1
|
Zeng X, Pappu RV. Backbone-mediated weakening of pairwise interactions enables percolation in peptide-based mimics of protein condensates. Commun Chem 2025; 8:106. [PMID: 40188296 PMCID: PMC11972419 DOI: 10.1038/s42004-025-01502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Biomolecular condensates formed by intrinsically disordered proteins (IDPs) are semidilute solutions. These can be approximated as solutions of blob-sized segments, which are peptide-sized motifs. We leveraged the blob picture and molecular dynamics simulations to quantify differences between inter-residue interactions in model compound and peptide-based mimics of dense versus dilute phases. The all-atom molecular dynamics simulations use a polarizable forcefield. In model compound solutions, the interactions between aromatic residues are stronger than interactions between cationic and aromatic residues. This holds in dilute and dense phases. Cooperativity within dense phases enhances pairwise interactions leading to finite-sized nanoscale clusters. The results for peptide-based condensates paint a different picture. Backbone amides add valence to the associating molecules. While this enhances pairwise inter-residue interactions in dilute phases, it weakens pair interactions in dense phases, doing so in a concentration-dependent manner. Weakening of pair interactions enables fluidization characterized by short-range order and long-range disorder. The higher valence afforded by the peptide backbone generates system-spanning networks. As a result, dense phases of peptides are best described as percolated network fluids. Overall, our results show how peptide backbones enhance pairwise interactions in dilute phases while weakening these interactions to enable percolation within dense phases.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering and Center for Biomolecular Condensates, The James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China and Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, The James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
2
|
Jiang Y, Xia Y, Sitarik I, Sharma P, Song H, Fried SD, O’Brien EP. Protein misfolding involving entanglements providesa structural explanation for the origin of stretched-exponential refolding kinetics. SCIENCE ADVANCES 2025; 11:eads7379. [PMID: 40085700 PMCID: PMC11908495 DOI: 10.1126/sciadv.ads7379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Stretched-exponential protein refolding kinetics, first observed decades ago, were attributed to a nonnative ensemble of structures with parallel, non-interconverting folding pathways. However, the structural origin of the large energy barriers preventing interconversion between these folding pathways is unknown. Here, we combine simulations with limited proteolysis (LiP) and cross-linking (XL) mass spectrometry (MS) to study the protein phosphoglycerate kinase (PGK). Simulations recapitulate its stretched-exponential folding kinetics and reveal that misfolded states involving changes of entanglement underlie this behavior: either formation of a nonnative, noncovalent lasso entanglement or failure to form a native entanglement. These misfolded states act as kinetic traps, requiring extensive unfolding to escape, which results in a distribution of free energy barriers and pathway partitioning. Using LiP-MS and XL-MS, we propose heterogeneous structural ensembles consistent with these data that represent the potential long-lived misfolded states PGK populates. This structural and energetic heterogeneity creates a hierarchy of refolding timescales, explaining stretched-exponential kinetics.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Yingzi Xia
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Piyoosh Sharma
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hyebin Song
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen D. Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Edward P. O’Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Kasprzak Y, Rückert J, Ludolph N, Hübner CG, Paulsen H. Hydrogen bonds vs RMSD: Geometric reaction coordinates for protein folding. J Chem Phys 2025; 162:074107. [PMID: 39968818 DOI: 10.1063/5.0241564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Reaction coordinates are a useful tool that allows the complex dynamics of a protein in high-dimensional phase space to be projected onto a much simpler model with only a few degrees of freedom, while preserving the essential aspects of that dynamics. In this way, reaction coordinates could provide an intuitive, albeit simplified, understanding of the complex dynamics of proteins. Together with molecular dynamics (MD) simulations, reaction coordinates can also be used to sample the phase space very efficiently and to calculate transition rates and paths between different metastable states. Unfortunately, ideal reaction coordinates for a system capable of these performances are not known a priori, and an efficient calculation in the course of an MD simulation is currently an active field of research. An alternative is to use geometric reaction coordinates, which, although generally unable to provide quantitative accuracy, are useful for simplified mechanistic models of protein dynamics and can thus help gain insights into the fundamental aspects of these dynamics. In this study, five such geometric reaction coordinates, such as the end-to-end distance, the radius of gyration, the solvent accessible surface area, the root-mean-square distance (RMSD), and the mean native hydrogen bond length, are compared. For this purpose, extensive molecular dynamics simulations were carried out for two peptides and a small protein in order to calculate and compare free energy profiles with the aid of the reaction coordinates mentioned. While none of the investigated geometrical reaction coordinates could be demonstrated to be an optimal reaction coordinate, the RMSD and the mean native hydrogen bond length appeared to perform more effectively than the other three reaction coordinates.
Collapse
Affiliation(s)
- Y Kasprzak
- Institut für Physik, Universität zu Lübeck, D-23562 Lübeck, Germany
| | - J Rückert
- Institut für Physik, Universität zu Lübeck, D-23562 Lübeck, Germany
| | - N Ludolph
- Institut für Physik, Universität zu Lübeck, D-23562 Lübeck, Germany
| | - C G Hübner
- Institut für Physik, Universität zu Lübeck, D-23562 Lübeck, Germany
| | - H Paulsen
- Institut für Physik, Universität zu Lübeck, D-23562 Lübeck, Germany
| |
Collapse
|
4
|
Zhang T, Pan Y, Kandapal S, Sun X, Xu B. Following the Aggregation of Human Prion Protein on Heparin Functionalized Gold Surface in Real Time. ACS APPLIED BIO MATERIALS 2022; 5:5457-5464. [PMID: 36228282 DOI: 10.1021/acsabm.2c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aggregation of the prion protein (PrP) plays a key role in the development of prion diseases and is believed to be an autocatalytic process with a very high kinetic barrier. Intensive studies have focused on overcoming the kinetic barriers under extremely nonphysiological in vitro conditions by altering the pH of PrP solution on solid surfaces, such as gold, mica, and a lipid bilayer. Importantly, sulfated glycosaminoglycans (GAGs), including heparin, were found to be associated with PrP misfolding and aggregation, suggesting GAGs have catalytic roles in PrP aggregation processes. However, the exact role and details of GAGs in the PrP aggregation are not clear and need a thorough perusal. Here, we investigate the PrP aggregation process on a heparin functionalized gold surface by in situ, real-time monitoring of the atomic scale details of the whole aggregation process by single molecule atomic force microscopy (AFM), combining simultaneous topographic and recognition (TREC) imaging and single molecule force spectroscopy (SMFS). We observed the whole aggregation process for full-length human recombinant PrP (23-231) aggregation on the heparin modified gold surface, from the formation of oligomers, to the assembly of protofibrils and short fibers, and the formation of elongated mature fibers. Heparin is found to promote the PrP aggregation by facilitating the formation of oligomers during the early nucleation stage.
Collapse
Affiliation(s)
- Tong Zhang
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia30602, United States
| | - Yangang Pan
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia30602, United States
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia30602, United States
| | - Xin Sun
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia30602, United States
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia30602, United States
| |
Collapse
|
5
|
Sharpe DJ, Wales DJ. Nearly reducible finite Markov chains: Theory and algorithms. J Chem Phys 2021; 155:140901. [PMID: 34654307 DOI: 10.1063/5.0060978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Finite Markov chains, memoryless random walks on complex networks, appear commonly as models for stochastic dynamics in condensed matter physics, biophysics, ecology, epidemiology, economics, and elsewhere. Here, we review exact numerical methods for the analysis of arbitrary discrete- and continuous-time Markovian networks. We focus on numerically stable methods that are required to treat nearly reducible Markov chains, which exhibit a separation of characteristic timescales and are therefore ill-conditioned. In this metastable regime, dense linear algebra methods are afflicted by propagation of error in the finite precision arithmetic, and the kinetic Monte Carlo algorithm to simulate paths is unfeasibly inefficient. Furthermore, iterative eigendecomposition methods fail to converge without the use of nontrivial and system-specific preconditioning techniques. An alternative approach is provided by state reduction procedures, which do not require additional a priori knowledge of the Markov chain. Macroscopic dynamical quantities, such as moments of the first passage time distribution for a transition to an absorbing state, and microscopic properties, such as the stationary, committor, and visitation probabilities for nodes, can be computed robustly using state reduction algorithms. The related kinetic path sampling algorithm allows for efficient sampling of trajectories on a nearly reducible Markov chain. Thus, all of the information required to determine the kinetically relevant transition mechanisms, and to identify the states that have a dominant effect on the global dynamics, can be computed reliably even for computationally challenging models. Rare events are a ubiquitous feature of realistic dynamical systems, and so the methods described herein are valuable in many practical applications.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Zhang H, Zhang H, Chen C. Investigating the folding mechanism of the N-terminal domain of ribosomal protein L9. Proteins 2021; 89:832-844. [PMID: 33576138 DOI: 10.1002/prot.26062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 11/10/2022]
Abstract
Protein folding is a popular topic in the life science. However, due to the limited sampling ability of experiments and simulations, the general folding mechanism is not yet clear to us. In this work, we study the folding of the N-terminal domain of ribosomal protein L9 (NTL9) in detail by a mixing replica exchange molecular dynamics method. The simulation results are close to previous experimental observations. According to the Markov state model, the folding of the protein follows a nucleation-condensation path. Moreover, after the comparison to its 39-residue β-α-β motif, we find that the helix at the C-terminal has a great influence on the folding process of the intact protein, including the nucleation of the key residues in the transition state ensemble and the packing of the hydrophobic residues in the native state.
Collapse
Affiliation(s)
- Haozhe Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Haomiao Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Banushkina PV, Krivov SV. Nonparametric variational optimization of reaction coordinates. J Chem Phys 2015; 143:184108. [DOI: 10.1063/1.4935180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Polina V. Banushkina
- Astbury Center for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sergei V. Krivov
- Astbury Center for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
8
|
Shukla D, Hernández CX, Weber JK, Pande VS. Markov state models provide insights into dynamic modulation of protein function. Acc Chem Res 2015; 48:414-22. [PMID: 25625937 PMCID: PMC4333613 DOI: 10.1021/ar5002999] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Protein
function is inextricably linked to protein dynamics. As we move from
a static structural picture to a dynamic ensemble view of protein
structure and function, novel computational paradigms are required
for observing and understanding conformational dynamics of proteins
and its functional implications. In principle, molecular dynamics
simulations can provide the time evolution of atomistic models of
proteins, but the long time scales associated with functional dynamics
make it difficult to observe rare dynamical transitions. The issue
of extracting essential functional components of protein dynamics
from noisy simulation data presents another set of challenges in obtaining
an unbiased understanding of protein motions. Therefore, a methodology
that provides a statistical framework for efficient sampling and a
human-readable view of the key aspects of functional dynamics from
data analysis is required. The Markov state model (MSM), which has
recently become popular worldwide for studying protein dynamics, is
an example of such a framework. In this Account, we review the
use of Markov state models for efficient sampling of the hierarchy
of time scales associated with protein dynamics, automatic identification
of key conformational states, and the degrees of freedom associated
with slow dynamical processes. Applications of MSMs for studying long
time scale phenomena such as activation mechanisms of cellular signaling
proteins has yielded novel insights into protein function. In particular,
from MSMs built using large-scale simulations of GPCRs and kinases,
we have shown that complex conformational changes in proteins can
be described in terms of structural changes in key structural motifs
or “molecular switches” within the protein, the transitions
between functionally active and inactive states of proteins proceed
via multiple pathways, and ligand or substrate binding modulates the
flux through these pathways. Finally, MSMs also provide a theoretical
toolbox for studying the effect of nonequilibrium perturbations on
conformational dynamics. Considering that protein dynamics in vivo
occur under nonequilibrium conditions, MSMs coupled with nonequilibrium
statistical mechanics provide a way to connect cellular components
to their functional environments. Nonequilibrium perturbations of
protein folding MSMs reveal the presence of dynamically frozen glass-like
states in their conformational landscape. These frozen states are
also observed to be rich in β-sheets, which indicates their
possible role in the nucleation of β-sheet rich aggregates such
as those observed in amyloid-fibril formation. Finally, we describe
how MSMs have been used to understand the dynamical behavior of intrinsically
disordered proteins such as amyloid-β, human islet amyloid polypeptide,
and p53. While certainly not a panacea for studying functional dynamics,
MSMs provide a rigorous theoretical foundation for understanding complex
entropically dominated processes and a convenient lens for viewing
protein motions.
Collapse
Affiliation(s)
- Diwakar Shukla
- Department of Chemistry, ‡Biophysics Program, and §SIMBIOS, NIH Center
for Biomedical Computation, Stanford University, Stanford, California 94305, United States
| | - Carlos X. Hernández
- Department of Chemistry, ‡Biophysics Program, and §SIMBIOS, NIH Center
for Biomedical Computation, Stanford University, Stanford, California 94305, United States
| | - Jeffrey K. Weber
- Department of Chemistry, ‡Biophysics Program, and §SIMBIOS, NIH Center
for Biomedical Computation, Stanford University, Stanford, California 94305, United States
| | - Vijay S. Pande
- Department of Chemistry, ‡Biophysics Program, and §SIMBIOS, NIH Center
for Biomedical Computation, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Seyler SL, Beckstein O. Sampling large conformational transitions: adenylate kinase as a testing ground. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.919497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Li W, Ma A. Recent developments in methods for identifying reaction coordinates. MOLECULAR SIMULATION 2014; 40:784-793. [PMID: 25197161 PMCID: PMC4152980 DOI: 10.1080/08927022.2014.907898] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the study of rare events in complex systems with many degrees of freedom, a key element is to identify the reaction coordinates of a given process. Over recent years, a number of methods and protocols have been developed to extract the reaction coordinates based on limited information from molecular dynamics simulations. In this review, we provide a brief survey over a number of major methods developed in the past decade, some of which are discussed in greater detail, to provide an overview of the problems that are partially solved and challenges that still remain. A particular emphasis has been placed on methods for identifying reaction coordinates that are related to the committor.
Collapse
Affiliation(s)
- Wenjin Li
- Department of Bioengineering, The University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| | - Ao Ma
- Department of Bioengineering, The University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| |
Collapse
|
11
|
Kalgin IV, Caflisch A, Chekmarev SF, Karplus M. New insights into the folding of a β-sheet miniprotein in a reduced space of collective hydrogen bond variables: application to a hydrodynamic analysis of the folding flow. J Phys Chem B 2013; 117:6092-105. [PMID: 23621790 DOI: 10.1021/jp401742y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new analysis of the 20 μs equilibrium folding/unfolding molecular dynamics simulations of the three-stranded antiparallel β-sheet miniprotein (beta3s) in implicit solvent is presented. The conformation space is reduced in dimensionality by introduction of linear combinations of hydrogen bond distances as the collective variables making use of a specially adapted principal component analysis (PCA); i.e., to make structured conformations more pronounced, only the formed bonds are included in determining the principal components. It is shown that a three-dimensional (3D) subspace gives a meaningful representation of the folding behavior. The first component, to which eight native hydrogen bonds make the major contribution (four in each beta hairpin), is found to play the role of the reaction coordinate for the overall folding process, while the second and third components distinguish the structured conformations. The representative points of the trajectory in the 3D space are grouped into conformational clusters that correspond to locally stable conformations of beta3s identified in earlier work. A simplified kinetic network based on the three components is constructed, and it is complemented by a hydrodynamic analysis. The latter, making use of "passive tracers" in 3D space, indicates that the folding flow is much more complex than suggested by the kinetic network. A 2D representation of streamlines shows there are vortices which correspond to repeated local rearrangement, not only around minima of the free energy surface but also in flat regions between minima. The vortices revealed by the hydrodynamic analysis are apparently not evident in folding pathways generated by transition-path sampling. Making use of the fact that the values of the collective hydrogen bond variables are linearly related to the Cartesian coordinate space, the RMSD between clusters is determined. Interestingly, the transition rates show an approximate exponential correlation with distance in the hydrogen bond subspace. Comparison with the many published studies shows good agreement with the present analysis for the parts that can be compared, supporting the robust character of our understanding of this "hydrogen atom" of protein folding.
Collapse
Affiliation(s)
- Igor V Kalgin
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | | | | |
Collapse
|
12
|
Jiang X, Zhong A, Chen C, Huang Y, Xiao Y. Network approach to identify the folding transition states of peptides and proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:051901. [PMID: 23214808 DOI: 10.1103/physreve.86.051901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/15/2012] [Indexed: 06/01/2023]
Abstract
Folding transition states and their structures are crucial in understanding protein folding pathways and folding dynamics. As they cannot be detected directly by experiments due to their instability, many computational methods have been proposed to solve this problem. However, each of these methods can give only one part of the transition state ensemble for a peptide or protein. Here we present a folding-network approach to identify the transition states of peptides or proteins and test it on the β-hairpin peptide trpzip2, with the result that we identify all the folding transition states of tripzip2, which may only be determined separately by other methods. This suggests that the network approach can provide more complete information about the folding transition states, at least for peptides.
Collapse
Affiliation(s)
- Xuewei Jiang
- School of Fashion, Wuhan Textile University, Wuhan 430073, Hubei, China
| | | | | | | | | |
Collapse
|
13
|
Ahadi E, Konermann L. Ejection of Solvated Ions from Electrosprayed Methanol/Water Nanodroplets Studied by Molecular Dynamics Simulations. J Am Chem Soc 2011; 133:9354-63. [DOI: 10.1021/ja111492s] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elias Ahadi
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
14
|
Buchner GS, Murphy RD, Buchete NV, Kubelka J. Dynamics of protein folding: probing the kinetic network of folding-unfolding transitions with experiment and theory. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1001-20. [PMID: 20883829 DOI: 10.1016/j.bbapap.2010.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
The problem of spontaneous folding of amino acid chains into highly organized, biologically functional three-dimensional protein structures continues to challenge the modern science. Understanding how proteins fold requires characterization of the underlying energy landscapes as well as the dynamics of the polypeptide chains in all stages of the folding process. In recent years, important advances toward these goals have been achieved owing to the rapidly growing interdisciplinary interest and significant progress in both experimental techniques and theoretical methods. Improvements in the experimental time resolution led to determination of the timescales of the important elementary events in folding, such as formation of secondary structure and tertiary contacts. Sensitive single molecule methods made possible probing the distributions of the unfolded and folded states and following the folding reaction of individual protein molecules. Discovery of proteins that fold in microseconds opened the possibility of atomic-level theoretical simulations of folding and their direct comparisons with experimental data, as well as of direct experimental observation of the barrier-less folding transition. The ultra-fast folding also brought new questions, concerning the intrinsic limits of the folding rates and experimental signatures of barrier-less "downhill" folding. These problems will require novel approaches for even more detailed experimental investigations of the folding dynamics as well as for the analysis of the folding kinetic data. For theoretical simulations of folding, a main challenge is how to extract the relevant information from overwhelmingly detailed atomistic trajectories. New theoretical methods have been devised to allow a systematic approach towards a quantitative analysis of the kinetic network of folding-unfolding transitions between various configuration states of a protein, revealing the transition states and the associated folding pathways at multiple levels, from atomistic to coarse-grained representations. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Ginka S Buchner
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA; Universität Würzbug, Würzburg, Germany
| | | | | | | |
Collapse
|
15
|
Travasso RDM, Faísca PFN, Rey A. The protein folding transition state: Insights from kinetics and thermodynamics. J Chem Phys 2010; 133:125102. [DOI: 10.1063/1.3485286] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Peters B. p(TP|q) peak maximization: Necessary but not sufficient for reaction coordinate accuracy. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.05.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Voelz VA, Bowman GR, Beauchamp K, Pande VS. Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J Am Chem Soc 2010; 132:1526-8. [PMID: 20070076 DOI: 10.1021/ja9090353] [Citation(s) in RCA: 394] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To date, the slowest-folding proteins folded ab initio by all-atom molecular dynamics simulations have had folding times in the range of nanoseconds to microseconds. We report simulations of several folding trajectories of NTL9(1-39), a protein which has a folding time of approximately 1.5 ms. Distributed molecular dynamics simulations in implicit solvent on GPU processors were used to generate ensembles of trajectories out to approximately 40 micros for several temperatures and starting states. At a temperature less than the melting point of the force field, we observe a small number of productive folding events, consistent with predictions from a model of parallel uncoupled two-state simulations. The posterior distribution of the folding rate predicted from the data agrees well with the experimental folding rate (approximately 640/s). Markov State Models (MSMs) built from the data show a gap in the implied time scales indicative of two-state folding and heterogeneous pathways connecting diffuse mesoscopic substates. Structural analysis of the 14 out of 2000 macrostates transited by the top 10 folding pathways reveals that native-like pairing between strands 1 and 2 only occurs for macrostates with p(fold) > 0.5, suggesting beta(12) hairpin formation may be rate-limiting. We believe that using simulation data such as these to seed adaptive resampling simulations will be a promising new method for achieving statistically converged descriptions of folding landscapes at longer time scales than ever before.
Collapse
Affiliation(s)
- Vincent A Voelz
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
18
|
Hills RD, Kathuria SV, Wallace LA, Day IJ, Brooks CL, Matthews CR. Topological frustration in beta alpha-repeat proteins: sequence diversity modulates the conserved folding mechanisms of alpha/beta/alpha sandwich proteins. J Mol Biol 2010; 398:332-50. [PMID: 20226790 DOI: 10.1016/j.jmb.2010.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/27/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
The thermodynamic hypothesis of Anfinsen postulates that structures and stabilities of globular proteins are determined by their amino acid sequences. Chain topology, however, is known to influence the folding reaction, in that motifs with a preponderance of local interactions typically fold more rapidly than those with a larger fraction of nonlocal interactions. Together, the topology and sequence can modulate the energy landscape and influence the rate at which the protein folds to the native conformation. To explore the relationship of sequence and topology in the folding of beta alpha-repeat proteins, which are dominated by local interactions, we performed a combined experimental and simulation analysis on two members of the flavodoxin-like, alpha/beta/alpha sandwich fold. Spo0F and the N-terminal receiver domain of NtrC (NT-NtrC) have similar topologies but low sequence identity, enabling a test of the effects of sequence on folding. Experimental results demonstrated that both response-regulator proteins fold via parallel channels through highly structured submillisecond intermediates before accessing their cis prolyl peptide bond-containing native conformations. Global analysis of the experimental results preferentially places these intermediates off the productive folding pathway. Sequence-sensitive Gō-model simulations conclude that frustration in the folding in Spo0F, corresponding to the appearance of the off-pathway intermediate, reflects competition for intra-subdomain van der Waals contacts between its N- and C-terminal subdomains. The extent of transient, premature structure appears to correlate with the number of isoleucine, leucine, and valine (ILV) side chains that form a large sequence-local cluster involving the central beta-sheet and helices alpha2, alpha 3, and alpha 4. The failure to detect the off-pathway species in the simulations of NT-NtrC may reflect the reduced number of ILV side chains in its corresponding hydrophobic cluster. The location of the hydrophobic clusters in the structure may also be related to the differing functional properties of these response regulators. Comparison with the results of previous experimental and simulation analyses on the homologous CheY argues that prematurely folded unproductive intermediates are a common property of the beta alpha-repeat motif.
Collapse
Affiliation(s)
- Ronald D Hills
- Department of Molecular Biology and Kellogg School of Science and Technology, The Scripps Research Institute, 10550 North Torrey Pines Road TPC6, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
19
|
Faísca PFN. The nucleation mechanism of protein folding: a survey of computer simulation studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:373102. [PMID: 21832332 DOI: 10.1088/0953-8984/21/37/373102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The nucleation mechanism of protein folding, originally proposed by Baldwin in the early 1970s, was firstly observed by Shakhnovich and co-workers two decades later in the context of Monte Carlo simulations of a simple lattice model. At about the same time the extensive use of φ-value analysis provided the first experimental evidence that the folding of Chymotrypsin-inhibitor 2, a small single-domain protein, which folds with two-state kinetics, is also driven by a nucleation mechanism. Since then, the nucleation mechanism is generally considered the most common form of folding mechanism amongst two-state proteins. However, recent experimental data has put forward the idea that this may not necessarily be so, since the accuracy of the experimentally determined φ values, which are used to identify the critical (i.e. nucleating) residues, is typically poor. Here, we provide a survey of in silico results on the nucleation mechanism, ranging from simple lattice Monte Carlo to more sophisticated off-lattice molecular dynamics simulations, and discuss them in light of experimental data.
Collapse
Affiliation(s)
- Patrícia F N Faísca
- Centro de Física Teórica e Computacional, Universidade de Lisboa, Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portugal
| |
Collapse
|
20
|
Yang L, Shao Q, Gao YQ. Thermodynamics and folding pathways of trpzip2: an accelerated molecular dynamics simulation study. J Phys Chem B 2009; 113:803-8. [PMID: 19113829 DOI: 10.1021/jp803160f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this paper, we apply an enhanced sampling method introduced earlier to study the folding mechanism of a beta-hairpin, trpzip2, using an all-atom potential for the protein and an implicit model for the solvent. The enhanced sampling method allows us to obtain multiple protein folding and unfolding trajectories in relatively short simulations. The sufficient sampling of folding and unfolding events of trpzip2 makes possible a more detailed investigation of its folding landscape and thermodynamics, leading to the identification of folding pathways. The analysis of the thermodynamics involved in the folding of trpzip2 showed that this polypeptide folds by two stages: a downhill hydrophobic collapse followed by formation of native hydrogen bonds. During the hydrogen bond formation, a transition state can be identified with only one native hydrogen bond being formed, which is more consistent with a 'zip-out' mechanism. To address the dynamics in a more reliable way, explicit solvent was used for the estimation of the diffusion constant, which was used in the Kramer's theory, together with the free energy profile calculated using the enhanced sampling and the implicit solvent, to calculate the folding rate. The calculated folding time agrees well with the experimental value of 2.5 micros.
Collapse
Affiliation(s)
- Lijiang Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
21
|
Hills RD, Brooks CL. Insights from coarse-grained Gō models for protein folding and dynamics. Int J Mol Sci 2009; 10:889-905. [PMID: 19399227 PMCID: PMC2672008 DOI: 10.3390/ijms10030889] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 12/17/2022] Open
Abstract
Exploring the landscape of large scale conformational changes such as protein folding at atomistic detail poses a considerable computational challenge. Coarse-grained representations of the peptide chain have therefore been developed and over the last decade have proved extremely valuable. These include topology-based Gō models, which constitute a smooth and funnel-like approximation to the folding landscape. We review the many variations of the Gō model that have been employed to yield insight into folding mechanisms. Their success has been interpreted as a consequence of the dominant role of the native topology in folding. The role of local contact density in determining protein dynamics is also discussed and is used to explain the ability of Gō-like models to capture sequence effects in folding and elucidate conformational transitions.
Collapse
Affiliation(s)
- Ronald D. Hills
- Department of Molecular Biology and Kellogg School of Science and Technology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. TPC6 La Jolla, CA 92037, USA
| | - Charles L. Brooks
- Department of Molecular Biology and Kellogg School of Science and Technology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. TPC6 La Jolla, CA 92037, USA
- Department of Chemistry and Biophysics Program, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, USA
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +1-734-647-6682; Fax: +1-734-647-1604
| |
Collapse
|
22
|
Krivov SV, Muff S, Caflisch A, Karplus M. One-dimensional barrier-preserving free-energy projections of a beta-sheet miniprotein: new insights into the folding process. J Phys Chem B 2008; 112:8701-14. [PMID: 18590307 PMCID: PMC2736680 DOI: 10.1021/jp711864r] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformational space of a 20-residue three-stranded antiparallel beta-sheet peptide (double hairpin) was sampled by equilibrium folding/unfolding molecular dynamics simulations for a total of 20 micros. The resulting one-dimensional free-energy profiles (FEPs) provide a detailed description of the free-energy basins and barriers for the folding reaction. The similarity of the FEPs obtained using the probability of folding before unfolding (pfold) or the mean first passage time supports the robustness of the procedure. The folded state and the most populated free-energy basins in the denatured state are described by the one-dimensional FEPs, which avoid the overlap of states present in the usual one- or two-dimensional projections. Within the denatured state, a basin with fluctuating helical conformations and a heterogeneous entropic state are populated near the melting temperature at about 11% and 33%, respectively. Folding pathways from the helical basin or enthalpic traps (with only one of the two hairpins formed) reach the native state through the entropic state, which is on-pathway and is separated by a low barrier from the folded state. A simplified equilibrium kinetic network based on the FEPs shows the complexity of the folding reaction and indicates, as augmented by additional analyses, that the basins in the denatured state are connected primarily by the native state. The overall folding kinetics shows single-exponential behavior because barriers between the non-native basins and the folded state have similar heights.
Collapse
Affiliation(s)
- Sergei V. Krivov
- Laboratoire de Chimie Biophysique, ISIS F-67000, Strasbourg, France
| | - Stefanie Muff
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Martin Karplus
- Laboratoire de Chimie Biophysique, ISIS F-67000, Strasbourg, France
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
23
|
Taskent H, Cho JH, Raleigh DP. Temperature-dependent Hammond behavior in a protein-folding reaction: analysis of transition-state movement and ground-state effects. J Mol Biol 2008; 378:699-706. [PMID: 18384809 DOI: 10.1016/j.jmb.2008.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/07/2008] [Accepted: 02/14/2008] [Indexed: 10/22/2022]
Abstract
Characterization of the transition-state ensemble and the nature of the free-energy barrier for protein folding are areas of intense activity and some controversy. A key issue that has emerged in recent years is the width of the free-energy barrier and the susceptibility of the transition state to movement. Here we report denaturant-induced and temperature-dependent folding studies of a small mixed alpha-beta protein, the N-terminal domain of L9 (NTL9). The folding of NTL9 was determined using fluorescence-detected stopped-flow fluorescence measurements conducted at seven different temperatures between 11 and 40 degrees C. Plots of the log of the observed first-order rate constant versus denaturant concentration, "chevron plots," displayed the characteristic V shape expected for two-state folding. There was no hint of deviation from linearity even at the lowest denaturant concentrations. The relative position of the transition state, as judged by the Tanford beta parameter, beta(T), shifts towards the native state as the temperature is increased. Analysis of the temperature dependence of the kinetic and equilibrium m values indicates that the effect is due to significant movement of the transition state and also includes a contribution from temperature-dependent ground-state effects. Analysis of the Leffler plots, plots of Delta G versus Delta G degrees, and their cross-interaction parameters confirms the transition-state movement. Since the protein is destabilized at high temperature, the shift represents a temperature-dependent Hammond effect. This provides independent confirmation of a recent theoretical prediction. The magnitude of the temperature-denaturant cross-interaction parameter is larger for NTL9 than has been reported for the few other cases studied. The implications for temperature-dependent studies of protein folding are discussed.
Collapse
Affiliation(s)
- Humeyra Taskent
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | |
Collapse
|
24
|
Abstract
We report high temperature molecular dynamics simulations of the unfolding of the TRPZ1 peptide using an explicit model for the solvent. The system has been simulated for a total of 6 μs with 100-ns minimal continuous stretches of trajectory. The populated states along the simulations are identified by monitoring multiple observables, probing both the structure and the flexibility of the conformations. Several unfolding and refolding transition pathways are sampled and analyzed. The unfolding process of the peptide occurs in two steps because of the accumulation of a metastable on-pathway intermediate state stabilized by two native backbone hydrogen bonds assisted by nonnative hydrophobic interactions between the tryptophan side chains. Analysis of the un/folding kinetics and classical commitment probability calculations on the conformations extracted from the transition pathways show that the rate-limiting step for unfolding is the disruption of the ordered native hydrophobic packing (Trp-zip motif) leading from the native to the intermediate state. But, the speed of the folding process is mainly determined by the transition from the completely unfolded state to the intermediate and specifically by the closure of the hairpin loop driven by formation of two native backbone hydrogen bonds and hydrophobic contacts between tryptophan residues. The temperature dependence of the unfolding time provides an estimate of the unfolding activation enthalpy that is in agreement with experiments. The unfolding time extrapolated to room temperature is in agreement with the experimental data as well, thus providing a further validation to the analysis reported here.
Collapse
|
25
|
Universality and diversity of folding mechanics for three-helix bundle proteins. Proc Natl Acad Sci U S A 2008; 105:895-900. [PMID: 18195374 DOI: 10.1073/pnas.0707284105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study we evaluate, at full atomic detail, the folding processes of two small helical proteins, the B domain of protein A and the Villin headpiece. Folding kinetics are studied by performing a large number of ab initio Monte Carlo folding simulations using a single transferable all-atom potential. Using these trajectories, we examine the relaxation behavior, secondary structure formation, and transition-state ensembles (TSEs) of the two proteins and compare our results with experimental data and previous computational studies. To obtain a detailed structural information on the folding dynamics viewed as an ensemble process, we perform a clustering analysis procedure based on graph theory. Moreover, rigorous p(fold) analysis is used to obtain representative samples of the TSEs and a good quantitative agreement between experimental and simulated Phi values is obtained for protein A. Phi values for Villin also are obtained and left as predictions to be tested by future experiments. Our analysis shows that the two-helix hairpin is a common partially stable structural motif that gets formed before entering the TSE in the studied proteins. These results together with our earlier study of Engrailed Homeodomain and recent experimental studies provide a comprehensive, atomic-level picture of folding mechanics of three-helix bundle proteins.
Collapse
|
26
|
Abstract
The "protein folding problem" consists of three closely related puzzles: (a) What is the folding code? (b) What is the folding mechanism? (c) Can we predict the native structure of a protein from its amino acid sequence? Once regarded as a grand challenge, protein folding has seen great progress in recent years. Now, foldable proteins and nonbiological polymers are being designed routinely and moving toward successful applications. The structures of small proteins are now often well predicted by computer methods. And, there is now a testable explanation for how a protein can fold so quickly: A protein solves its large global optimization problem as a series of smaller local optimization problems, growing and assembling the native structure from peptide fragments, local structures first.
Collapse
Affiliation(s)
- Ken A. Dill
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
- Graduate Group in Biophysics, University of California, San Francisco, California 94143;
| | - S. Banu Ozkan
- Department of Physics, Arizona State University, Tempe, Arizona 85287;
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106;
| | - Thomas R. Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14424 Potsdam, Germany;
| |
Collapse
|
27
|
Beck DAC, Daggett V. A one-dimensional reaction coordinate for identification of transition states from explicit solvent P(fold)-like calculations. Biophys J 2007; 93:3382-91. [PMID: 17978165 PMCID: PMC2072083 DOI: 10.1529/biophysj.106.100149] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 07/16/2007] [Indexed: 11/18/2022] Open
Abstract
A properly identified transition state ensemble (TSE) in a molecular dynamics (MD) simulation can reveal a tremendous amount about how a protein folds and offer a point of comparison to experimentally derived Phi(F) values, which reflect the degree of structure in these transient states. In one such method of TSE identification, dubbed P(fold), MD simulations of individual protein structures taken from an unfolding trajectory are used to directly assess an input structure's probability of folding before unfolding, and P(fold) is, by definition, 0.5 for the TSE. Other, less computationally intensive methods, such as multidimensional scaling (MDS) of the pairwise root mean-squared deviation (RMSD) matrix of the conformations sampled in a thermal unfolding trajectory, have also been used to identify the TSE. Identification of the TSE is made from the original MD simulation without the need to run further simulations. Here we present a P(fold)-like study and describe methods for identification of the TSE through the derivation of a high fidelity, bounded, one-dimensional reaction coordinate for protein folding. These methods are applied to the engrailed homeodomain. The TSE identified by this approach is essentially identical to the TSE identified previously by MDS of the pairwise RMSD matrix. However, the cost of performing P(fold), or even our reduced P(fold)-like calculations, is at least 36,000 times greater than the MDS method.
Collapse
Affiliation(s)
- David A C Beck
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, USA
| | | |
Collapse
|
28
|
Weikl TR. Transition states in protein folding kinetics: modeling phi-values of small beta-sheet proteins. Biophys J 2007; 94:929-37. [PMID: 17905840 PMCID: PMC2186242 DOI: 10.1529/biophysj.107.109868] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small single-domain proteins often exhibit only a single free-energy barrier, or transition state, between the denatured and the native state. The folding kinetics of these proteins is usually explored via mutational analysis. A central question is which structural information on the transition state can be derived from the mutational data. In this article, we model and structurally interpret mutational Phi-values for two small beta-sheet proteins, the PIN and the FBP WW domains. The native structure of these WW domains comprises two beta-hairpins that form a three-stranded beta-sheet. In our model, we assume that the transition state consists of two conformations in which either one of the hairpins is formed. Such a transition state has been recently observed in molecular dynamics folding-unfolding simulations of a small designed three-stranded beta-sheet protein. We obtain good agreement with the experimental data 1), by splitting up the mutation-induced free-energy changes into terms for the two hairpins and for the small hydrophobic core of the proteins; and 2), by fitting a single parameter, the relative degree to which hairpins 1 and 2 are formed in the transition state. The model helps us to understand how mutations affect the folding kinetics of WW domains, and captures also negative Phi-values that have been difficult to interpret.
Collapse
Affiliation(s)
- Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany.
| |
Collapse
|
29
|
Quapp W. Finding the transition state without initial guess: The growing string method for Newton trajectory to isomerization and enantiomerization reaction of alanine dipeptide and poly(15)alanine. J Comput Chem 2007; 28:1834-47. [PMID: 17342714 DOI: 10.1002/jcc.20688] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report a new, high-dimensional application of a method for finding a transition state (TS) between a reactant and a product on the potential energy surface: the search of a growing string along a reaction path defined by any Newton trajectory in combination with the Berny method (Quapp, J Chem Phys (2005), 122, 174106; we have provided this algorithm on a web page). Two given minima are connected by a one-dimensional, but usually curvilinear reaction coordinate. It leads to the TS region. The application of the method to alanine dipeptide finds the TS of the isomerisation C(7 ax) --> C(5), some TSs of the enantiomerisation of C(7 ax) from L-form to quasi-D-form, and it finds the TS region of a transition of a partly unfolded, bent structure which turns back into a mainly alpha-helix in the Ac(Ala)(15)NHMe polyalanine (all at the quantum mechanical level B3LYP/6-31G: the growing string calculation is interfaced with the Gaussian03 package). The formation or dissolvation of some alpha- or 3(10)-hydrogen bonds of the helix are discussed along the TS pathway, as well as the case of an enantiomer at the central residue of the helix.
Collapse
Affiliation(s)
- Wolfgang Quapp
- Mathematical Institute, University of Leipzig, Augustus-Platz, D-04109 Leipzig, Germany.
| |
Collapse
|
30
|
Quaytman SL, Schwartz SD. Reaction coordinate of an enzymatic reaction revealed by transition path sampling. Proc Natl Acad Sci U S A 2007; 104:12253-8. [PMID: 17640885 PMCID: PMC1941458 DOI: 10.1073/pnas.0704304104] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transition path sampling method previously applied in our group to the reaction catalyzed by lactate dehydrogenase was used to generate a transition path ensemble for this reaction. Based on analysis of the reactive trajectories generated, important residues behind the active site were implicated in a compressional motion that brought the donor-acceptor atoms of the hydride closer together. In addition, residues behind the active site were implicated in a relaxational motion, locking the substrate in product formation. Although this suggested that the compression-relaxation motions of these residues were important to catalysis, it remained unproven. In this work, we used committor distribution analysis to show that these motions are integral components of the reaction coordinate.
Collapse
Affiliation(s)
| | - Steven D. Schwartz
- Departments of *Biophysics and
- Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Abstract
Many schemes for calculating reaction rates and free energy barriers require an accurate reaction coordinate, but it is difficult to quantify reaction coordinate accuracy for complex processes like protein folding and nucleation. The histogram test, based on estimated committor probabilities, is often used as a qualitative indicator for good reaction coordinates. This paper derives the mean and variance of the intrinsic committor distribution in terms of the mean and variance of the histogram of committor estimates. These convenient formulas enable the first quantitative calculations of reaction coordinate error for complex systems. An example shows that the approximate transition state surface from Peters' and Trout's reaction coordinate for nucleation in the Ising model gives a mean committor probability of 0.495 and a standard deviation of 0.042.
Collapse
Affiliation(s)
- Baron Peters
- CECAM (Centre Européen de Calcul Atomique Moléculaire), Ecole Normale Supérieure, 46 Allée d'Italie, 69364 Lyon Cedex 7, France.
| |
Collapse
|