00117.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/14/2017] [Accepted: 05/01/2017] [Indexed: 12/02/2022]
Abstract
This study shows that in contrast to the rat, mouse ventricular Na+/Ca2+ exchange current density is lower in the t-tubules than in the surface sarcolemma and Ca2+ current is predominantly located in the t-tubules. As a consequence, the t-tubules play a role in recovery (autoregulation) from reduced, but not increased, sarcoplasmic reticulum Ca2+ release. The balance of Ca2+ influx and efflux regulates the Ca2+ load of cardiac myocytes, a process known as autoregulation. Previous work has shown that Ca2+ influx, via L-type Ca2+ current (ICa), and efflux, via the Na+/Ca2+ exchanger (NCX), occur predominantly at t-tubules; however, the role of t-tubules in autoregulation is unknown. Therefore, we investigated the sarcolemmal distribution of ICa and NCX current (INCX), and autoregulation, in mouse ventricular myocytes using whole cell voltage-clamp and simultaneous Ca2+ measurements in intact and detubulated (DT) cells. In contrast to the rat, INCX was located predominantly at the surface membrane, and the hysteresis between INCX and Ca2+ observed in intact myocytes was preserved after detubulation. Immunostaining showed both NCX and ryanodine receptors (RyRs) at the t-tubules and surface membrane, consistent with colocalization of NCX and RyRs at both sites. Unlike INCX, ICa was found predominantly in the t-tubules. Recovery of the Ca2+ transient amplitude to steady state (autoregulation) after application of 200 µM or 10 mM caffeine was slower in DT cells than in intact cells. However, during application of 200 µM caffeine to increase sarcoplasmic reticulum (SR) Ca2+ release, DT and intact cells recovered at the same rate. It appears likely that this asymmetric response to changes in SR Ca2+ release is a consequence of the distribution of ICa, which is reduced in DT cells and is required to refill the SR after depletion, and NCX, which is little affected by detubulation, remaining available to remove Ca2+ when SR Ca2+ release is increased. NEW & NOTEWORTHY This study shows that in contrast to the rat, mouse ventricular Na+/Ca2+ exchange current density is lower in the t-tubules than in the surface sarcolemma and Ca2+ current is predominantly located in the t-tubules. As a consequence, the t-tubules play a role in recovery (autoregulation) from reduced, but not increased, sarcoplasmic reticulum Ca2+ release.
Collapse
Affiliation(s)
- Hanne C Gadeberg
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Cherrie H T Kong
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Simon M Bryant
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Andrew F James
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Clive H Orchard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
23
|
A Novel Cardiotoxic Mechanism for a Pervasive Global Pollutant. Sci Rep 2017; 7:41476. [PMID: 28139666 PMCID: PMC5282528 DOI: 10.1038/srep41476] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022] Open
Abstract
The Deepwater Horizon disaster drew global attention to the toxicity of crude oil and the potential for adverse health effects amongst marine life and spill responders in the northern Gulf of Mexico. The blowout released complex mixtures of polycyclic aromatic hydrocarbons (PAHs) into critical pelagic spawning habitats for tunas, billfishes, and other ecologically important top predators. Crude oil disrupts cardiac function and has been associated with heart malformations in developing fish. However, the precise identity of cardiotoxic PAHs, and the mechanisms underlying contractile dysfunction are not known. Here we show that phenanthrene, a PAH with a benzene 3-ring structure, is the key moiety disrupting the physiology of heart muscle cells. Phenanthrene is a ubiquitous pollutant in water and air, and the cellular targets for this compound are highly conserved across vertebrates. Our findings therefore suggest that phenanthrene may be a major worldwide cause of vertebrate cardiac dysfunction.
Collapse
|
24
|
Crocini C, Ferrantini C, Coppini R, Sacconi L. Electrical defects of the transverse-axial tubular system in cardiac diseases. J Physiol 2017; 595:3815-3822. [PMID: 27981580 PMCID: PMC5471422 DOI: 10.1113/jp273042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023] Open
Abstract
Electrical excitability is an essential feature of cardiomyocytes and the homogenous propagation of the action potential is guaranteed by a complex network of membrane invaginations called the transverse-axial tubular system (TATS). TATS structural remodelling is a hallmark of cardiac diseases and we demonstrated that this can be accompanied by electrical defects at single T-tubular level. Using a random-access multi-photon (RAMP) microscope, we found that pathological T-tubules can fail to conduct action potentials, which delays local Ca2+ release. Although the underlying causes for T-tubular electrical failure are still unknown, our findings suggest that they are likely to be related to local ultrastructural alterations. Here, we first review the experimental approach that allowed us to observe and dissect the consequences of TATS electrical dysfunction and then propose two different strategies to unveil the reasons for T-tubular electrical failures. The first strategy consists in a correlative approach, in which the failing T-tubule identified with the RAMP microscope is then imaged with electron microscopy. The second approach exploits the diffusion of molecules within TATS to gain insights into the local TATS structure, even without a thorough reconstruction of the tubular network. Although challenging, the local electrical failure occurring at single T-tubules is a fundamental question that needs to be addressed and could provide novel insights in cardiac pathophysiology.
Collapse
Affiliation(s)
- Claudia Crocini
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, 50125, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Raffaele Coppini
- Division of Pharmacology, Department 'NeuroFarBa', University of Florence, 50139, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, 50125, Florence, Italy
| |
Collapse
|
25
|
Roe AT, Frisk M, Louch WE. Targeting cardiomyocyte Ca2+ homeostasis in heart failure. Curr Pharm Des 2015; 21:431-48. [PMID: 25483944 PMCID: PMC4475738 DOI: 10.2174/138161282104141204124129] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 08/06/2014] [Indexed: 12/19/2022]
Abstract
Improved treatments for heart failure patients will require the development of novel therapeutic strategies that target basal disease
mechanisms. Disrupted cardiomyocyte Ca2+ homeostasis is recognized as a major contributor to the heart failure phenotype, as it
plays a key role in systolic and diastolic dysfunction, arrhythmogenesis, and hypertrophy and apoptosis signaling. In this review, we outline
existing knowledge of the involvement of Ca2+ homeostasis in these deficits, and identify four promising targets for therapeutic intervention:
the sarcoplasmic reticulum Ca2+ ATPase, the Na+-Ca2+ exchanger, the ryanodine receptor, and t-tubule structure. We discuss
experimental data indicating the applicability of these targets that has led to recent and ongoing clinical trials, and suggest future therapeutic
approaches.
Collapse
Affiliation(s)
| | | | - William E Louch
- Institute for Experimental Medical Research, Kirkeveien 166, 4.etg. Bygg 7, Oslo University Hospital Ullevål, 0407 Oslo, Norway.
| |
Collapse
|
26
|
Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. J Mol Cell Cardiol 2015; 86:23-31. [PMID: 26103619 PMCID: PMC4564288 DOI: 10.1016/j.yjmcc.2015.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/23/2023]
Abstract
In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~ 18 weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation–contraction coupling observed in heart failure. Whole-cell Ca current (ICa) density is not altered in myocytes from failing hearts. ICa density decreases in the t-tubules of myocytes from failing hearts. The decrease of t-tubular ICa is associated with impaired Ca release at t-tubules. These changes in Ca release can be mimicked by decreasing ICa using nifedipine.
Collapse
|
27
|
Balycheva M, Faggian G, Glukhov AV, Gorelik J. Microdomain-specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophys Rev 2015; 7:43-62. [PMID: 28509981 PMCID: PMC5425752 DOI: 10.1007/s12551-014-0159-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022] Open
Abstract
Cardiac excitation involves the generation of action potential by individual cells and the subsequent conduction of the action potential from cell to cell through intercellular gap junctions. Excitation of the cellular membrane results in opening of the voltage-gated L-type calcium ion (Ca2+) channels, thereby allowing a small amount of Ca2+ to enter the cell, which in turn triggers the release of a much greater amount of Ca2+ from the sarcoplasmic reticulum, the intracellular Ca2+ store, and gives rise to the systolic Ca2+ transient and contraction. These processes are highly regulated by the autonomic nervous system, which ensures the acute and reliable contractile function of the heart and the short-term modulation of this function upon changes in heart rate or workload. It has recently become evident that discrete clusters of different ion channels and regulatory receptors are present in the sarcolemma, where they form an interacting network and work together as a part of a macro-molecular signalling complex which in turn allows the specificity, reliability and accuracy of the autonomic modulation of the excitation-contraction processes by a variety of neurohormonal pathways. Disruption in subcellular targeting of ion channels and associated signalling proteins may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure and certain arrhythmias. Recent methodological advances have made it possible to routinely image the topography of live cardiomyocytes, allowing the study of clustering functional ion channels and receptors as well as their coupling within a specific microdomain. In this review we highlight the emerging understanding of the functionality of distinct subcellular microdomains in cardiac myocytes (e.g. T-tubules, lipid rafts/caveolae, costameres and intercalated discs) and their functional role in the accumulation and regulation of different subcellular populations of sodium, Ca2+ and potassium ion channels and their contributions to cellular signalling and cardiac pathology.
Collapse
Affiliation(s)
- Marina Balycheva
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Giuseppe Faggian
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Alexey V Glukhov
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
28
|
Clarke JD, Caldwell JL, Horn MA, Bode EF, Richards MA, Hall MCS, Graham HK, Briston SJ, Greensmith DJ, Eisner DA, Dibb KM, Trafford AW. Perturbed atrial calcium handling in an ovine model of heart failure: potential roles for reductions in the L-type calcium current. J Mol Cell Cardiol 2015; 79:169-79. [PMID: 25463272 PMCID: PMC4312356 DOI: 10.1016/j.yjmcc.2014.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/19/2022]
Abstract
Heart failure (HF) is commonly associated with reduced cardiac output and an increased risk of atrial arrhythmias particularly during β-adrenergic stimulation. The aim of the present study was to determine how HF alters systolic Ca(2+) and the response to β-adrenergic (β-AR) stimulation in atrial myocytes. HF was induced in sheep by ventricular tachypacing and changes in intracellular Ca(2+) concentration studied in single left atrial myocytes under voltage and current clamp conditions. The following were all reduced in HF atrial myocytes; Ca(2+) transient amplitude (by 46% in current clamped and 28% in voltage clamped cells), SR dependent rate of Ca(2+) removal (kSR, by 32%), L-type Ca(2+) current density (by 36%) and action potential duration (APD90 by 22%). However, in HF SR Ca(2+) content was increased (by 19%) when measured under voltage-clamp stimulation. Inhibiting the L-type Ca(2+) current (ICa-L) in control cells reproduced both the decrease in Ca(2+) transient amplitude and increase of SR Ca(2+) content observed in voltage-clamped HF cells. During β-AR stimulation Ca(2+) transient amplitude was the same in control and HF cells. However, ICa-L remained less in HF than control cells whilst SR Ca(2+) content was highest in HF cells during β-AR stimulation. The decrease in ICa-L that occurs in HF atrial myocytes appears to underpin the decreased Ca(2+) transient amplitude and increased SR Ca(2+) content observed in voltage-clamped cells.
Collapse
Affiliation(s)
- Jessica D Clarke
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Jessica L Caldwell
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Margaux A Horn
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Elizabeth F Bode
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Mark A Richards
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Mark C S Hall
- Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool L14 3PE, UK
| | - Helen K Graham
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Sarah J Briston
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - David J Greensmith
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - David A Eisner
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Katharine M Dibb
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK
| | - Andrew W Trafford
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton St, Manchester M13 9PT, UK.
| |
Collapse
|
29
|
Effect of Ca2+ efflux pathway distribution and exogenous Ca2+ buffers on intracellular Ca2+ dynamics in the rat ventricular myocyte: a simulation study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:920208. [PMID: 24971358 PMCID: PMC4058148 DOI: 10.1155/2014/920208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
Abstract
We have used a previously published computer model of the rat cardiac ventricular myocyte to investigate the effect of changing the distribution of Ca2+ efflux pathways (SERCA, Na+/Ca2+ exchange, and sarcolemmal Ca2+ ATPase) between the dyad and bulk cytoplasm and the effect of adding exogenous Ca2+ buffers (BAPTA or EGTA), which are used experimentally to differentially buffer Ca2+ in the dyad and bulk cytoplasm, on cellular Ca2+ cycling. Increasing the dyadic fraction of a particular Ca2+ efflux pathway increases the amount of Ca2+ removed by that pathway, with corresponding changes in Ca2+ efflux from the bulk cytoplasm. The magnitude of these effects varies with the proportion of the total Ca2+ removed from the cytoplasm by that pathway. Differences in the response to EGTA and BAPTA, including changes in Ca2+-dependent inactivation of the L-type Ca2+ current, resulted from the buffers acting as slow and fast “shuttles,” respectively, removing Ca2+ from the dyadic space. The data suggest that complex changes in dyadic Ca2+ and cellular Ca2+ cycling occur as a result of changes in the location of Ca2+ removal pathways or the presence of exogenous Ca2+ buffers, although changing the distribution of Ca2+ efflux pathways has relatively small effects on the systolic Ca2+ transient.
Collapse
|
30
|
Brette F, Machado B, Cros C, Incardona JP, Scholz NL, Block BA. Crude oil impairs cardiac excitation-contraction coupling in fish. Science 2014; 343:772-6. [PMID: 24531969 DOI: 10.1126/science.1242747] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Crude oil is known to disrupt cardiac function in fish embryos. Large oil spills, such as the Deepwater Horizon (DWH) disaster that occurred in 2010 in the Gulf of Mexico, could severely affect fish at impacted spawning sites. The physiological mechanisms underlying such potential cardiotoxic effects remain unclear. Here, we show that crude oil samples collected from the DWH spill prolonged the action potential of isolated cardiomyocytes from juvenile bluefin and yellowfin tunas, through the blocking of the delayed rectifier potassium current (I(Kr)). Crude oil exposure also decreased calcium current (I(Ca)) and calcium cycling, which disrupted excitation-contraction coupling in cardiomyocytes. Our findings demonstrate a cardiotoxic mechanism by which crude oil affects the regulation of cellular excitability, with implications for life-threatening arrhythmias in vertebrates.
Collapse
Affiliation(s)
- Fabien Brette
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
| | | | | | | | | | | |
Collapse
|
31
|
Yang H, Borg TK, Wang Z, Ma Z, Gao BZ. Role of the basement membrane in regulation of cardiac electrical properties. Ann Biomed Eng 2014; 42:1148-57. [PMID: 24577875 DOI: 10.1007/s10439-014-0992-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/22/2014] [Indexed: 10/25/2022]
Abstract
In the heart muscle, each adult cardiomyocyte is enclosed by a basement membrane (BM). This innermost extracellular matrix is a layered assembly of laminin, collagen IV, glycoproteins, and proteoglycans. In this study, the role of the BM network in regulation of the electrical properties of neonatal cardiomyocytes (NCMs) cultured on an aligned collagen I gel was investigated using a multielectrode array (MEA). A laminin antibody was added to the culture medium for 48-120 h to conjugate newly secreted laminin. Then, morphology of the NCMs on an MEA was monitored using a phase contrast microscope, and the BM network that was immunocytostained for laminin was imaged using a fluorescence microscope. When the BM laminin was absent in this culture model, dramatic changes in NCM morphology were observed. Simultaneously, the MEA-recorded cardiac field potential showed changes compared to that from the control groups: The period of contraction shortened to 1/2 of that from the control groups, and the waveform of the calcium influx shifted from a flat plateau to a peak-like waveform, indicating that the electrical properties of the NCMs were closely related to the components and distribution of the BM network.
Collapse
Affiliation(s)
- Huaxiao Yang
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | | | | | | | | |
Collapse
|
32
|
Orchard CH, Bryant SM, James AF. Do t-tubules play a role in arrhythmogenesis in cardiac ventricular myocytes? J Physiol 2013; 591:4141-7. [PMID: 23652596 DOI: 10.1113/jphysiol.2013.254540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transverse (t-) tubules of mammalian ventricular myocytes are invaginations of the surface membrane. The function of many of the key proteins involved in excitation-contraction coupling is located predominantly at the t-tubules, which thus form a Ca(2+)-handling micro-environment that is central to the normal rapid activation and relaxation of the ventricular myocyte. Although cellular arrhythmogenesis shares many ion flux pathways with normal excitation-contraction coupling, the role of the t-tubules in such arrhythmogenesis has not previously been considered. In this brief review we consider how the location and co-location of proteins at the t-tubules may contribute to the generation of arrhythmogenic delayed and early afterdepolarisations, and how the loss of t-tubules that occurs during heart failure may alter the generation of such arrhythmias, as well as contributing to other types of arrhythmia as a result of changes of electrical heterogeneity within the whole heart.
Collapse
Affiliation(s)
- C H Orchard
- C. H. Orchard: University of Bristol, School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
33
|
Dibb KM, Clarke JD, Eisner DA, Richards MA, Trafford AW. A functional role for transverse (t-) tubules in the atria. J Mol Cell Cardiol 2013; 58:84-91. [PMID: 23147188 DOI: 10.1016/j.yjmcc.2012.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/01/2012] [Indexed: 11/17/2022]
Abstract
Mammalian ventricular myocytes are characterised by the presence of an extensive transverse (t-) tubule network which is responsible for the synchronous rise of intracellular Ca(2+) concentration ([Ca(2+)]i) during systole. Disruption to the ventricular t-tubule network occurs in various cardiac pathologies and leads to heterogeneous changes of [Ca(2+)]i which are thought to contribute to the reduced contractility and increased susceptibility to arrhythmias of the diseased ventricle. Here we review evidence that, despite the long-held dogma of atrial cells having no or very few t-tubules, there is indeed an extensive and functionally significant t-tubule network present in atrial myocytes of large mammals including human. Moreover, the atrial t-tubule network is highly plastic in nature and undergoes far more extensive remodelling in heart disease than is the case in the ventricle with profound consequences for the resulting systolic Ca(2+) transient. In addition to considering the functional role of the t-tubule network in the healthy and diseased atria we also provide an overview of recent data concerning the putative factors controlling the formation of t-tubules and conclude by posing some important questions that currently remain to be addressed and whether or not targeting t-tubules offers potential novel therapeutic possibilities for heart disease.
Collapse
Affiliation(s)
- Katharine M Dibb
- Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, 3.08 Core Technology Facility, 46 Grafton Street, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
34
|
Garciarena CD, Ma YL, Swietach P, Huc L, Vaughan-Jones RD. Sarcolemmal localisation of Na+/H+ exchange and Na+-HCO3- co-transport influences the spatial regulation of intracellular pH in rat ventricular myocytes. J Physiol 2013; 591:2287-306. [PMID: 23420656 DOI: 10.1113/jphysiol.2012.249664] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Membrane acid extrusion by Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC) is essential for maintaining a low cytoplasmic [H(+)] (∼60 nm, equivalent to an intracellular pH (pHi) of 7.2). This protects myocardial function from the high chemical reactivity of H(+) ions, universal end-products of metabolism. We show here that, in rat ventricular myocytes, fluorescent antibodies map the NBC isoforms NBCe1 and NBCn1 to lateral sarcolemma, intercalated discs and transverse tubules (t-tubules), while NHE1 is absent from t-tubules. This unexpected difference matches functional measurements of pHi regulation (using AM-loaded SNARF-1, a pH fluorophore). Thus, myocyte detubulation (by transient exposure to 1.5 m formamide) reduces global acid extrusion on NBC by 40%, without affecting NHE1. Similarly, confocal pHi imaging reveals that NBC stimulation induces spatially uniform pHi recovery from acidosis, whereas NHE1 stimulation induces pHi non-uniformity during recovery (of ∼0.1 units, for 2-3 min), particularly at the ends of the cell where intercalated discs are commonly located, and where NHE1 immunostaining is prominent. Mathematical modelling shows that this induction of local pHi microdomains is favoured by low cytoplasmic H(+) mobility and long H(+) diffusion distances, particularly to surface NHE1 transporters mediating high membrane flux. Our results provide the first evidence for a spatial localisation of [H(+)]i regulation in ventricular myocytes, suggesting that, by guarding pHi, NHE1 preferentially protects gap junctional communication at intercalated discs, while NBC locally protects t-tubular excitation-contraction coupling.
Collapse
Affiliation(s)
- Carolina D Garciarena
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
35
|
Guo A, Zhang C, Wei S, Chen B, Song LS. Emerging mechanisms of T-tubule remodelling in heart failure. Cardiovasc Res 2013; 98:204-15. [PMID: 23393229 DOI: 10.1093/cvr/cvt020] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiac excitation-contraction coupling occurs primarily at the sites of transverse (T)-tubule/sarcoplasmic reticulum junctions. The orderly T-tubule network guarantees the instantaneous excitation and synchronous activation of nearly all Ca(2+) release sites throughout the large ventricular myocyte. Because of the critical roles played by T-tubules and the array of channels and transporters localized to the T-tubule membrane network, T-tubule architecture has recently become an area of considerable research interest in the cardiovascular field. This review will focus on the current knowledge regarding normal T-tubule structure and function in the heart, T-tubule remodelling in the transition from compensated hypertrophy to heart failure, and the impact of T-tubule remodelling on myocyte Ca(2+) handling function. In the last section, we discuss the molecular mechanisms underlying T-tubule remodelling in heart disease.
Collapse
Affiliation(s)
- Ang Guo
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
36
|
Epac activator critically regulates action potential duration by decreasing potassium current in rat adult ventricle. J Mol Cell Cardiol 2013; 57:96-105. [PMID: 23376036 DOI: 10.1016/j.yjmcc.2013.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/21/2012] [Accepted: 01/17/2013] [Indexed: 02/08/2023]
Abstract
Sympathetic stimulation is an important modulator of cardiac function via the classic cAMP-dependent signaling pathway, PKA. Recently, this paradigm has been challenged by the discovery of a family of guanine nucleotide exchange proteins directly activated by cAMP (Epac), acting in parallel to the classic signaling pathway. In cardiac myocytes, Epac activation is known to modulate Ca(2+) cycling yet their actions on cardiac ionic currents remain poorly characterized. This study attempts to address this paucity of information using the patch clamp technique to record action potential (AP) and ionic currents on rat ventricular myocytes. Epac was selectively activated by 8-CPT-AM (acetoxymethyl ester form of 8-CPT). AP amplitude, maximum depolarization rate and resting membrane amplitude were unaltered by 8-CPT-AM, strongly suggesting that Na(+) current and inward rectifier K(+) current are not regulated by Epac. In contrast, AP duration was significantly increased by 8-CPT-AM (prolongation of duration at 50% and 90% of repolarization by 41±10% and 43±8% respectively, n=11). L-type Ca(2+) current density was unaltered by 8-CPT-AM (n=16) so this cannot explain the action potential lengthening. However, the steady state component of K(+) current was significantly inhibited by 8-CPT-AM (-38±6%, n=15), while the transient outward K(+) current was unaffected by 8-CPT-AM. These effects were PKA-independent since they were observed in the presence of PKA inhibitor KT5720. Isoprenaline (100nM) induced a significant prolongation of AP duration, even in the presence of KT5720. This study provides the first evidence that the cAMP-binding protein Epac critically modulates cardiac AP duration by decreasing steady state K(+) current. These observations may be relevant to diseases in which Epac is upregulated, like cardiac hypertrophy.
Collapse
|
37
|
Ibrahim M, Terracciano CM. Reversibility of T-tubule remodelling in heart failure: mechanical load as a dynamic regulator of the T-tubules. Cardiovasc Res 2013; 98:225-32. [PMID: 23345265 DOI: 10.1093/cvr/cvt016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The T-tubule system in ventricular cardiomyocytes is essential for synchronous Ca(2+) handling, and, therefore, efficient contraction. T-tubular remodelling is a common feature of heart disease. In this review, we discuss whether t-tubular remodelling can be reversed and which factors may be implicated in this process. In particular, we focus on the interaction between mechanical load variation and T-tubule structure and function. What is the evidence of this relationship? What is the role of different degrees and durations of mechanical load variation? In what settings might mechanical load variation have detrimental or beneficial effects on T-tubule structure and function? What are the molecular determinants of this interaction? Ultimately this discussion is used to address the question of whether mechanical load variation can provide an understanding to underpin attempts to induce recovery of the T-tubule system. In reviewing these questions, we define what remains to be discovered in understanding T-tubule recovery.
Collapse
Affiliation(s)
- Michael Ibrahim
- Laboratory of Cell Electrophysiology, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
38
|
McNary TG, Spitzer KW, Holloway H, Bridge JHB, Kohl P, Sachse FB. Mechanical modulation of the transverse tubular system of ventricular cardiomyocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:218-25. [PMID: 22884710 DOI: 10.1016/j.pbiomolbio.2012.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/19/2022]
Abstract
In most mammalian cardiomyocytes, the transverse tubular system (t-system) is a major site for electrical signaling and excitation-contraction coupling. The t-system consists of membrane invaginations, which are decorated with various proteins involved in excitation-contraction coupling and mechano-electric feedback. Remodeling of the t-system has been reported for cells in culture and various types of heart disease. In this paper, we provide insights into effects of mechanical strain on the t-system in rabbit left ventricular myocytes. Based on fluorescent labeling, three-dimensional scanning confocal microscopy, and digital image analysis, we studied living and fixed isolated cells in different strain conditions. We extracted geometric features of transverse tubules (t-tubules) and characterized their arrangement with respect to the Z-disk. In addition, we studied the t-system in cells from hearts fixed either at zero left ventricular pressure (slack), at 30 mmHg (volume overload), or during lithium-induced contracture, using transmission electron microscopy. Two-dimensional image analysis was used to extract features of t-tubule cross-sections. Our analyses of confocal microscopic images showed that contracture at the cellular level causes deformation of the t-system, increasing the length and volume of t-tubules, and altering their cross-sectional shape. TEM data reconfirmed the presence of mechanically induced changes in t-tubular cross sections. In summary, our studies suggest that passive longitudinal stretching and active contraction of ventricular cardiomyocytes affect the geometry of t-tubules. This confirms that mechanical changes at cellular levels could promote alterations in partial volumes that would support a convection-assisted mode of exchange between the t-system content and extracellular space.
Collapse
Affiliation(s)
- Thomas G McNary
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112-5000, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Ibrahim M, Navaratnarajah M, Siedlecka U, Rao C, Dias P, Moshkov AV, Gorelik J, Yacoub MH, Terracciano CM. Mechanical unloading reverses transverse tubule remodelling and normalizes local Ca(2+)-induced Ca(2+)release in a rodent model of heart failure. Eur J Heart Fail 2012; 14:571-80. [PMID: 22467752 PMCID: PMC3359860 DOI: 10.1093/eurjhf/hfs038] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Ca(2+)-induced Ca(2+) release (CICR) is critical for contraction in cardiomyocytes. The transverse (t)-tubule system guarantees the proximity of the triggers for Ca(2+) release [L-type Ca(2+) channel, dihydropyridine receptors (DHPRs)] and the sarcoplasmic reticulum Ca(2+) release channels [ryanodine receptors (RyRs)]. Transverse tubule disruption occurs early in heart failure (HF). Clinical studies of left ventricular assist devices in HF indicate that mechanical unloading induces reverse remodelling. We hypothesize that unloading of failing hearts normalizes t-tubule structure and improves CICR. METHODS AND RESULTS Heart failure was induced in Lewis rats by left coronary artery ligation for 12 weeks; sham-operated animals were used as controls. Failing hearts were mechanically unloaded for 4 weeks by heterotopic abdominal heart transplantation (HF-UN). HF reduced the t-tubule density measured by di-8-ANEPPS staining in isolated left ventricular myocytes, and this was reversed by unloading. The deterioration in the regularity of the t-tubule system in HF was also reversed in HF-UN. Scanning ion conductance microscopy showed the reappearance of normal surface striations in HF-UN. Electron microscopy revealed recovery of normal t-tubule microarchitecture in HF-UN. L-type Ca(2+) current density, measured using whole-cell patch clamping, was reduced in HF but unaffected by unloading. The variance of the time-to-peak of the Ca(2+) transient, an index of CICR dyssynchrony, was increased in HF and normalized by unloading. The increased Ca(2+) spark frequency observed in HF was reduced in HF-UN. These results could be explained by the recoupling of orphaned RyRs in HF, as indicated by immunofluorescence. CONCLUSIONS Our data show that mechanical unloading of the failing heart reverses the pathological remodelling of the t-tubule system and improves CICR.
Collapse
Affiliation(s)
- Michael Ibrahim
- Laboratory of Cell Electrophysiology, Harefield Heart Science Centre, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Collins TP, Bayliss R, Churchill GC, Galione A, Terrar DA. NAADP influences excitation-contraction coupling by releasing calcium from lysosomes in atrial myocytes. Cell Calcium 2011; 50:449-58. [PMID: 21906808 DOI: 10.1016/j.ceca.2011.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 07/18/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
In atrial myocytes, the sarcoplasmic reticulum (SR) has an essential role in regulating the force of contraction as a consequence of its involvement in excitation-contraction coupling (ECC). Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca(2+) mobilizing messenger that acts to release Ca(2+) from an acidic store in mammalian cells. The photorelease of NAADP in atrial myocytes increased Ca(2+) transient amplitude with no effect on accompanying action potentials or the L-type Ca(2+) current. NAADP-AM, a cell permeant form of NAADP, increased Ca(2+) spark amplitude and frequency. The effect on Ca(2+) spark frequency could be prevented by bafilomycin A1, a vacuolar H(+)-ATPase inhibitor, or by disruption of lysosomes by GPN. Bafilomycin prevented staining of acidic stores with LysoTracker red by increasing lysosomal pH. NAADP-AM also produced an increase in the lysosomal pH, as detected by a reduction in LysoSensor green fluorescence. These effects of NAADP were associated with an increase in the amount of caffeine-releasable Ca(2+) in the SR and may be regulated by β-adrenoceptor stimulation with isoprenaline. These observations are consistent with a role for NAADP in regulating ECC in atrial myocytes by releasing Ca(2+) from an acidic store, which enhances SR Ca(2+) release by increasing SR load.
Collapse
Affiliation(s)
- Thomas P Collins
- Department of Pharmacology, University of Oxford, Mansfield Road, UK.
| | | | | | | | | |
Collapse
|
41
|
Ibrahim M, Gorelik J, Yacoub MH, Terracciano CM. The structure and function of cardiac t-tubules in health and disease. Proc Biol Sci 2011; 278:2714-23. [PMID: 21697171 DOI: 10.1098/rspb.2011.0624] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The transverse tubules (t-tubules) are invaginations of the cell membrane rich in several ion channels and other proteins devoted to the critical task of excitation-contraction coupling in cardiac muscle cells (cardiomyocytes). They are thought to promote the synchronous activation of the whole depth of the cell despite the fact that the signal to contract is relayed across the external membrane. However, recent work has shown that t-tubule structure and function are complex and tightly regulated in healthy cardiomyocytes. In this review, we outline the rapidly accumulating knowledge of its novel roles and discuss the emerging evidence of t-tubule dysfunction in cardiac disease, especially heart failure. Controversy surrounds the t-tubules' regulatory elements, and we draw attention to work that is defining these elements from the genetic and the physiological levels. More generally, this field illustrates the challenges in the dissection of the complex relationship between cellular structure and function.
Collapse
Affiliation(s)
- Michael Ibrahim
- Harefield Heart Science Centre, Imperial College London, Harefield, Middlesex UB9 6JH, UK
| | | | | | | |
Collapse
|
42
|
Horiuchi-Hirose M, Kashihara T, Nakada T, Kurebayashi N, Shimojo H, Shibazaki T, Sheng X, Yano S, Hirose M, Hongo M, Sakurai T, Moriizumi T, Ueda H, Yamada M. Decrease in the density of t-tubular L-type Ca2+ channel currents in failing ventricular myocytes. Am J Physiol Heart Circ Physiol 2011; 300:H978-88. [DOI: 10.1152/ajpheart.00508.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In some forms of cardiac hypertrophy and failure, the gain of Ca2+-induced Ca2+ release [CICR; i.e., the amount of Ca2+ released from the sarcoplasmic reticulum normalized to Ca2+ influx through L-type Ca2+ channels (LTCCs)] decreases despite the normal whole cell LTCC current density, ryanodine receptor number, and sarcoplasmic reticulum Ca2+ content. This decrease in CICR gain has been proposed to arise from a change in dyad architecture or derangement of the t-tubular (TT) structure. However, the activity of surface sarcolemmal LTCCs has been reported to increase despite the unaltered whole cell LTCC current density in failing human ventricular myocytes, indicating that the “decreased CICR gain” may reflect a decrease in the TT LTCC current density in heart failure. Thus, we analyzed LTCC currents of failing ventricular myocytes of mice chronically treated with isoproterenol (Iso). Although Iso-treated mice exhibited intact t-tubules and normal LTCC subunit expression, acute occlusion of t-tubules of isolated ventricular myocytes with osmotic shock (detubulation) revealed that the TT LTCC current density was halved in Iso-treated versus control myocytes. Pharmacological analysis indicated that kinases other than PKA or Ca2+/calmodulin-dependent protein kinase II insufficiently activated, whereas protein phosphatase 1/2A excessively suppressed, TT LTCCs in Iso-treated versus control myocytes. These results indicate that excessive β-adrenergic stimulation causes the decrease in TT LTCC current density by altering the regulation of TT LTCCs by protein kinases and phosphatases in heart failure. This phenomenon might underlie the decreased CICR gain in heart failure.
Collapse
Affiliation(s)
| | | | - Tsutomu Nakada
- Molecular Pharmacology, Shinshu University School of Medicine, Nagano
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo
| | - Hisashi Shimojo
- Department of Pathology, Shinshu University School of Medicine, Nagano
| | | | - Xiaona Sheng
- Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Nagano; and
| | - Shiharu Yano
- Molecular Pharmacology, Shinshu University School of Medicine, Nagano
| | - Masamichi Hirose
- Molecular Pharmacology, Shinshu University School of Medicine, Nagano
| | | | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo
| | | | - Hideho Ueda
- Anatomy and Cell Biology, Shinshu University School of Health Science, Nagano, Japan
| | - Mitsuhiko Yamada
- Molecular Pharmacology, Shinshu University School of Medicine, Nagano
| |
Collapse
|
43
|
Cheng Y, Yu Z, Hoshijima M, Holst MJ, McCulloch AD, McCammon JA, Michailova AP. Numerical analysis of Ca2+ signaling in rat ventricular myocytes with realistic transverse-axial tubular geometry and inhibited sarcoplasmic reticulum. PLoS Comput Biol 2010; 6:e1000972. [PMID: 21060856 PMCID: PMC2965743 DOI: 10.1371/journal.pcbi.1000972] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 09/23/2010] [Indexed: 12/21/2022] Open
Abstract
The t-tubules of mammalian ventricular myocytes are invaginations of the cell membrane that occur at each Z-line. These invaginations branch within the cell to form a complex network that allows rapid propagation of the electrical signal, and hence synchronous rise of intracellular calcium (Ca2+). To investigate how the t-tubule microanatomy and the distribution of membrane Ca2+ flux affect cardiac excitation-contraction coupling we developed a 3-D continuum model of Ca2+ signaling, buffering and diffusion in rat ventricular myocytes. The transverse-axial t-tubule geometry was derived from light microscopy structural data. To solve the nonlinear reaction-diffusion system we extended SMOL software tool (http://mccammon.ucsd.edu/smol/). The analysis suggests that the quantitative understanding of the Ca2+ signaling requires more accurate knowledge of the t-tubule ultra-structure and Ca2+ flux distribution along the sarcolemma. The results reveal the important role for mobile and stationary Ca2+ buffers, including the Ca2+ indicator dye. In agreement with experiment, in the presence of fluorescence dye and inhibited sarcoplasmic reticulum, the lack of detectible differences in the depolarization-evoked Ca2+ transients was found when the Ca2+ flux was heterogeneously distributed along the sarcolemma. In the absence of fluorescence dye, strongly non-uniform Ca2+ signals are predicted. Even at modest elevation of Ca2+, reached during Ca2+ influx, large and steep Ca2+ gradients are found in the narrow sub-sarcolemmal space. The model predicts that the branched t-tubule structure and changes in the normal Ca2+ flux density along the cell membrane support initiation and propagation of Ca2+ waves in rat myocytes. In cardiac muscle cells, calcium (Ca2+) is best known for its role in contraction activation. A remarkable amount of quantitative data on cardiac cell structure, ion-transporting protein distributions and intracellular Ca2+ dynamics has been accumulated. Various alterations in the protein distributions or cell ultra-structure are now recognized to be the primary mechanisms of cardiac dysfunction in a diverse range of common pathologies including cardiac arrhythmias and hypertrophy. Using a 3-D computational model, incorporating more realistic transverse-axial t-tubule geometry and considering geometric irregularities and inhomogeneities in the distribution of ion-transporting proteins, we analyze several important spatial and temporal features of Ca2+ signaling in rat ventricular myocytes. This study demonstrates that the computational models could serve as powerful tools for prediction and analyses of how the Ca2+ dynamics and cardiac excitation-contraction coupling are regulated under normal conditions or certain pathologies. The use of computational and mathematical approaches will help also to better understand aspects of cell functions that are not currently amenable to experimental investigation.
Collapse
Affiliation(s)
- Yuhui Cheng
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Zeyun Yu
- Department of Computer Science, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Masahiko Hoshijima
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Michael J. Holst
- Department of Mathematics, University of California San Diego, La Jolla, California, United States of America
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America
| | - Anushka P. Michailova
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Chase A, Orchard CH. Ca efflux via the sarcolemmal Ca ATPase occurs only in the t-tubules of rat ventricular myocytes. J Mol Cell Cardiol 2010; 50:187-93. [PMID: 20971118 DOI: 10.1016/j.yjmcc.2010.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
The transverse (t-) tubule network is an important site for Ca influx and release during excitation-contraction coupling in cardiac ventricular myocytes; however, its role in Ca extrusion is less clear. The present study was designed to investigate the relative contributions of Ca extrusion pathways across the t-tubule and surface membranes. Ventricular myocytes were isolated from the hearts of adult male Wistar rats and detubulated using formamide. Intracellular Ca was monitored using fluo-3 and confocal microscopy. Caffeine (20 mmol/L) was used to induce SR Ca release; carboxyeosin (20 μmol/L) and nickel (10 mmol/L) were used to inhibit the sarcolemmal Ca ATPase and Na/Ca exchanger (NCX) respectively. Carboxyeosin decreased the rate constant of decay of the caffeine-induced Ca transient in control cells, but had no effect in detubulated cells, suggesting that Ca extrusion via the Ca ATPase occurs only across the t-tubule membrane. However nickel decreased the rate constant of the caffeine-induced Ca transient in control and detubulated cells, although its effect was greater in control cells, suggesting that Ca extrusion via NCX occurs across the surface and t-tubule membranes. The PKA inhibitor H-89 (10 μmol/L) was used to investigate the role of basal PKA activity in Ca extrusion; H-89 appeared to have no effect on Ca extrusion via the Ca ATPase, but reduced Ca extrusion via NCX at the t-tubules but not the surface membrane. Thus it appears that Ca extrusion via the sarcolemmal Ca ATPase occurs only at the t-tubules, and is not regulated by basal PKA activity, while Ca extrusion via NCX occurs across both the surface and t-tubule membranes, but predominantly across the t-tubule membrane due, in part, to localised stimulation of NCX by PKA at the t-tubules. This may be important in heart disease, in which changes in t-tubule structure and protein phosphorylation occur.
Collapse
Affiliation(s)
- Anabelle Chase
- Department of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
45
|
Sénatore S, Rami Reddy V, Sémériva M, Perrin L, Lalevée N. Response to mechanical stress is mediated by the TRPA channel painless in the Drosophila heart. PLoS Genet 2010; 6:e1001088. [PMID: 20824071 PMCID: PMC2932686 DOI: 10.1371/journal.pgen.1001088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 07/23/2010] [Indexed: 12/01/2022] Open
Abstract
Mechanotransduction modulates cellular functions as diverse as migration, proliferation, differentiation, and apoptosis. It is crucial for organ development and homeostasis and leads to pathologies when defective. However, despite considerable efforts made in the past, the molecular basis of mechanotransduction remains poorly understood. Here, we have investigated the genetic basis of mechanotransduction in Drosophila. We show that the fly heart senses and responds to mechanical forces by regulating cardiac activity. In particular, pauses in heart activity are observed under acute mechanical constraints in vivo. We further confirm by a variety of in situ tests that these cardiac arrests constitute the biological force-induced response. In order to identify molecular components of the mechanotransduction pathway, we carried out a genetic screen based on the dependence of cardiac activity upon mechanical constraints and identified Painless, a TRPA channel. We observe a clear absence of in vivo cardiac arrest following inactivation of painless and further demonstrate that painless is autonomously required in the heart to mediate the response to mechanical stress. Furthermore, direct activation of Painless is sufficient to produce pauses in heartbeat, mimicking the pressure-induced response. Painless thus constitutes part of a mechanosensitive pathway that adjusts cardiac muscle activity to mechanical constraints. This constitutes the first in vivo demonstration that a TRPA channel can mediate cardiac mechanotransduction. Furthermore, by establishing a high-throughput system to identify the molecular players involved in mechanotransduction in the cardiovascular system, our study paves the way for understanding the mechanisms underlying a mechanotransduction pathway. Cells sense mechanical forces and design an appropriate response crucial for cell and organ shape and differentiation during development, as well as for physiological adaptation. In particular, cardiac muscle continuously adapts to the mechanical constraints generated by its own rhythmic contractile activity. Consequently, defects in mechanosensation lead to severe pathologies, including cardiomyopathies and atherosclerosis. However, despite their well recognized functional importance, the molecular mechanisms of mechanotransduction are poorly understood. Here we study the Drosophila heart to investigate the genetic basis of mechanotransduction. We show that the heart responds to mechanical constraints by diastolic heart arrests, and we demonstrate that this phenotype can be used to identify genes controlling this particular mechanotransduction pathway. We show that the cation channel, Painless, first identified in the pain response pathway, also plays an essential function in the mechanotransduction pathway. The model system we have developed allows, for the first time, analysis of gene function in a mechanotransduction process in vivo, in the presence of endogenous mechanical constraints. These results establish the basis for an in-depth characterization of mechanotransduction pathways.
Collapse
Affiliation(s)
- Sébastien Sénatore
- Institut de Biologie du développement de Marseille-Luminy, UMR-CNRS 6216, Université de la Méditerranée, Marseille, France
| | - Vatrapu Rami Reddy
- Institut de Biologie du développement de Marseille-Luminy, UMR-CNRS 6216, Université de la Méditerranée, Marseille, France
| | - Michel Sémériva
- Institut de Biologie du développement de Marseille-Luminy, UMR-CNRS 6216, Université de la Méditerranée, Marseille, France
| | - Laurent Perrin
- Institut de Biologie du développement de Marseille-Luminy, UMR-CNRS 6216, Université de la Méditerranée, Marseille, France
| | - Nathalie Lalevée
- Institut de Biologie du développement de Marseille-Luminy, UMR-CNRS 6216, Université de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
46
|
Chen WQ, Cai H, Zhang C, Ji XP, Zhang Y. Is overall blockade superior to selective blockade of adrenergic receptor subtypes in suppressing left ventricular remodeling in spontaneously hypertensive rats? Hypertens Res 2010; 33:1071-81. [PMID: 20668454 DOI: 10.1038/hr.2010.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To test the hypothesis that nonselective blockade of adrenergic receptor (AR) subtypes is superior to selective blockade of AR subtypes in suppressing left ventricular (LV) remodeling induced by hypertension. Sixty-four spontaneously hypertensive rats (SHR) were randomly divided into four groups: bisoprolol-treated, propranolol-treated, carvedilol-treated and no treatment groups (n=16, each). Sixteen Wistar-Kyoto (WKY) rats served as a control group. Echocardiography and cardiac catheterization were carried out to record the mitral flow velocity ratio of E wave to A wave (E/A), LV mass index (LVMI), maximal rising (dp/dt(max)) and falling (-dp/dt(max)) rate of the LV pressure and LV relaxation time constant (τ). The mRNA and protein expression levels of AR, protein kinase(PK) and G-protein subtypes, intracellular free calcium (Ca) concentration and cardiocyte apoptoisis rate were determined. Three drug-treated groups showed higher velocity ratio of E wave to A wave (E/A) and -dp/dt(max) and lower systolic blood pressure (SBP), LVMI, τ, apoptosis rate and intracellular free Ca(2+) concentration than the no treatment group. The mRNA expression levels of AR-α(1B) in the carvedilol group were significantly lower than the other two drug-treated groups. The mRNA expression levels of AR-β(1), AR-β(2) and Gsα were significantly higher in the three drug-treated groups than in the no treatment group, with the expression levels of AR-β(2) being the highest in the carvedilol-treated group. The protein expression levels of PKA and PKC subtype α and δ were lower in the three drug-treated groups than in the no treatment group. Overall blockade of AR subtypes is not superior to selective blockade of AR subtypes in suppressing LV remodeling in SHR. Although carvedilol is the most effective in attenuating cardiocyte apoptosis, normalizing AR-α(1B) and Gsα expression and increasing AR-β(2) expression.
Collapse
Affiliation(s)
- Wen Qiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Shandong, PR China
| | | | | | | | | |
Collapse
|
47
|
Schrauwen-Hinderling VB, Hesselink MKC, Meex R, van der Made S, Schär M, Lamb H, Wildberger JE, Glatz J, Snoep G, Kooi ME, Schrauwen P. Improved ejection fraction after exercise training in obesity is accompanied by reduced cardiac lipid content. J Clin Endocrinol Metab 2010; 95:1932-8. [PMID: 20173015 DOI: 10.1210/jc.2009-2076] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Skeletal muscle and cardiac lipid accumulation are associated with diminished insulin sensitivity and cardiac function, respectively. In skeletal muscle, physical activity paradoxically increases fat accumulation, despite improvement in insulin sensitivity. Whether cardiac muscle responds similarly remains unknown. OBJECTIVE The objective of the study was to investigate cardiac lipid content and cardiac function after a 12-wk training program. DESIGN This was an intervention study with pre/postmeasurements. SETTING The study was conducted at Maastricht University Medical Center. PARTICIPANTS Participants included 14 healthy, male overweight/obese subjects (age 58.4 +/- 0.9 yr, body mass index 29.9 +/- 0.01 kg/m(2)). INTERVENTION Intervention included a supervised 12-wk training program with three sessions per week (endurance and strength training). MAIN OUTCOME MEASURES Maximal whole-body oxygen uptake, fasting plasma parameters, systolic function (by CINE-magnetic resonance imaging), and cardiac lipid content (by proton magnetic resonance spectroscopy) were measured. RESULTS Maximal whole-body oxygen uptake increased (from 2559 +/- 131 to 2702 +/- 124 ml/min after training, P = 0.05). Plasma concentrations of glucose decreased (from 6.3 +/- 0.2 to 5.7 +/- 0.2 mmol/liter, P < 0.001); plasma triacylglycerols and (free) fatty acids did not change. Also, body weight (from 94.2 +/- 3.6 to 92.9 +/- 3.6 kg, P = 0.10) and fat percentage (from 33.6 +/- 1.7 to 32.5 +/- 2.0%, P = 0.14) was unchanged. Left ventricular ejection fraction improved (from 52.2 +/- 1.3 to 54.2 +/- 1.2%, P = 0.02), and cardiac lipid content in the septum was decreased after training (0.99 +/- 0.15 to 0.54 +/- 0.04%, P = 0.02). CONCLUSIONS Twelve weeks of endurance/strength training significantly reduced cardiac lipid content in overweight subjects and was paralleled by improved ejection fraction. This is in line with a lipotoxic action of (excess) cardiac lipids on cardiac function, although a causal relationship cannot be derived from this study. Further research is needed to clarify the clinical relevance of cardiac lipid content in the etiology of cardiovascular complications.
Collapse
Affiliation(s)
- Vera B Schrauwen-Hinderling
- Department of Radiology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Smyrnias I, Mair W, Harzheim D, Walker SA, Roderick HL, Bootman MD. Comparison of the T-tubule system in adult rat ventricular and atrial myocytes, and its role in excitation–contraction coupling and inotropic stimulation. Cell Calcium 2010; 47:210-23. [DOI: 10.1016/j.ceca.2009.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/25/2009] [Accepted: 10/05/2009] [Indexed: 10/19/2022]
|
49
|
Localised Ca channel phosphorylation modulates the distribution of L-type Ca current in cardiac myocytes. J Mol Cell Cardiol 2010; 49:121-31. [PMID: 20188735 DOI: 10.1016/j.yjmcc.2010.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/01/2010] [Accepted: 02/18/2010] [Indexed: 11/23/2022]
Abstract
The t-tubule network is central to excitation-contraction coupling in mammalian cardiac ventricular myocytes, with recent studies showing that the majority of Ca influx via the L-type Ca current (I(Ca)) occurs across the t-tubule membrane. The present study investigated whether tonic phosphorylation of the L-type Ca channel is different at the t-tubule and surface membranes, and if this could account for the high density of I(Ca) at the t-tubules. Ventricular myocytes were isolated from male Wistar rats and detubulated using formamide. I(Ca) was recorded using the whole cell patch clamp technique, and Ca transients were recorded using fluo-3 in conjunction with confocal microscopy. The protein kinase A (PKA) inhibitor H-89 (10micromol/L) and the CaMKII inhibitor KN-93 (5micromol/L) decreased the amplitude of I(Ca) in intact cells but had no effect on I(Ca) amplitude in detubulated cells. These inhibitors also decreased the amplitude of the Ca transient in intact cells but not in detubulated cells. Antibody staining for phosphorylated L-type Ca channel showed significantly higher phosphorylation at the t-tubules than at the surface membrane in intact cells. Thus it appears that tonic phosphorylation of the L-type Ca channel maintains the amplitude of I(Ca) and occurs predominantly at the t-tubules. This may have important implications in heart disease, in which changes of phosphorylation and t-tubule density have been reported.
Collapse
|
50
|
Hong TT, Smyth JW, Gao D, Chu KY, Vogan JM, Fong TS, Jensen BC, Colecraft HM, Shaw RM. BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol 2010; 8:e1000312. [PMID: 20169111 PMCID: PMC2821894 DOI: 10.1371/journal.pbio.1000312] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/12/2010] [Indexed: 01/15/2023] Open
Abstract
Cardiac tubular-like membrane invaginations contain the membrane scaffolding protein BIN1, which tethers dynamic microtubules that deliver calcium channels directly to T-tubule membrane. The BAR domain protein superfamily is involved in membrane invagination and endocytosis, but its role in organizing membrane proteins has not been explored. In particular, the membrane scaffolding protein BIN1 functions to initiate T-tubule genesis in skeletal muscle cells. Constitutive knockdown of BIN1 in mice is perinatal lethal, which is associated with an induced dilated hypertrophic cardiomyopathy. However, the functional role of BIN1 in cardiomyocytes is not known. An important function of cardiac T-tubules is to allow L-type calcium channels (Cav1.2) to be in close proximity to sarcoplasmic reticulum-based ryanodine receptors to initiate the intracellular calcium transient. Efficient excitation-contraction (EC) coupling and normal cardiac contractility depend upon Cav1.2 localization to T-tubules. We hypothesized that BIN1 not only exists at cardiac T-tubules, but it also localizes Cav1.2 to these membrane structures. We report that BIN1 localizes to cardiac T-tubules and clusters there with Cav1.2. Studies involve freshly acquired human and mouse adult cardiomyocytes using complementary immunocytochemistry, electron microscopy with dual immunogold labeling, and co-immunoprecipitation. Furthermore, we use surface biotinylation and live cell confocal and total internal fluorescence microscopy imaging in cardiomyocytes and cell lines to explore delivery of Cav1.2 to BIN1 structures. We find visually and quantitatively that dynamic microtubules are tethered to membrane scaffolded by BIN1, allowing targeted delivery of Cav1.2 from the microtubules to the associated membrane. Since Cav1.2 delivery to BIN1 occurs in reductionist non-myocyte cell lines, we find that other myocyte-specific structures are not essential and there is an intrinsic relationship between microtubule-based Cav1.2 delivery and its BIN1 scaffold. In differentiated mouse cardiomyocytes, knockdown of BIN1 reduces surface Cav1.2 and delays development of the calcium transient, indicating that Cav1.2 targeting to BIN1 is functionally important to cardiac calcium signaling. We have identified that membrane-associated BIN1 not only induces membrane curvature but can direct specific antegrade delivery of microtubule-transported membrane proteins. Furthermore, this paradigm provides a microtubule and BIN1-dependent mechanism of Cav1.2 delivery to T-tubules. This novel Cav1.2 trafficking pathway should serve as an important regulatory aspect of EC coupling, affecting cardiac contractility in mammalian hearts. Calcium plays a primary role in regulating heart function. During each heartbeat, calcium ions cross the membrane of individual cardiac muscle cells and trigger a rapid increase of calcium within the cell (called the calcium transient). Calcium causes the muscle cells to contract and determines the strength of the overall heartbeat. Each cardiac muscle cell has many small tubular-like membrane invaginations known as T-tubules where calcium channels localize, allowing calcium ions to enter and immediately encounter intracellular calcium release organelles. While this organization is well described, it is not known how calcium channels localize to T-tubule membrane. Here we show that in human and mouse heart cells, a membrane scaffolding protein known as BIN1 is localized together with calcium channels at T-tubules. Using high-resolution live cell microscopy, we found that microtubules, which are necessary for calcium channel delivery to the membrane, are also tethered by BIN1. Loss of BIN1 in cardiac cells impairs delivery of calcium channels to the membrane and diminishes the intracellular calcium transient. According to this model, microtubules function as highways that carry newly synthesized calcium channels to BIN1-containing membrane. Once tethered to T-tubules by BIN1, the microtubules can deliver their calcium channel cargo. We postulate that this calcium channel delivery pathway is important to the regulation of cardiac calcium signaling and beat-to-beat cardiac function.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/genetics
- Calcium Signaling/physiology
- Cell Line
- Cells, Cultured
- HeLa Cells
- Humans
- Immunohistochemistry
- Immunoprecipitation
- Male
- Mice
- Mice, Knockout
- Microscopy, Electron, Transmission
- Myocardial Contraction/genetics
- Myocardial Contraction/physiology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Myocytes, Cardiac/ultrastructure
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/ultrastructure
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Ting-Ting Hong
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - James W. Smyth
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Danchen Gao
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Kevin Y. Chu
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Jacob M. Vogan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Tina S. Fong
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Brian C. Jensen
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Henry M. Colecraft
- Department of Physiology, Columbia University, New York, New York, United States of America
| | - Robin M. Shaw
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|