1
|
Zhu B, Zhang C, Wang J, Jia C, Lu T, Dai L, Chen T. Scaling Laws for Protein Folding under Confinement. J Phys Chem Lett 2024; 15:10138-10145. [PMID: 39340464 DOI: 10.1021/acs.jpclett.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Spatial confinement significantly affects protein folding. Without the confinement provided by chaperones, many proteins cannot fold correctly. However, the quantitative effect of confinement on protein folding remains elusive. In this study, we observed scaling laws between the variation in folding transition temperature and the size of confinement, (Tf - Tfbulk)/Tfbulk ∼ L-ν. The scaling exponent v is significantly influenced by both the protein's topology and folding cooperativity. Specifically, for a given protein, v can decrease as the folding cooperativity of the model increases, primarily due to the heightened sensitivity of the unfolded state energy to changes in cage size. For proteins with diverse topologies, variations in topological complexity influence scaling exponents in multiple ways. Notably, v exhibits a clear positive correlation with contact order and the proportion of nonlocal contacts, as this complexity significantly enhances the sensitivity of entropy loss in the unfolded state. Furthermore, we developed a novel scaling argument yielding 5/3 ≤ ν ≤ 10/3, consistent with the simulation results.
Collapse
Affiliation(s)
- Bin Zhu
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Chenxi Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Jiwei Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Chuandong Jia
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Teng Lu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, P. R. China
| | - Tao Chen
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, China
| |
Collapse
|
2
|
Mendes G, Faulk B, Kaparthi B, Irion AR, Fong BL, Bayless K, Bondos SE. Genetic Functionalization of Protein-Based Biomaterials via Protein Fusions. Biomacromolecules 2024; 25:4639-4662. [PMID: 39074364 PMCID: PMC11323028 DOI: 10.1021/acs.biomac.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Proteins implement many useful functions, including binding ligands with unparalleled affinity and specificity, catalyzing stereospecific chemical reactions, and directing cell behavior. Incorporating proteins into materials has the potential to imbue devices with these desirable traits. This review highlights recent advances in creating active materials by genetically fusing a self-assembling protein to a functional protein. These fusion proteins form materials while retaining the function of interest. Key advantages of this approach include elimination of a separate functionalization step during materials synthesis, uniform and dense coverage of the material by the functional protein, and stabilization of the functional protein. This review focuses on macroscale materials and discusses (i) multiple strategies for successful protein fusion design, (ii) successes and limitations of the protein fusion approach, (iii) engineering solutions to bypass any limitations, (iv) applications of protein fusion materials, including tissue engineering, drug delivery, enzyme immobilization, electronics, and biosensing, and (v) opportunities to further develop this useful technique.
Collapse
Affiliation(s)
- Gabriela
Geraldo Mendes
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Fralin
Biomedical Research Institute, Virginia
Tech University, Roanoke, Virginia 24016, United States
| | - Britt Faulk
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Bhavika Kaparthi
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Andrew R. Irion
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Brandon Look Fong
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Kayla Bayless
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Sarah E. Bondos
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Ghassemi Z, Leach JB. Impact of Confinement within a Hydrogel Mesh on Protein Thermodynamic Stability and Aggregation Kinetics. Mol Pharm 2024; 21:1137-1148. [PMID: 38277273 DOI: 10.1021/acs.molpharmaceut.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Though protein stability and aggregation have been well characterized in dilute solutions, the influence of a confining environment that exists (e.g., in intercellular and tissue spaces and therapeutic formulations) on the protein structure is largely unknown. Herein, the effects of confinement on stability and aggregation were explored for proteins of different sizes, stability, and hydrophobicity when encapsulated in hydrophilic poly(ethylene glycol) hydrogels. Denaturation curves show linear correlations between confinement size (mesh size) and thermodynamic stability, i.e., unfolding free energy and surface area accessible for solvation (represented by m-value). Two clusters of protein types are identifiable from these correlations; the clusters are defined by differences in protein stability, surface area, and aggregation propensity. Proteins with higher stability, larger surface area, and lower aggregation propensity (e.g., lysozyme and myoglobin) are less affected by the confinement imposed by mesh size than proteins with lower stability, smaller surface area, and higher aggregation propensity (e.g., growth hormone and aldehyde dehydrogenase). According to aggregation kinetics measured by thioflavin T fluorescence, confinement in smaller mesh sizes resulted in slower aggregation rates than that in larger mesh sizes. Compared to that in buffer solution, the confinement of a hydrophobic protein (e.g., human insulin) in the hydrogels accelerates protein aggregation. Conversely, the confinement of a hydrophilic protein (e.g., human amylin) in the hydrogels decelerates or prevents aggregation, with the rates of aggregation inversely proportional to mesh size. These findings provide new insights into protein conformational stability in confined microenvironments relevant to various cellular, tissue, and therapeutics scenarios.
Collapse
Affiliation(s)
- Zahra Ghassemi
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, ECS 314, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Jennie B Leach
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, ECS 314, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
4
|
Seitz C, Deveci İ, McCammon JA. Glycosylation and Crowded Membrane Effects on Influenza Neuraminidase Stability and Dynamics. J Phys Chem Lett 2023; 14:9926-9934. [PMID: 37903229 PMCID: PMC10641874 DOI: 10.1021/acs.jpclett.3c02524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023]
Abstract
All protein simulations are conducted with varying degrees of simplification, oftentimes with unknown ramifications about how these simplifications affect the interpretability of the results. In this work, we investigated how protein glycosylation and lateral crowding effects modulate an array of properties characterizing the stability and dynamics of influenza neuraminidase. We constructed three systems: (1) glycosylated neuraminidase in a whole virion (i.e., crowded membrane) environment, (2) glycosylated neuraminidase in its own lipid bilayer, and (3) unglycosylated neuraminidase in its own lipid bilayer. We saw that glycans tend to stabilize the protein structure and reduce its conformational flexibility while restricting the solvent movement. Conversely, a crowded membrane environment encouraged exploration of the free energy landscape and a large-scale conformational change, while making the protein structure more compact. Understanding these effects informs what factors one must consider in attempting to recapture the desired level of physical accuracy.
Collapse
Affiliation(s)
- Christian Seitz
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - İlker Deveci
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - J. Andrew McCammon
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Seitz C, Deveci İ, McCammon JA. Glycosylation and Crowded Membrane Effects on Influenza Neuraminidase Stability and Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.556910. [PMID: 37745347 PMCID: PMC10515755 DOI: 10.1101/2023.09.10.556910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
All protein simulations are conducted with varying degrees of simplifications, oftentimes with unknown ramifications on how these simplifications affect the interpretability of the results. In this work we investigated how protein glycosylation and lateral crowding effects modulate an array of properties characterizing the stability and dynamics of influenza neuraminidase. We constructed three systems: 1) Glycosylated neuraminidase in a whole virion (i.e. crowded membrane) environment 2) Glycosylated neuraminidase in its own lipid bilayer 3) Unglycosylated neuraminidase in its own lipid bilayer. We saw that glycans tend to stabilize the protein structure and reduce its conformational flexibility while restricting solvent movement. Conversely, a crowded membrane environment encouraged exploration of the free energy landscape and a large scale conformational change while making the protein structure more compact. Understanding these effects informs what factors one must consider while attempting to recapture the desired level of physical accuracy.
Collapse
Affiliation(s)
- Christian Seitz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - İlker Deveci
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Flanagan M, Gan Q, Sheth S, Schafer R, Ruesing S, Winter LE, Toth K, Zustiak SP, Montaño AM. Hydrogel Delivery Device for the In Vitro and In Vivo Sustained Release of Active rhGALNS Enzyme. Pharmaceuticals (Basel) 2023; 16:931. [PMID: 37513843 PMCID: PMC10384033 DOI: 10.3390/ph16070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Morquio A disease is a genetic disorder resulting in N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency, and patients are currently treated with enzyme replacement therapy via weekly intravenous enzyme infusions. A means of sustained enzyme delivery could improve patient quality of life by reducing the administration time, frequency of hospital visits, and treatment cost. In this study, we investigated poly(ethylene-glycol) (PEG) hydrogels as a tunable, hydrolytically degradable drug delivery system for the encapsulation and sustained release of recombinant human GALNS (rhGALNS). We evaluated hydrogel formulations that optimized hydrogel gelation and degradation time while retaining rhGALNS activity and sustaining rhGALNS release. We observed the release of active rhGALNS for up to 28 days in vitro from the optimized formulation. rhGALNS activity was preserved in the hydrogel relative to buffer over the release window, and encapsulation was found to have no impact on the rhGALNS structure when measured by intrinsic fluorescence, circular dichroism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vivo, we monitored the retention of fluorescently labeled rhGALNS in C57BL/6 albino mice when administered via subcutaneous injection and observed rhGALNS present for up to 20 days when delivered in a hydrogel versus 7 days in the buffer control. These results indicate that PEG hydrogels are suitable for the encapsulation, preservation, and sustained release of recombinant enzymes and may present an alternative method of delivering enzyme replacement therapies that improve patient quality of life.
Collapse
Affiliation(s)
- Michael Flanagan
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Qi Gan
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Saahil Sheth
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Rachel Schafer
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Samuel Ruesing
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Linda E Winter
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Karoly Toth
- Department of Microbiology and Molecular Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Silviya P Zustiak
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Adriana M Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| |
Collapse
|
7
|
Bhattacharjee N, Alonso-Cotchico L, Lucas MF. Enzyme immobilization studied through molecular dynamic simulations. Front Bioeng Biotechnol 2023; 11:1200293. [PMID: 37362217 PMCID: PMC10285225 DOI: 10.3389/fbioe.2023.1200293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, simulations have been used to great advantage to understand the structural and dynamic aspects of distinct enzyme immobilization strategies, as experimental techniques have limitations in establishing their impact at the molecular level. In this review, we discuss how molecular dynamic simulations have been employed to characterize the surface phenomenon in the enzyme immobilization procedure, in an attempt to decipher its impact on the enzyme features, such as activity and stability. In particular, computational studies on the immobilization of enzymes using i) nanoparticles, ii) self-assembled monolayers, iii) graphene and carbon nanotubes, and iv) other surfaces are covered. Importantly, this thorough literature survey reveals that, while simulations have been primarily performed to rationalize the molecular aspects of the immobilization event, their use to predict adequate protocols that can control its impact on the enzyme properties is, up to date, mostly missing.
Collapse
|
8
|
Dutta P, Roy P, Sengupta N. Effects of External Perturbations on Protein Systems: A Microscopic View. ACS OMEGA 2022; 7:44556-44572. [PMID: 36530249 PMCID: PMC9753117 DOI: 10.1021/acsomega.2c06199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Protein folding can be viewed as the origami engineering of biology resulting from the long process of evolution. Even decades after its recognition, research efforts worldwide focus on demystifying molecular factors that underlie protein structure-function relationships; this is particularly relevant in the era of proteopathic disease. A complex co-occurrence of different physicochemical factors such as temperature, pressure, solvent, cosolvent, macromolecular crowding, confinement, and mutations that represent realistic biological environments are known to modulate the folding process and protein stability in unique ways. In the current review, we have contextually summarized the substantial efforts in unveiling individual effects of these perturbative factors, with major attention toward bottom-up approaches. Moreover, we briefly present some of the biotechnological applications of the insights derived from these studies over various applications including pharmaceuticals, biofuels, cryopreservation, and novel materials. Finally, we conclude by summarizing the challenges in studying the combined effects of multifactorial perturbations in protein folding and refer to complementary advances in experiment and computational techniques that lend insights to the emergent challenges.
Collapse
Affiliation(s)
- Pallab Dutta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| | - Priti Roy
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma74078, United States
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| |
Collapse
|
9
|
Ghassemi Z, Ruesing S, Leach JB, Zustiak SP. Stability of proteins encapsulated in Michael-type addition polyethylene glycol hydrogels. Biotechnol Bioeng 2021; 118:4840-4853. [PMID: 34606089 PMCID: PMC8585711 DOI: 10.1002/bit.27949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 11/12/2022]
Abstract
Degradable polyethylene glycol (PEG) hydrogels are excellent vehicles for sustained drug release due to their biocompatibility, tunable physical properties, and customizable degradation. However, protein therapeutics are unstable under physiological conditions and releasing degraded or inactive therapeutics can induce immunogenic effects. While controlling protein release from PEG hydrogels has been extensively investigated, few studies have detailed protein stability long-term or under stress conditions. Here, lysozyme and alcohol dehydrogenase (ADH) stability were explored upon encapsulation in PEG hydrogels formed through Michael-type addition. The stability and structure of the two model proteins were monitored by measuring the free energy of unfolding and fluoresce quenching when confined in a hydrogel and compared to PEG solution and buffer. Hydrogels destabilized lysozyme structure at low denaturant concentrations but prevented complete unfolding at high concentrations. ADH was stabilized as the confining mesh size approached the protein radius of gyration. Both proteins retained enzymatic activity within the hydrogels under stress conditions, including denaturant, high temperature, and agitation. Conjugation between lysozyme and PEG-acrylate was identified at long reaction times but no conjugation was observed in the time required for complete gelation. Studies of protein stability in PEG hydrogels, as the one detailed here, can lead to designer technologies for the improved formulation, storage, and delivery of protein therapeutics.
Collapse
Affiliation(s)
- Zahra Ghassemi
- Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Sam Ruesing
- Biomedical Engineering, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA
| | - Jennie B Leach
- Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Silviya P Zustiak
- Biomedical Engineering, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA
| |
Collapse
|
10
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
11
|
Smith AK, Soltani M, Wilkerson JW, Timmerman BD, Zhao EL, Bundy BC, Knotts TA. Coarse-grained simulation of PEGylated and tethered protein devices at all experimentally accessible surface residues on β-lactamase for stability analysis and comparison. J Chem Phys 2021; 154:075102. [PMID: 33607875 DOI: 10.1063/5.0032019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PEGylated and surface-tethered proteins are used in a variety of biotechnological applications, but traditional methods offer little control over the placement of the functionalization sites on the protein. Fortunately, recent experimental methods functionalize the protein at any location on the amino acid sequence, so the question becomes one of selecting the site that will result in the best protein function. This work shows how molecular simulation can be used to screen potential attachment sites for surface tethering or PEGylation. Previous simulation work has shown promise in this regard for a model protein, but these studies are limited to screening only a few of the surface-accessible sites or only considered surface tethering or PEGylation separately rather than their combined effects. This work is done to overcome these limitations by screening all surface-accessible functionalization sites on a protein of industrial and therapeutic importance (TEM-1) and to evaluate the effects of tethering and PEGylation simultaneously in an effort to create a more accurate screen. The results show that functionalization site effectiveness appears to be a function of super-secondary and tertiary structures rather than the primary structure, as is often currently assumed. Moreover, sites in the middle of secondary structure elements, and not only those in loops regions, are shown to be good options for functionalization-a fact not appreciated in current practice. Taken as a whole, the results show how rigorous molecular simulation can be done to identify candidate amino acids for functionalization on a protein to facilitate the rational design of protein devices.
Collapse
Affiliation(s)
- Addison K Smith
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Mehran Soltani
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Joshua W Wilkerson
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Brandon D Timmerman
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Emily Long Zhao
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Bradley C Bundy
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Thomas A Knotts
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
12
|
Ferreira C, Pinto MF, Macedo-Ribeiro S, Pereira PJB, Rocha FA, Martins PM. Protein crystals as a key for deciphering macromolecular crowding effects on biological reactions. Phys Chem Chem Phys 2020; 22:16143-16149. [PMID: 32638771 DOI: 10.1039/d0cp02469d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
When placed in the same environment, biochemically unrelated macromolecules influence each other's biological function through macromolecular crowding (MC) effects. This has been illustrated in vitro by the effects of inert polymers on protein stability, protein structure, enzyme kinetics and protein aggregation kinetics. While a unified way to quantitatively characterize MC is still lacking, we show that the crystal solubility of lysozyme can be used to predict the influence of crowding agents on the catalytic efficiency of this enzyme. In order to capture general enthalpic effects, as well as hard entropic effects that are specific of large molecules, we tested sucrose and its cross-linked polymer Ficoll-70 as additives. Despite the different conditions of pH and ionic strength adopted, both the crystallization and the enzymatic assays point to an entropic contribution of approximately -1 kcal mol-1 caused by MC. Our results demonstrate that the thermodynamic activity of proteins is markedly increased by the reduction of accessible volume caused by the presence of macromolecular cosolutes. Unlike what is observed in protein folding studies, this MC effect cannot be reproduced using equivalent concentrations of monomeric crowding units. Applicable to any crystallizable protein, the thermodynamic interpretation of MC based on crystal solubility is expected to help in elucidating the full extent and importance of hard-type interactions in the crowded environment of the cell.
Collapse
Affiliation(s)
- Cecília Ferreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Filipa Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal and ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Fernando Alberto Rocha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Pedro Miguel Martins
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Simpson LW, Good TA, Leach JB. Protein folding and assembly in confined environments: Implications for protein aggregation in hydrogels and tissues. Biotechnol Adv 2020; 42:107573. [PMID: 32512220 DOI: 10.1016/j.biotechadv.2020.107573] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/03/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022]
Abstract
In the biological milieu of a cell, soluble crowding molecules and rigid confined environments strongly influence whether the protein is properly folded, intrinsically disordered proteins assemble into distinct phases, or a denatured or aggregated protein species is favored. Such crowding and confinement factors act to exclude solvent volume from the protein molecules, resulting in an increased local protein concentration and decreased protein entropy. A protein's structure is inherently tied to its function. Examples of processes where crowding and confinement may strongly influence protein function include transmembrane protein dimerization, enzymatic activity, assembly of supramolecular structures (e.g., microtubules), nuclear condensates containing transcriptional machinery, protein aggregation in the contexts of disease and protein therapeutics. Historically, most protein structures have been determined from pure, dilute protein solutions or pure crystals. However, these are not the environments in which these proteins function. Thus, there has been an increased emphasis on analyzing protein structure and dynamics in more "in vivo-like" environments. Complex in vitro models using hydrogel scaffolds to study proteins may better mimic features of the in vivo environment. Therefore, analytical techniques need to be optimized for real-time analysis of proteins within hydrogel scaffolds.
Collapse
Affiliation(s)
- Laura W Simpson
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Eng 314, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Theresa A Good
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Ave, Alexandria, VA 22314, USA
| | - Jennie B Leach
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Eng 314, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
14
|
Taylor MP, Prunty TM, O'Neil CM. All-or-none folding of a flexible polymer chain in cylindrical nanoconfinement. J Chem Phys 2020; 152:094901. [PMID: 33480730 DOI: 10.1063/1.5144818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Geometric confinement of a polymer chain results in a loss of conformational entropy. For a chain that can fold into a compact native state via a first-order-like transition, as is the case for many small proteins, confinement typically provides an entropic stabilization of the folded state, thereby shifting the location of the transition. This allows for the possibility of confinement (entropy) driven folding. Here, we investigate such confinement effects for a flexible square-well-sphere N-mer chain (monomer diameter σ) confined within a long cylindrical pore (diameter D) or a closed cylindrical box (height H = D). We carry out Wang-Landau simulations to construct the density of states, which provides access to the complete thermodynamics of the system. For a wide pore, an entropic stabilization of the folded state is observed. However, as the pore diameter approaches the size of the folded chain (D ∼ N1/3σ), we find a destabilization effect. For pore diameters smaller than the native ground-state, the chain folds into a different, higher energy, ground state ensemble and the T vs D phase diagram displays non-monotonic behavior as the system is forced into different ground states for different ranges of D. In this regime, isothermal reduction of the confinement dimension can induce folding, unfolding, or crystallite restructuring. For the cylindrical box, we find a monotonic stabilization effect with decreasing D. Scaling laws for the confinement free energy in the athermal limit are also investigated.
Collapse
Affiliation(s)
- Mark P Taylor
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| | - Troy M Prunty
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| | | |
Collapse
|
15
|
Zhao Y, Dabrowski-Tumanski P, Niewieczerzal S, Sulkowska JI. The exclusive effects of chaperonin on the behavior of proteins with 52 knot. PLoS Comput Biol 2018; 14:e1005970. [PMID: 29547629 PMCID: PMC5874080 DOI: 10.1371/journal.pcbi.1005970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/28/2018] [Accepted: 01/12/2018] [Indexed: 02/05/2023] Open
Abstract
The folding of proteins with a complex knot is still an unresolved question. Based on representative members of Ubiquitin C-terminal Hydrolases (UCHs) that contain the 52 knot in the native state, we explain how UCHs are able to unfold and refold in vitro reversibly within the structure-based model. In particular, we identify two, topologically different folding/unfolding pathways and corroborate our results with experiment, recreating the chevron plot. We show that confinement effect of chaperonin or weak crowding greatly facilitates folding, simultaneously slowing down the unfolding process of UCHs, compared with bulk conditions. Finally, we analyze the existence of knots in the denaturated state of UCHs. The results of the work show that the crowded environment of the cell should have a positive effect on the kinetics of complex knotted proteins, especially when proteins with deeper knots are found in this family. Self-tying of knotted proteins remains a challenge both for theoreticians and experimentalist. In this work, we study the proteins with complex, the 52 knot, in a bulk and confined within a chaperonin box. We show that in our model we recreate the experimental results, identify two topologically distinct folding pathways and explain the beneficial role of confinement for complex knotted proteins. Encapsulation provides a possibility to fold via alternative pathway—folding via trefoil intermediate knot (N-terminal pathway) from entropic reason while folding via the C-terminal (direct tying) appears with the same probability. The results of this work show, how crowded environment in the real cell may enhance self-tying of proteins. The results are also the first step to the identification of possible oligomerization-prone forms of UCHs, which may cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Yani Zhao
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dabrowski-Tumanski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | - Joanna I. Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
16
|
Affiliation(s)
- Mark P. Taylor
- Department of Physics, Hiram College, Hiram, Ohio 44234, United States
| |
Collapse
|
17
|
Niewieczerzal S, Sulkowska JI. Knotting and unknotting proteins in the chaperonin cage: Effects of the excluded volume. PLoS One 2017; 12:e0176744. [PMID: 28489858 PMCID: PMC5425179 DOI: 10.1371/journal.pone.0176744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/14/2017] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations are used to explore the effects of chaperonin-like cages on knotted proteins with very low sequence similarity, different depths of a knot but with a similar fold, and the same type of topology. The investigated proteins are VirC2, DndE and MJ0366 with two depths of a knot. A comprehensive picture how encapsulation influences folding rates is provided based on the analysis of different cage sizes and temperature conditions. Neither of these two effects with regard to knotted proteins has been studied by means of molecular dynamics simulations with coarse-grained structure-based models before. We show that encapsulation in a chaperonin is sufficient to self-tie and untie small knotted proteins (VirC2, DndE), for which the equilibrium process is not accessible in the bulk solvent. Furthermore, we find that encapsulation reduces backtracking that arises from the destabilisation of nucleation sites, smoothing the free energy landscape. However, this effect can also be coupled with temperature rise. Encapsulation facilitates knotting at the early stage of folding and can enhance an alternative folding route. Comparison to unknotted proteins with the same fold shows directly how encapsulation influences the free energy landscape. In addition, we find that as the size of the cage decreases, folding times increase almost exponentially in a certain range of cage sizes, in accordance with confinement theory and experimental data for unknotted proteins.
Collapse
Affiliation(s)
- Szymon Niewieczerzal
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna I. Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
18
|
|
19
|
Starzyk A, Wojciechowski M, Cieplak M. Structural fluctuations and thermal stability of proteins in crowded environments: effects of the excluded volume. Phys Biol 2016; 13:066002. [PMID: 27779115 DOI: 10.1088/1478-3975/13/6/066002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We perform molecular dynamics simulations for a simple coarse-grained model of a protein placed inside of a softly repulsive sphere of radius R. The protein is surrounded either by a number of same molecules or a number of spherical crowding particles that immitate other biomolecules such as the osmolytes. The two descriptions are shown to lead to distinct results when testing thermal stability as assessed by studying the unfolding times as a function of temperature. We consider three examples of proteins and show that crowding increases the thermal stability provided the inter-protein or protein-crowder interactions are repulsive. On the other hand, an introduction of attraction between the proteins is found to destabilize the proteins. Crowding by repulsive crowder particles is seen to enhance the RMSF in certain exposed regions. The effect grows on decreasing the size of the crowding particles. In the absence of crowding the RMSF anticorrelates with the coordination number related to the residue-residue interaction.
Collapse
Affiliation(s)
- Anna Starzyk
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty of University of Rzeszów, ul. Warzywna 1a, 35-310 Rzeszów, Poland
| | | | | |
Collapse
|
20
|
Merling WL, Mileski JB, Douglas JF, Simmons DS. The Glass Transition of a Single Macromolecule. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01461] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Weston L. Merling
- Department
of Polymer Engineering, The University of Akron, 250 South Forge
St., Akron, Ohio 44325-0301, United States
| | - Johnathon B. Mileski
- Department
of Polymer Engineering, The University of Akron, 250 South Forge
St., Akron, Ohio 44325-0301, United States
| | - Jack F. Douglas
- Materials
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David S. Simmons
- Department
of Polymer Engineering, The University of Akron, 250 South Forge
St., Akron, Ohio 44325-0301, United States
| |
Collapse
|
21
|
Janke W, Paul W. Thermodynamics and structure of macromolecules from flat-histogram Monte Carlo simulations. SOFT MATTER 2016; 12:642-657. [PMID: 26574738 DOI: 10.1039/c5sm01919b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Over the last decade flat-histogram Monte Carlo simulations, especially multi-canonical and Wang-Landau simulations, have emerged as a strong tool to study the statistical mechanics of polymer chains. These investigations have focused on coarse-grained models of polymers on the lattice and in the continuum. Phase diagrams of chains in bulk as well as chains attached to surfaces were studied, for homopolymers as well as for protein-like models. Also, aggregation behavior in solution of these models has been investigated. We will present here the theoretical background for these simulations, explain the algorithms used and discuss their performance and give an overview over the systems studied with these methods in the literature, where we will limit ourselves to studies of coarse-grained model systems. Implementations of these algorithms on parallel computers will be also briefly described. In parallel to the development of these simulation methods, the power of a micro-canonical analysis of such simulations has been recognized, and we present the current state of the art in applying the micro-canonical analysis to phase transitions in nanoscopic polymer systems.
Collapse
Affiliation(s)
- Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, 04009 Leipzig, Germany.
| | | |
Collapse
|
22
|
Pierre B, Labonte JW, Xiong T, Aoraha E, Williams A, Shah V, Chau E, Helal KY, Gray JJ, Kim JR. Molecular Determinants for Protein Stabilization by Insertional Fusion to a Thermophilic Host Protein. Chembiochem 2015; 16:2392-402. [DOI: 10.1002/cbic.201500310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Brennal Pierre
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jason W. Labonte
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Tina Xiong
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Edwin Aoraha
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Asher Williams
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Vandan Shah
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Edward Chau
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Kazi Yasin Helal
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| |
Collapse
|
23
|
Zierenberg J, Mueller M, Schierz P, Marenz M, Janke W. Aggregation of theta-polymers in spherical confinement. J Chem Phys 2015; 141:114908. [PMID: 25240373 DOI: 10.1063/1.4893307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate the aggregation transition of theta polymers in spherical confinement with multicanonical simulations. This allows for a systematic study of the effect of density on the aggregation transition temperature for up to 24 monodisperse polymers. Our results for solutions in the dilute regime show that polymers can be considered isolated for all temperatures larger than the aggregation temperature, which is shown to be a function of the density. The resulting competition between single-polymer collapse and aggregation yields the lower temperature bound of the isolated chain approximation. We provide entropic and energetic arguments to describe the density dependence and finite-size effects of the aggregation transition for monodisperse solutions in finite systems. This allows us to estimate the aggregation transition temperature of dilute systems in a spherical cavity, using a few simulations of small, sufficiently dilute polymer systems.
Collapse
Affiliation(s)
- Johannes Zierenberg
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| | - Marco Mueller
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| | - Philipp Schierz
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| | - Martin Marenz
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| |
Collapse
|
24
|
Welling RC, Knotts TA. The effects of multiple probes on the hybridization of target DNA on surfaces. J Chem Phys 2015; 142:015102. [DOI: 10.1063/1.4904929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Ryan C. Welling
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| | - Thomas A. Knotts
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
25
|
Combined effect of confinement and affinity of crowded environment on conformation switching of adenylate kinase. J Mol Model 2014; 20:2530. [DOI: 10.1007/s00894-014-2530-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/12/2014] [Indexed: 01/25/2023]
|
26
|
Guo X, Wang J, Zhang J, Wang W. Conformational phase diagram for proteins absorbed on ultra-small nanoparticles studied by a structure-based coarse-grained model. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.964234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Li H, Wang Z, Li N, He X, Liang H. Denaturation and renaturation behaviors of short DNA in a confined space. J Chem Phys 2014; 141:044911. [DOI: 10.1063/1.4891219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Huaping Li
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zilu Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ningning Li
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuehao He
- Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Marenz M, Janke W. Effect of Bending Stiffness on a Homopolymer Inside a Spherical Cage. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.phpro.2014.08.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Mashaghi A, Kramer G, Lamb DC, Mayer MP, Tans SJ. Chaperone Action at the Single-Molecule Level. Chem Rev 2013; 114:660-76. [DOI: 10.1021/cr400326k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alireza Mashaghi
- AMOLF Institute, Science Park
104, 1098 XG Amsterdam, The Netherlands
| | - Günter Kramer
- Zentrum
für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Don C. Lamb
- Physical
Chemistry, Department of Chemistry, Munich Center for Integrated Protein
Science (CiPSM) and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Gerhard-Ertl-Building, 81377 Munich, Germany
| | - Matthias P. Mayer
- Zentrum
für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Sander J. Tans
- AMOLF Institute, Science Park
104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
30
|
Pattanasiri B, Li YW, Landau DP, Wüst T, Triampo W. Thermodynamics and structural properties of a confined HP protein determined by Wang-Landau simulation. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/454/1/012071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Radhakrishna M, Grimaldi J, Belfort G, Kumar SK. Stability of proteins inside a hydrophobic cavity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8922-8928. [PMID: 23750997 DOI: 10.1021/la4014784] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We study the effects of confinement and hydrophobicity of a spherical cavity on the structural and thermal stability of proteins in the framework of a hydrophobic-polar (HP) lattice model. We observe that a neutral confinement stabilizes the folded state of the protein by eliminating many of the open-chain conformations of the unfolded state. Hydrophobic confinement always destabilizes the protein because of protein-surface interactions. However, for moderate surface hydrophobicities, the protein remains stabilized relative to its state in free solution because of the dominance of entropic effects. These results are consistent with our experimental findings of (a) enhanced activity of alcohol dehydrogenase (ADH) when immobilized inside the essentially cylindrical pores of hydrophilic mesoporous silica (SBA-15) and (b) unaffected activity when immobilized inside weakly hydrophobic pores of methacrylate resin compared to its activity in free solution. In the same vein, our predictions are also consistent with the behavior of lysozyme and myoglobin in hydrophilic and hydrophobic SBA-15, which show qualitatively the same trends. Apparently, our results have validity across these very different enzymes, and we therefore suggest that confinement can be used to selectively improve enzyme performance.
Collapse
Affiliation(s)
- Mithun Radhakrishna
- Department of Chemical Engineering, Columbia University, New York City, New York 10027, United States
| | | | | | | |
Collapse
|
32
|
Rao JS, Cruz L. Effects of confinement on the structure and dynamics of an intrinsically disordered peptide: a molecular-dynamics study. J Phys Chem B 2013; 117:3707-19. [PMID: 23484883 DOI: 10.1021/jp310623x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vivo, proteins and peptides are exposed to radically different environments than those in bulk. Because of the abundance of other cellular components, proteins perform their function in crowded and confined spaces. Confinement has been shown to alter the structure, dynamics, and folding of proteins that possess a native fold. Little is known, however, of the effects of confinement on biologically important intrinsically disordered proteins or peptides (IDP). Here, we use extensive molecular dynamics simulations to investigate the effects of confinement in an IDP, the Aβ21-30, a central folding nucleus of the full length amyloid β-protein. In this study, we report results derived from 107 μs of molecular dynamics simulations that subjected the Aβ21-30 to two types of confinement: hydrophilic and hydrophobic pores. Results show that turn structures are enhanced as a function of decreasing pore size (increasing confinement) over other structures, including coils, β-hairpins, and bridges. However, the percentage occurrence of the dominant hydrogen bond between amino acids Asp23 and Ser26 shown to stabilize the turn in bulk simulations does not increase as a function of confinement signifying a disconnect between structure and internal hydrogen bonding. Differences in structure and dynamics of the decapeptide due to hydrophilic and hydrophobic confinement are more apparent at the extreme confinement conditions, where a reduction of the available phase space in hydrophilic confinement is explained in terms of interactions between the decapeptide and a layer of water at the interface between the decapeptide and the surface of the pore, and a smaller size of the decapeptide in the hydrophobic pores is rationalized in terms of peptide-surface interactions.
Collapse
Affiliation(s)
- J Srinivasa Rao
- Department of Physics, 3141 Chestnut Street, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
33
|
Schmitt TJ, Rogers JB, Knotts TA. Exploring the mechanisms of DNA hybridization on a surface. J Chem Phys 2013; 138:035102. [DOI: 10.1063/1.4775480] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
34
|
Marino KA, Bolhuis PG. Confinement-induced states in the folding landscape of the Trp-cage miniprotein. J Phys Chem B 2012; 116:11872-80. [PMID: 22954175 DOI: 10.1021/jp306727r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although protein folding is typically studied in dilute solution, folding in a cell will be affected by interactions with other biomolecules and excluded volume effects. Here, we examine the effect of hydrophobic confinement on folding of the Trp-cage miniprotein. We used replica exchange molecular dynamics simulations to probe the differences between folding in the bulk, on a hydrophobic surface, and confined between two hydrophobic walls. In addition to promotion of helix formation due to reduced conformational entropy of the unfolded state upon confinement, adsorption of Trp-cage to a hydrophobic surface stabilizes intermediate structures not present in the bulk. These new intermediate structures may alter the folding mechanism and kinetics and show the importance of including environmental effects when studying protein folding.
Collapse
Affiliation(s)
- Kristen A Marino
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | | |
Collapse
|
35
|
|
36
|
Lewis JI, Moss DJ, Knotts TA. Multiple molecule effects on the cooperativity of protein folding transitions in simulations. J Chem Phys 2012; 136:245101. [DOI: 10.1063/1.4729604] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
37
|
Predeus AV, Gul S, Gopal SM, Feig M. Conformational sampling of peptides in the presence of protein crowders from AA/CG-multiscale simulations. J Phys Chem B 2012; 116:8610-20. [PMID: 22429139 DOI: 10.1021/jp300129u] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macromolecular crowding is recognized as an important factor influencing folding and conformational dynamics of proteins and nucleic acids. Previous views of crowding have focused on the mostly entropic volume exclusion effect of crowding, but recent studies are indicating the importance of enthalpic effects, in particular, changes in electrostatic interactions due to crowding. Here, temperature replica exchange molecular dynamics simulations of trp-cage and melittin in the presence of explicit protein crowders are presented to further examine the effect of protein crowders on peptide dynamics. The simulations involve a three-component multiscale modeling scheme where the peptides are represented at an atomistic level, the crowder proteins at a coarse-grained level, and the surrounding aqueous solvent as implicit solvent. This scheme optimally balances a physically realistic description for the peptide with computational efficiency. The multiscale simulations were compared with simulations of the same peptides in different dielectric environments with dielectric constants ranging from 5 to 80. It is found that the sampling in the presence of the crowders resembles sampling with reduced dielectric constants between 10 and 40. Furthermore, diverse conformational ensembles are generated in the presence of crowders including partially unfolded states for trp-cage. These findings emphasize the importance of enthalpic interactions over volume exclusion effects in describing the effects of cellular crowding.
Collapse
Affiliation(s)
- Alexander V Predeus
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | | |
Collapse
|
38
|
Shental-Bechor D, Levy Y. Communication: Folding of glycosylated proteins under confinement. J Chem Phys 2011; 135:141104. [DOI: 10.1063/1.3650700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Tian J, Garcia AE. Simulation Studies of Protein Folding/Unfolding Equilibrium under Polar and Nonpolar Confinement. J Am Chem Soc 2011; 133:15157-64. [DOI: 10.1021/ja2054572] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianhui Tian
- Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Angel E. Garcia
- Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
40
|
Kalay Z. Fundamental and functional aspects of mesoscopic architectures with examples in physics, cell biology, and chemistry. Crit Rev Biochem Mol Biol 2011; 46:310-26. [DOI: 10.3109/10409238.2011.582081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ziya Kalay
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
41
|
Waegele MM, Gai F. Power-law dependence of the melting temperature of ubiquitin on the volume fraction of macromolecular crowders. J Chem Phys 2011; 134:095104. [PMID: 21385002 PMCID: PMC3064690 DOI: 10.1063/1.3556671] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/31/2011] [Indexed: 11/14/2022] Open
Abstract
The dependence of the melting temperature increase (ΔT(m)) of the protein ubiquitin on the volume fraction (ϕ) of several commonly used macromolecular crowding agents (dextran 6, 40, and 70 and ficoll 70) was quantitatively examined and compared to a recently developed theoretical crowding model, i.e., ΔT(m) ∼ (R(g)∕R(c))(α)φ(α∕3). We found that in the current case this model correctly predicts the power-law dependence of ΔT(m) on φ but significantly overestimates the role of the size (i.e., R(c)) of the crowding agent. In addition, we found that for ubiquitin the exponent α is in the range of 4.1-6.5, suggesting that the relation of α=3∕(3ν-1) is a better choice for estimating α based on the Flory coefficient (ν) of the polypeptide chain. Taken together these findings highlight the importance of improving our knowledge and theoretical treatment of the microcompartmentalization of the commonly used model crowding agents.
Collapse
Affiliation(s)
- Matthias M Waegele
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
42
|
Wojciechowski M, Szymczak P, Cieplak M. The influence of hydrodynamic interactions on protein dynamics in confined and crowded spaces-assessment in simple models. Phys Biol 2010; 7:046011. [PMID: 21119219 DOI: 10.1088/1478-3975/7/4/046011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We consider several systems that are confined within a softly repulsive sphere. The first one is a model protein, crambin, which is described by a structure-based coarse grained model. We demonstrate that the folding process is accelerated by the hydrodynamic interactions (HI) in a way that depends on the radius of the sphere. The tighter the encompassing sphere, the smaller the effect, independent of the nature of the starting conformations. The second system is a protein surrounded by protein-like softly repulsive spheres that make the confined space crowded. In this case, the HI shorten the folding times in a way which depends on the degree of crowdedness only weakly. The third system is a collection of spheres that are meant to represent molecules. We show that confinement increases association times. We also observe that the HI either facilitate or obstruct association of two spheres depending on the crowding conditions. The dependence of the association time on crowdedness in the confining sphere is qualitatively distinct from that derived by Wieczorek and Zielenkiewicz for a cube with the periodic boundary conditions.
Collapse
|
43
|
Sangha AK, Keyes T. Protein Folding and Confinement: Inherent Structure Analysis of Chaperonin Action. J Phys Chem B 2010; 114:16908-17. [DOI: 10.1021/jp107257b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amandeep K. Sangha
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Tom Keyes
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
44
|
Affiliation(s)
- Doros N. Theodorou
- Department of Materials Science and Engineering, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, Athens 15780, Greece
| |
Collapse
|
45
|
Jewett AI, Shea JE. Reconciling theories of chaperonin accelerated folding with experimental evidence. Cell Mol Life Sci 2010; 67:255-76. [PMID: 19851829 PMCID: PMC11115962 DOI: 10.1007/s00018-009-0164-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/14/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
For the last 20 years, a large volume of experimental and theoretical work has been undertaken to understand how chaperones like GroEL can assist protein folding in the cell. The most accepted explanation appears to be the simplest: GroEL, like most other chaperones, helps proteins fold by preventing aggregation. However, evidence suggests that, under some conditions, GroEL can play a more active role by accelerating protein folding. A large number of models have been proposed to explain how this could occur. Focused experiments have been designed and carried out using different protein substrates with conclusions that support many different mechanisms. In the current article, we attempt to see the forest through the trees. We review all suggested mechanisms for chaperonin-mediated folding and weigh the plausibility of each in light of what we now know about the most stringent, essential, GroEL-dependent protein substrates.
Collapse
Affiliation(s)
- Andrew I. Jewett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
- Department of Physics, University of California, Santa Barbara, CA 93106 USA
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
- Department of Physics, University of California, Santa Barbara, CA 93106 USA
| |
Collapse
|
46
|
Schmitt TJ, Clark JE, Knotts TA. Thermal and mechanical multistate folding of ribonuclease H. J Chem Phys 2009; 131:235101. [DOI: 10.1063/1.3270167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Hagmann JG, Nakagawa N, Peyrard M. Critical examination of the inherent-structure-landscape analysis of two-state folding proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:061907. [PMID: 20365190 DOI: 10.1103/physreve.80.061907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/23/2009] [Indexed: 05/29/2023]
Abstract
Recent studies attracted the attention on the inherent-structure-landscape (ISL) approach as a reduced description of proteins allowing to map their full thermodynamic properties. However, the analysis has been so far limited to a single topology of a two-state folding protein, and the simplifying assumptions of the method have not been examined. In this work, we construct the thermodynamics of four two-state folding proteins of different sizes and secondary structure by molecular dynamics (MD) simulations using the ISL method and critically examine possible limitations of the method. Our results show that the ISL approach correctly describes the thermodynamics function, such as the specific heat, on a qualitative level. Using both analytical and numerical methods, we show that some quantitative limitations cannot be overcome with enhanced sampling or the inclusion of harmonic corrections.
Collapse
Affiliation(s)
- Johannes-Geert Hagmann
- Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire de Physique, CNRS, 46 Allée d'Italie, 69364 Lyon, France
| | | | | |
Collapse
|
48
|
Lim MCG, Zhong ZW. Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:041915. [PMID: 19905350 DOI: 10.1103/physreve.80.041915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/27/2009] [Indexed: 05/28/2023]
Abstract
This paper presents molecular-dynamics (MD) simulations of DNA oligonucleotide and water molecules translocating through carbon nanotube (CNT) channels. An induced pressure difference is applied to the system by pushing a layer of water molecules toward the flow direction to drive the oligonucleotide and other molecules. This MD simulation investigates the changes that occur in the conformation of the oligonucleotide due to water molecules in nanochannels while controlling the temperature and volume of the system in a canonical ensemble. The results show that the oligonucleotide in the (8,8)-(12,12) CNT channel forms a folded state at a lower pressure, whereas the oligonucleotide in the (10,10)-(14,14) CNT channel forms a folded state at a higher pressure instead. The van der Waals forces between the water molecules and the oligonucleotide suggest that the attraction between these two types of molecules results in the linear arrangements of the bases of the oligonucleotide. For a larger nanotube channel, the folding of the oligonucleotide is mainly dependent on the solvent (water molecules), whereas pressure, the size of the nanotube junction, and water molecules are the considering factors of the folding of the oligonucleotide at a smaller nanotube channel. For a folded oligonucleotide, the water distribution around the oligonucleotide is concentrated at a smaller range than that for the distribution around an unfolded oligonucleotide.
Collapse
Affiliation(s)
- M C G Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | | |
Collapse
|
49
|
Reátegui E, Aksan A. Effects of the Low-Temperature Transitions of Confined Water on the Structures of Isolated and Cytoplasmic Proteins. J Phys Chem B 2009; 113:13048-60. [DOI: 10.1021/jp903294q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eduardo Reátegui
- Biostabilization Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Alptekin Aksan
- Biostabilization Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
50
|
Shen VK, Cheung JK, Errington JR, Truskett TM. Insights Into Crowding Effects on Protein Stability From a Coarse-Grained Model. J Biomech Eng 2009; 131:071002. [DOI: 10.1115/1.3127259] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proteins aggregate and precipitate from high concentration solutions in a wide variety of problems of natural and technological interest. Consequently, there is a broad interest in developing new ways to model the thermodynamic and kinetic aspects of protein stability in these crowded cellular or solution environments. We use a coarse-grained modeling approach to study the effects of different crowding agents on the conformational equilibria of proteins and the thermodynamic phase behavior of their solutions. At low to moderate protein concentrations, we find that crowding species can either stabilize or destabilize the native state, depending on the strength of their attractive interaction with the proteins. At high protein concentrations, crowders tend to stabilize the native state due to excluded volume effects, irrespective of the strength of the crowder-protein attraction. Crowding agents reduce the tendency of protein solutions to undergo a liquid-liquid phase separation driven by strong protein-protein attractions. The aforementioned equilibrium trends represent, to our knowledge, the first simulation predictions for how the properties of crowding species impact the global thermodynamic stability of proteins and their solutions.
Collapse
Affiliation(s)
- Vincent K. Shen
- Physical and Chemical Properties Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8380
| | - Jason K. Cheung
- Biological and Sterile Product Development, Schering-Plough Research Institute, Summit, NJ 07091
| | - Jeffrey R. Errington
- Department of Chemical and Biological Engineering, The State University of New York at Buffalo, Buffalo, NY 14260-4200
| | - Thomas M. Truskett
- Department of Chemical Engineering, and Institute for Theoretical Chemistry, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|