1
|
Bashirova N, Schölzel F, Hornig D, Scheidt HA, Krueger M, Salvan G, Huster D, Matysik J, Alia A. The Effect of Polyethylene Terephthalate Nanoplastics on Amyloid-β Peptide Fibrillation. Molecules 2025; 30:1432. [PMID: 40286031 PMCID: PMC11990616 DOI: 10.3390/molecules30071432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Exposure of organisms to nanoplastics (NPs) is inevitable given their global abundance and environmental persistence. Polyethylene terephthalate (PET) is a common plastic used in a wide range of products, including clothing and food and beverage packaging. Recent studies suggest that NPs can cross the blood-brain barrier and cause potential neurotoxicity. It is widely known that aggregation of amyloid beta (Aβ) peptides in the brain is a pathological hallmark of Alzheimer's disease (AD). While the impact of nanoplastics such as polystyrene (PS) on amyloid aggregation has been studied, the effects of PET NPs remain unexplored. In this study, we examined the effect of PET NPs of different sizes (PET50nm and PET140nm) and concentrations (0, 10, 50, and 100 ppm) on the fibrillation of Aβ1-40. Our results showed that the presence of PET50nm as well as PET140nm decreased the lag phase of the fibrillation processes in a dose- and size-dependent manner from 6.7 ± 0.08 h for Aβ in the absence of PET (Aβcontrol) to 3.1 ± 0.03 h for PET50nm and 3.8 ± 0.06 h for PET140nm. CD spectroscopy showed that PET50nm significantly impacts the structural composition of Aβ aggregates. A significant rise in antiparallel β-sheet content and β-turn structure and a substantial reduction in other structures were observed in the presence of 100 ppm PET50nm. These changes indicate that higher concentrations (100 ppm) of PET50nm promote more rigid and uniform peptide aggregates. Although PET50nm NPs influence the kinetics of aggregation and secondary structure, the overall morphology of the resulting fibrils remains largely unaltered, as seen using transmission electron microscopy. Also, the local cross-β structure of the fibrils was not affected by the presence of PET50nm NPs during fibrillation, as confirmed using 13C solid-state NMR spectroscopy. Overall, these findings show that PET NPs accelerate amyloid fibril formation and alter the secondary structure of Aβ fibrils. These results also indicate that the accumulation of PET-NPs in the brain may facilitate the progression of various neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Narmin Bashirova
- Institute of Medical Physics and Biophysics, Leipzig University, D-04107 Leipzig, Germany (D.H.)
- Institute of Analytical Chemistry, Leipzig University, D-04103 Leipzig, Germany;
| | - Franziska Schölzel
- Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz, Germany (G.S.)
- Center for Materials, Architectures and Integration of Nanomembranes, Chemnitz University of Technology, D-09126 Chemnitz, Germany
| | - Dominik Hornig
- Center for Materials, Architectures and Integration of Nanomembranes, Chemnitz University of Technology, D-09126 Chemnitz, Germany
- Institute of Chemistry, Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Holger A. Scheidt
- Institute of Medical Physics and Biophysics, Leipzig University, D-04107 Leipzig, Germany (D.H.)
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, D-04107 Leipzig, Germany
| | - Georgeta Salvan
- Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz, Germany (G.S.)
- Institute of Chemistry, Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, Leipzig University, D-04107 Leipzig, Germany (D.H.)
| | - Joerg Matysik
- Institute of Analytical Chemistry, Leipzig University, D-04103 Leipzig, Germany;
| | - A. Alia
- Institute of Medical Physics and Biophysics, Leipzig University, D-04107 Leipzig, Germany (D.H.)
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
2
|
Atanasova M. Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics-Part A: Endogenous Compounds and Repurposed Drugs. Pharmaceuticals (Basel) 2025; 18:306. [PMID: 40143085 PMCID: PMC11944459 DOI: 10.3390/ph18030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The amyloid hypothesis is the predominant model of Alzheimer's disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various processes, such as vascular damage, inflammation-induced astrocyte and microglia activation, disrupted neuronal ionic homeostasis, oxidative stress, abnormal kinase and phosphatase activity, tau phosphorylation, neurofibrillary tangle formation, cognitive dysfunction, synaptic loss, cell death, and, ultimately, dementia. Molecular dynamics (MD) is a powerful structure-based drug design (SBDD) approach that aids in understanding the properties, functions, and mechanisms of action or inhibition of biomolecules. As the only method capable of simulating atomic-level internal motions, MD provides unique insights that cannot be obtained through other techniques. Integrating experimental data with MD simulations allows for a more comprehensive understanding of biological processes and molecular interactions. This review summarizes and evaluates MD studies from the past decade on small molecules, including endogenous compounds and repurposed drugs, that inhibit amyloid beta. Furthermore, it outlines key considerations for future MD simulations of amyloid inhibitors, offering a potential framework for studies aimed at elucidating the mechanisms of amyloid beta inhibition by small molecules.
Collapse
|
3
|
Baek Y, Lee M. Exploring the complexity of amyloid-beta fibrils: structural polymorphisms and molecular interactions. Biochem Soc Trans 2024; 52:1631-1646. [PMID: 39034652 DOI: 10.1042/bst20230854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The aggregation of amyloid-beta (Aβ) peptides into cross-β structures forms a variety of distinct fibril conformations, potentially correlating with variations in neurodegenerative disease progression. Recent advances in techniques such as X-ray crystallography, solid-state NMR, and cryo-electron microscopy have enabled the development of high-resolution molecular structures of these polymorphic amyloid fibrils, which are either grown in vitro or isolated from human and transgenic mouse brain tissues. This article reviews our current understanding of the structural polymorphisms in amyloid fibrils formed by Aβ40 and Aβ42, as well as disease-associated mutants of Aβ peptides. The aim is to enhance our understanding of various molecular interactions, including hydrophobic and ionic interactions, within and among cross-β structures.
Collapse
Affiliation(s)
- Yoongyeong Baek
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, U.S.A
| | - Myungwoon Lee
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
4
|
Zhao N, Wang J, Huang S, Zhang J, Bao J, Ni H, Gao X, Zhang C. The landscape of programmed cell death-related lncRNAs in Alzheimer's disease and Parkinson's disease. Apoptosis 2024:10.1007/s10495-024-01984-z. [PMID: 38853201 DOI: 10.1007/s10495-024-01984-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
This study delivers a thorough analysis of long non-coding RNAs (lncRNAs) in regulating programmed cell death (PCD), vital for neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD). We propose a new framework PCDLnc, and identified 20 significant lncRNAs, including HEIH, SNHG15, and SNHG5, associated with PCD gene sets, which were known for roles in proliferation and apoptosis in neurodegenerative diseases. By using GREAT software, we identified regulatory functions of top lncRNAs in different neurodegenerative diseases. Moreover, lncRNAs cis-regulated mRNAs linked to neurodegeneration, including JAK2, AKT1, EGFR, CDC42, SNCA, and ADIPOQ, highlighting their therapeutic potential in neurodegenerative diseases. A further exploration into the differential expression of mRNA identified by PCDLnc revealed a role in apoptosis, ferroptosis and autophagy. Additionally, protein-protein interaction (PPI) network analysis exposed abnormal interactions among key genes, despite their consistent expression levels between disease and normal samples. The randomforest model effectively distinguished between disease samples, indicating a high level of accuracy. Shared gene subsets in AD and PD might serve as potential biomarkers, along with disease-specific gene sets. Besides, we also found the strong relationship between AD and immune infiltration. This research highlights the role of lncRNAs and their associated genes in PCD in neurodegenerative diseases, offering potential therapeutic targets and diagnostic markers for future study and clinical application.
Collapse
Affiliation(s)
- Ning Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Junyi Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shan Huang
- The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingyu Zhang
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jin Bao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Haisen Ni
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xinhang Gao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Chunlong Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
5
|
Scheidt HA, Korn A, Schwarze B, Krueger M, Huster D. Conformation of Pyroglutamated Amyloid β (3-40) and (11-40) Fibrils - Extended or Hairpin? J Phys Chem B 2024; 128:1647-1655. [PMID: 38334278 PMCID: PMC10895672 DOI: 10.1021/acs.jpcb.3c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Amyloid β (Aβ) is a hallmark protein of Alzheimer's disease. One physiologically important Aβ variant is formed by initial N-terminal truncation at a glutamic acid position (either E3 or E11), which is subsequently cyclized to a pyroglutamate (either pE3 or pE11). Both forms have been found in high concentrations in the core of amyloid plaques and are likely of high importance in the pathology of Alzheimer's disease. However, the molecular structure of the fibrils of these variants is not entirely clear. Solid-state NMR spectroscopy studies have reported a molecular contact between Gly25 and Ile31, which would disagree with the conventional hairpin model of wildtype (WT-)Aβ1-40 fibrils, most often described in the literature. We investigated the conformation of the monomeric unit of pE3-Aβ3-40 and pE11-Aβ11-40 (and for comparison also wildtype (WT)-Aβ1-40) fibrils to find out whether the hairpin or a newly suggested extended structure dominates the structure of the Aβ monomers in these fibrils. To this end, solid-state NMR spectroscopy was applied probing the inter-residual contacts between Phe19/Leu34, Ala21/Leu34, and especially Gly25/Ile31 using suitable isotopic labeling schemes. In the second part, the flexible turn of the Aβ40 peptides was replaced by a (3-(3-aminomethyl)phenylazo)phenylacetic acid (AMPP)-based photoswitch, which can predefine the peptide conformation to either an extended (trans) or hairpin (cis) conformation. This enables simultaneous spectroscopic assessment of the conformation of the AMPP-photoswitch, allowing in situ structural investigations during fibrillation in contrast to structural techniques such as NMR spectroscopy or cryo-EM, which can only be applied to stable conformers. Both methods confirm an extended structure for the peptidic monomers in fibrils of all investigated Aβ variants. Especially the Gly25/Ile31 contact is a decisive indicator for the extended structure along with the characteristic absorption spectra of trans-AMPP-Aβ.
Collapse
Affiliation(s)
- Holger A. Scheidt
- Institute
for Medical Physics and Biophysics, Leipzig
University Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - Alexander Korn
- Institute
for Medical Physics and Biophysics, Leipzig
University Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - Benedikt Schwarze
- Institute
for Medical Physics and Biophysics, Leipzig
University Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - Martin Krueger
- Institute
of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany
| | - Daniel Huster
- Institute
for Medical Physics and Biophysics, Leipzig
University Härtelstr. 16/18, D-04107 Leipzig, Germany
| |
Collapse
|
6
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
7
|
Sarkar D, Maity NC, Shome G, Varnava KG, Sarojini V, Vivekanandan S, Sahoo N, Kumar S, Mandal AK, Biswas R, Bhunia A. Mechanistic insight into functionally different human islet polypeptide (hIAPP) amyloid: the intrinsic role of the C-terminal structural motifs. Phys Chem Chem Phys 2022; 24:22250-22262. [PMID: 36098073 DOI: 10.1039/d2cp01650h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeting amyloidosis requires high-resolution insight into the underlying mechanisms of amyloid aggregation. The sequence-specific intrinsic properties of a peptide or protein largely govern the amyloidogenic propensity. Thus, it is essential to delineate the structural motifs that define the subsequent downstream amyloidogenic cascade of events. Additionally, it is important to understand the role played by extrinsic factors, such as temperature or sample agitation, in modulating the overall energy barrier that prompts divergent nucleation events. Consequently, these changes can affect the fibrillation kinetics, resulting in structurally and functionally distinct amyloidogenic conformers associated with disease pathogenesis. Here, we have focused on human Islet Polypeptide (hIAPP) amyloidogenesis for the full-length peptide along with its N- and C-terminal fragments, under different temperatures and sample agitation conditions. This helped us to gain a comprehensive understanding of the intrinsic role of specific functional epitopes in the primary structure of the peptide that regulates amyloidogenesis and subsequent cytotoxicity. Intriguingly, our study involving an array of biophysical experiments and ex vivo data suggests a direct influence of external changes on the C-terminal fibrillating sequence. Furthermore, the observations indicate a possible collaborative role of this segment in nucleating hIAPP amyloidogenesis in a physiological scenario, thus making it a potential target for future therapeutic interventions.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| | - Narayan Chandra Maity
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Kolkata 700 091, India
| | - Kyriakos Gabriel Varnava
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | - Nirakar Sahoo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas, 78539, USA
| | - Sourav Kumar
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Kolkata 700 091, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| |
Collapse
|
8
|
Vugmeyster L, Ostrovsky D, Greenwood A, Fu R. Deuteron rotating frame relaxation for the detection of slow motions in rotating solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107171. [PMID: 35219160 PMCID: PMC8994516 DOI: 10.1016/j.jmr.2022.107171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/06/2023]
Abstract
We demonstrate experimental and computational approaches for measuring 2H rotating frame NMR relaxation for solid samples under magic angle spinning (MAS) conditions. The relaxation properties of the deuterium spin-1 system are dominated by the reorientation of the anisotropic quadrupolar tensors, with the effective quadrupolar coupling constant around 55 kHz for methyl groups. The technique is demonstrated using the model compound dimethyl-sulfone at MAS rates of 10 and 60 kHz as well as for an amyloid fibril sample comprising an amyloid-β (1-40) protein with a selective methyl group labeled in the disordered domain of the fibrils, at an MAS rate of 8 kHz. For both systems, the motional parameters fall well within the ranges determined by other techniques, thus validating its feasibility. Experimental and computational factors such as i) the probe's radio frequency inhomogeneity profiles, ii) rotary resonances at conditions for which the spin-lock field strength matches the half- or full-integer of the MAS rate, iii) the choice of MAS rates and spin-lock field strengths, and iv) simulations that account for the interconversion of multiple coherences for the spin-1 system under MAS and deviations from the analytical Redfield treatment are thoroughly considered.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA.
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO 80204, USA
| | - Alexander Greenwood
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL 32310, USA
| |
Collapse
|
9
|
Lambeth T, Julian RR. Proteolysis of Amyloid β by Lysosomal Enzymes as a Function of Fibril Morphology. ACS OMEGA 2021; 6:31520-31527. [PMID: 34869978 PMCID: PMC8637590 DOI: 10.1021/acsomega.1c03915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/08/2021] [Indexed: 05/27/2023]
Abstract
Aggregation of amyloid-β (Aβ) into extracellular plaques is a well-known hallmark of Alzheimer's disease (AD). Similarly, autophagic vacuoles, autophagosomes, and other residual bodies within dystrophic neurites, though more difficult to detect, are characteristic features of AD. To explore the potential intersection between these observations, we conducted experiments to assess whether Aβ fibril formation disrupts proteolysis by lysosomal enzymes. Fibrils constituted by either Aβ 1-40 or Aβ 1-42 were grown under both neutral and acidic pH. The extent of proteolysis by individual cathepsins (L, D, B, and H) was monitored by both thioflavin T fluorescence and liquid chromatography combined with mass spectrometry. The results show that all Aβ fibril morphologies are resistant to cathepsin digestion, with significant amounts of the undigested material remaining for samples grown in either neutral or acidic pH. Further analysis revealed that the neutral-grown fibrils are proteolytically resistant throughout the sequence, while the acid-grown fibrils prevented digestion primarily in the C-terminal portion of the sequence. Fibrils grown from Aβ 1-42 are generally more resistant to degradation compared to Aβ 1-40. Overall, the results indicate that Aβ fibrils formed in the neutral pH environments found in intracellular or extracellular spaces may pose the greatest difficulty for complete digestion by the lysosome, particularly when the fibrils are comprised of Aβ 1-42.
Collapse
|
10
|
Shi H, Wang L, Yao Z, Lee JY, Guo W. Role of the English (H6R) Mutation on the Structural Properties of Aβ40 and Aβ42 Owing to the Histidine Tautomeric Effect. ACS Chem Neurosci 2021; 12:2705-2711. [PMID: 34240598 DOI: 10.1021/acschemneuro.1c00355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
As an intrinsic origin cause, histidine behaviors play a critical role in protein misfolding processes. Generally, the English (H6R) mutation will disrupt H6 interactions. However, the structural properties of Aβ40 H6R and Aβ42 H6R under the complex influence of a histidine tautomeric effect and an H6R mutation remain unclear. Therefore, we performed a replica exchange molecular dynamics simulation to unveil such structural properties. Our result showed that the H6R substitute could promote the generation of β-sheet structures in comparison to the wild type. Three β-strand structure properties were observed in Aβ40 (rδδ), Aβ42 (rεε), Aβ42 (rεδ), and Aβ42 (rδδ) with β-sheet contents of 47.5%, 37.2%, 46.9%, and 38.6%, respectively, and the dominant conformational properties of Aβ40 (rδδ), Aβ42 (rεε), Aβ42 (rεδ), and Aβ42 (rδδ) had top conformational states of 86.0%, 73.2%, 67.0%, and 56.5%, respectively. Further analysis confirmed that R6 had different mechanisms for controlling the conformational features in Aβ40 H6R and Aβ42 H6R. In the Aβ40 systems, H14 H-bond networks played a critical role in controlling the structural properties. However, in the Aβ42 systems, R6 was more important because it was directly involved in the β-strand formation and maintained the β-sheet between the N-terminus and the central hydrophobic core region. Our current study helps to elucidate the histidine tautomeric behaviors in H6R mutations, which will present opportunities to understand the correlation between with/without H6 and the Aβ40/Aβ42 H6R misfolding mechanisms.
Collapse
Affiliation(s)
- Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Lisha Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zeshuai Yao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
11
|
Masrati G, Landau M, Ben-Tal N, Lupas A, Kosloff M, Kosinski J. Integrative Structural Biology in the Era of Accurate Structure Prediction. J Mol Biol 2021; 433:167127. [PMID: 34224746 DOI: 10.1016/j.jmb.2021.167127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Characterizing the three-dimensional structure of macromolecules is central to understanding their function. Traditionally, structures of proteins and their complexes have been determined using experimental techniques such as X-ray crystallography, NMR, or cryo-electron microscopy-applied individually or in an integrative manner. Meanwhile, however, computational methods for protein structure prediction have been improving their accuracy, gradually, then suddenly, with the breakthrough advance by AlphaFold2, whose models of monomeric proteins are often as accurate as experimental structures. This breakthrough foreshadows a new era of computational methods that can build accurate models for most monomeric proteins. Here, we envision how such accurate modeling methods can combine with experimental structural biology techniques, enhancing integrative structural biology. We highlight the challenges that arise when considering multiple structural conformations, protein complexes, and polymorphic assemblies. These challenges will motivate further developments, both in modeling programs and in methods to solve experimental structures, towards better and quicker investigation of structure-function relationships.
Collapse
Affiliation(s)
- Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Andrei Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838 Haifa, Israel.
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), Hamburg 22607, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
12
|
Dou T, Zhou L, Kurouski D. Unravelling the Structural Organization of Individual α-Synuclein Oligomers Grown in the Presence of Phospholipids. J Phys Chem Lett 2021; 12:4407-4414. [PMID: 33945282 DOI: 10.1021/acs.jpclett.1c00820] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is a severe neurological disorder that affects more than 1 million people in the U.S. alone. A hallmark of PD is the formation of intracellular α-synuclein (α-Syn) protein aggregates called Lewy bodies (LBs). Although this protein does not have a particular localization in the central neural system, α-Syn aggregates are primarily found in certain areas of the midbrain, hypothalamus, and thalamus. Microscopic analysis of LBs reveals fragments of lipid-rich membranes, organelles, and vesicles. These and other pieces of experimental evidence suggest that α-Syn aggregation can be triggered by lipids. In this study, we used atomic force microscope infrared spectroscopy (AFM-IR) to investigate the structural organization of individual α-Syn oligomers grown in the presence of two different phospholipids vesicles. AFM-IR is a modern optical nanoscopy technique that has single-molecule sensitivity and subdiffraction spatial resolution. Our results show that α-Syn oligomers grown in the presence of phosphatidylcholine have a distinctly different structure than oligomers grown in the presence of phosphatidylserine. We infer that this occurs because of specific charges adopted by lipids, which in turn governs protein aggregation. We also found that the protein to phospholipid ratio has a substantial impact on the structure of α-Syn oligomers. These findings demonstrate that α-Syn is far more complex than expected from the perspective of the structural organization of oligomeric species.
Collapse
|
13
|
Mei J, Yang H, Sun B, Liu C, Ai H. Small-Molecule Targeted Aβ 42 Aggregate Degradation: Negatively Charged Small Molecules Are More Promising than the Neutral Ones. ACS Chem Neurosci 2021; 12:1197-1209. [PMID: 33687193 DOI: 10.1021/acschemneuro.1c00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heavy evidence has confirmed that Aβ42 oligomers are the most neurotoxic aggregates and play a critical role in the occurrence and development of Alzheimer's disease by causing functional neuron death, cognitive damage, and dementia. Disordered Aβ42 oligomers are challenging therapeutic targets, and no drug is currently in clinical use that modifies the properties of their monomeric states. Here, a negatively charged molecule (ER), rather than the neutral TS1 one, is identified by a molecular dynamics simulation method to be more capable of binding and sequestering the intrinsically disordered amyloid-β peptide Aβ42 in its soluble pentameric state as well as its monomeric components. Results reveal that the ERs interact with Aβ and inhibit the primary nucleation pathways in its aggregation process in entropic expansion mechanism for both Aβ42 and Aβ40 oligomers but with opposite characteristics of hydrophobic surface area (HSA). The interaction between Aβ42 oligomer and either charged ER or neutral TS1/TS0 characterizes decreased HSA, and the decrease in ER-involved case is highly visible, consistent with the observations from in silico and in vitro studies. By contrast, the presence of these inhibitors causes the HSA of Aβ40 oligomer to change undetectably and there is even a bit of increase in the histidine isomerized Aβ40 oligomer. The HSA distinction between Aβ42 and Aβ40 oligomer is possibly derived from the different effects of M35-inhibitor interaction, which is analogous to the effect of M35 oxidation. In comparison with the neutral TS1/TS0 inhibitors, ER is more prone to bind the residues located in the central (β1) and C-terminal (β2) regions of Aβ42 peptide, two key nucleation regions for Aβ intramolecular folding, intermolecular aggregation, and assembly. Notably, ER can strongly bind the charged residues, such as K16, K28, D23, to greatly disturb the potential stabilizer (e.g., salt-bridge, etc.) in metastable Aβ42 oligomers and protofibrils. These results illustrate the strategy of overcoming Alzheimer's disease from inhibiting its early stage Aβ aggregation with two kinds of small molecules to alter their behavior for therapeutic purposes and strongly recommend paying more attention to the engineering and development of negatively charged inhibitors, the long-term underappreciated ones, targeting the early stage Aβ aggregates.
Collapse
Affiliation(s)
- Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huijuan Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Bo Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chengqiang Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
14
|
Gao Y, Saccuzzo EG, Hill SE, Huard DJE, Robang AS, Lieberman RL, Paravastu AK. Structural Arrangement within a Peptide Fibril Derived from the Glaucoma-Associated Myocilin Olfactomedin Domain. J Phys Chem B 2021; 125:2886-2897. [PMID: 33683890 DOI: 10.1021/acs.jpcb.0c11460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myocilin-associated glaucoma is a new addition to the list of diseases linked to protein misfolding and amyloid formation. Single point variants of the ∼257-residue myocilin olfactomedin domain (mOLF) lead to mutant myocilin aggregation. Here, we analyze the 12-residue peptide P1 (GAVVYSGSLYFQ), corresponding to residues 326-337 of mOLF, previously shown to form amyloid fibrils in vitro and in silico. We applied solid-state NMR structural measurements to test the hypothesis that P1 fibrils adopt one of three predicted structures. Our data are consistent with a U-shaped fibril arrangement for P1, one that is related to the U-shape predicted previously in silico. Our data are also consistent with an antiparallel fibril arrangement, likely driven by terminal electrostatics. Our proposed structural model is reminiscent of fibrils formed by the Aβ(1-40) Iowa mutant peptide, but with a different arrangement of molecular turn regions. Taken together, our results strengthen the connection between mOLF fibrils and the broader amylome and contribute to our understanding of the fundamental molecular interactions governing fibril architecture and stability.
Collapse
|
15
|
Ghorbani-Choghamarani A, Taherinia Z, Heidarnezhad Z, Moradi Z. Application of Nanofibers Based on Natural Materials as Catalyst in Organic Reactions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Scheidt HA, Das A, Korn A, Krueger M, Maiti S, Huster D. Structural characteristics of oligomers formed by pyroglutamate-modified amyloid β peptides studied by solid-state NMR. Phys Chem Chem Phys 2020; 22:16887-16895. [PMID: 32666970 DOI: 10.1039/d0cp02307h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal plaques of amyloid β (Aβ) peptides of varying length carrying different posttranslational modifications represent a molecular hallmark of Alzheimer's disease. It is believed that transient oligomeric Aβ assemblies associating in early fibrillation events represent particularly cytotoxic peptide aggregates. Also, N-terminally truncated (in position 3 or 11) and pyroglutamate modified peptides exhibited an increased toxicity compared to the wildtype. In the current study, the molecular structure of oligomeric species of pGlu3-Aβ(3-40) and pGlu11-Aβ(11-40) was investigated using solid-state NMR spectroscopy. On the secondary structure level, for both modified peptides a large similarity between oligomers and mature fibrils of the modified peptides was found mainly based on 13C NMR chemical shift data. Some smaller structural differences were detected in the vicinity of the respective modification site. Also, the crucial early folding molecular contact between residues Phe19 and Leu34 could be observed for the oligomers of both modified peptide species. Therefore, it has to be concluded that the major secondary structure elements of Aβ are already present in oligomers of pGlu3-Aβ(3-40) and pGlu11-Aβ(11-40). These posttranslationally modified peptides arrange in a similar fashion as observed for wild type Aβ(1-40).
Collapse
Affiliation(s)
- Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Anirban Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Alexander Korn
- Institute for Medical Physics and Biophysics, Leipzig University Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University Härtelstr. 16-18, D-04107 Leipzig, Germany. and Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
17
|
Tavanti F, Pedone A, Menziani MC. Insights into the Effect of Curcumin and (-)-Epigallocatechin-3-Gallate on the Aggregation of Aβ(1-40) Monomers by Means of Molecular Dynamics. Int J Mol Sci 2020; 21:ijms21155462. [PMID: 32751722 PMCID: PMC7432714 DOI: 10.3390/ijms21155462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
In this study, we compared the effects of two well-known natural compounds on the early step of the fibrillation process of amyloid-β (1–40), responsible for the formation of plaques in the brains of patients affected by Alzheimer’s disease (AD). The use of extensive replica exchange simulations up to the µs scale allowed us to characterize the inhibition activity of (–)-epigallocatechin-3-gallate (EGCG) and curcumin (CUR) on unfolded amyloid fibrils. A reduced number of β-strands, characteristic of amyloid fibrils, and an increased distance between the amino acids that are responsible for the intra- and interprotein aggregations are observed. The central core region of the amyloid-β (Aβ(1–40)) fibril is found to have a high affinity to EGCG and CUR due to the presence of hydrophobic residues. Lastly, the free binding energy computed using the Poisson Boltzmann Surface Ares suggests that EGCG is more likely to bind to unfolded Aβ(1–40) fibrils and that this molecule can be a good candidate to develop new and more effective congeners to treat AD.
Collapse
Affiliation(s)
- Francesco Tavanti
- CNR–NANO Research Center S3, Via Campi 213/a, 41125 Modena, Italy
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
- Correspondence:
| | - Alfonso Pedone
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
| |
Collapse
|
18
|
Nam Y, Kalathingal M, Saito S, Lee JY. Tautomeric Effect of Histidine on β-Sheet Formation of Amyloid Beta 1-40: 2D-IR Simulations. Biophys J 2020; 119:831-842. [PMID: 32730791 DOI: 10.1016/j.bpj.2020.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Histidine state (protonated or δ or ε tautomer) has been considered the origin of abnormal misfolding and aggregation of β-amyloid (Aβ). Our previous studies reported that the δδδ isomer of Aβ (1-40) has a greater propensity for β-sheet conformation compared to other isomers. However, direct proof of the tautomeric effect has not been reported. In this context, we calculated histidine site-specific two-dimensional infrared spectroscopy of the δδδ, εεε, and πππ (all protonated histidine) systems within the framework of classical molecular dynamics simulations aiming at connecting our previous results with the current experimental observations. Our results showed that β-sheet formation is favored for the δδδ and πππ tautomers compared with the εεε tautomer, consistent with our previous studies. This result was further supported by contact map analyses and the strength of dipole coupling between the amide-I bonds of each residue. The two-dimensional infrared diagonal trace for each tautomer included three distinctive spectrally resolvable peaks near 1680, 1686, and 1693 cm-1, as was also observed for histidine dipeptides. However, the peak positions at His6, His13, and His14 did not show a consensus trend with the histidine or protonation state but were instead affected by the presence of surrounding hydrogen bonds. Our study provides a deeper insight into the influence of tautomerism and protonation of histidine residues in Aβ (1-40) on amyloid misfolding and provides a connection between our previous simulations and experimental observations.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea; Institute for Molecular Science, Myodaiji, Okazaki, Japan
| | | | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Japan; The Graduate University for Advanced Studies, Myodaiji, Okazaki, Japan.
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
19
|
Watanabe-Nakayama T, Sahoo BR, Ramamoorthy A, Ono K. High-Speed Atomic Force Microscopy Reveals the Structural Dynamics of the Amyloid-β and Amylin Aggregation Pathways. Int J Mol Sci 2020; 21:E4287. [PMID: 32560229 PMCID: PMC7352471 DOI: 10.3390/ijms21124287] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
Individual Alzheimer's disease (AD) patients have been shown to have structurally distinct amyloid-β (Aβ) aggregates, including fibrils, in their brain. These findings suggest the possibility of a relationship between AD progression and Aβ fibril structures. Thus, the characterization of the structural dynamics of Aβ could aid the development of novel therapeutic strategies and diagnosis. Protein structure and dynamics have typically been studied separately. Most of the commonly used biophysical approaches are limited in providing substantial details regarding the combination of both structure and dynamics. On the other hand, high-speed atomic force microscopy (HS-AFM), which simultaneously visualizes an individual protein structure and its dynamics in liquid in real time, can uniquely link the structure and the kinetic details, and it can also unveil novel insights. Although amyloidogenic proteins generate heterogeneously aggregated species, including transient unstable states during the aggregation process, HS-AFM elucidated the structural dynamics of individual aggregates in real time in liquid without purification and isolation. Here, we review and discuss the HS-AFM imaging of amyloid aggregation and strategies to optimize the experiments showing findings from Aβ and amylin, which is associated with type II diabetes, shares some common biological features with Aβ, and is reported to be involved in AD.
Collapse
Affiliation(s)
| | - Bikash R. Sahoo
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, and Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Kenjiro Ono
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Hatanodai, Shinagawa district, Tokyo 142-8666, Japan;
| |
Collapse
|
20
|
Hawk LML, Pittman JM, Moore PC, Srivastava AK, Zerweck J, Williams JTB, Hawk AJ, Sachleben JR, Meredith SC. β-amyloid model core peptides: Effects of hydrophobes and disulfides. Protein Sci 2019; 29:527-541. [PMID: 31710741 DOI: 10.1002/pro.3778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
The mechanism by which a disordered peptide nucleates and forms amyloid is incompletely understood. A central domain of β-amyloid (Aβ21-30) has been proposed to have intrinsic structural propensities that guide the limited formation of structure in the process of fibrillization. In order to test this hypothesis, we examine several internal fragments of Aβ, and variants of these either cyclized or with an N-terminal Cys. While Aβ21-30 and variants were always monomeric and unstructured (circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMRS)), we found that the addition of flanking hydrophobic residues in Aβ16-34 led to formation of typical amyloid fibrils. NMR showed no long-range nuclear overhauser effect (nOes) in Aβ21-30, Aβ16-34, or their variants, however. Serial 1 H-15 N-heteronuclear single quantum coherence spectroscopy, 1 H-1 H nuclear overhauser effect spectroscopy, and 1 H-1 H total correlational spectroscopy spectra were used to follow aggregation of Aβ16-34 and Cys-Aβ16-34 at a site-specific level. The addition of an N-terminal Cys residue (in Cys-Aβ16-34) increased the rate of fibrillization which was attributable to disulfide bond formation. We propose a scheme comparing the aggregation pathways for Aβ16-34 and Cys-Aβ16-34, according to which Cys-Aβ16-34 dimerizes, which accelerates fibril formation. In this context, cysteine residues form a focal point that guides fibrillization, a role which, in native peptides, can be assumed by heterogeneous nucleators of aggregation.
Collapse
Affiliation(s)
- Laura M L Hawk
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Jay M Pittman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Patrick C Moore
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Atul K Srivastava
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Jonathan Zerweck
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | | - Andrew J Hawk
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, The University of Chicago, Chicago, Illinois
| | - Stephen C Meredith
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.,Department of Pathology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
21
|
Shi H, Li H, Gong W, Gong R, Qian A, Lee JY, Guo W. Structural and Binding Properties on Aβ Mature Fibrils Due to the Histidine Tautomeric Effect. ACS Chem Neurosci 2019; 10:4612-4618. [PMID: 31566366 DOI: 10.1021/acschemneuro.9b00467] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many studies have focused on histidine behaviors in misfolding diseases. However, histidine behaviors on mature fibrils are still unknown. In the current study, we investigated mature fibrils with various histidine states to understand the structural properties of the histidine tautomeric effect on mature fibrils. Our results show that substituting chain 1 with different histidine states affects Aβ structural properties in A2, D7-G9, H14-Q15, S26-N27, and G33-G37 regions. The binding free energies with substituted fibrils were influenced not only along the axial direction, but also between duplex fibrils. Our results suggest that substituted (εδδ) preferentially disturbed the stability among the current mature fibrils. Further, H-bonded network differences indicate that twisted morphologies in mature fibrils are derived from the position and orientation of the imidazole ring in histidines. Our current study helps to elucidate histidine behaviors on mature fibrils, which will present opportunities to understand the misfolding mechanisms.
Collapse
Affiliation(s)
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | | | | | | | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | | |
Collapse
|
22
|
Vugmeyster L, Au DF, Ostrovsky D, Fu R. Deuteron Solid-State NMR Relaxation Measurements Reveal Two Distinct Conformational Exchange Processes in the Disordered N-Terminal Domain of Amyloid-β Fibrils. Chemphyschem 2019; 20:1680-1689. [PMID: 31087613 PMCID: PMC6663588 DOI: 10.1002/cphc.201900363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/12/2019] [Indexed: 12/26/2022]
Abstract
We employed deuterium solid-state NMR techniques under static conditions to discern the details of the μs-ms timescale motions in the flexible N-terminal subdomain of Aβ1-40 amyloid fibrils, which spans residues 1-16. In particular, we utilized a rotating frame (R1ρ ) and the newly developed time domain quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) relaxation measurements at the selectively deuterated side chains of A2, H6, and G9. The two experiments are complementary in terms of probing somewhat different timescales of motions, governed by the tensor parameters and the sampling window of the magnetization decay curves. The results indicated two mobile "free" states of the N-terminal domain undergoing global diffusive motions, with isotropic diffusion coefficients of 0.7-1 ⋅ 108 and 0.3-3 ⋅ 106 ad2 s-1 . The free states are also involved in the conformational exchange with a single bound state, in which the diffusive motions are quenched, likely due to transient interactions with the structured hydrophobic core. The conformational exchange rate constants are 2-3 ⋅ 105 s-1 and 2-3 ⋅ 104 s-1 for the fast and slow diffusion free states, respectively.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO, USA, 80204
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver CO, USA, 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO, USA, 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL, 32310
| |
Collapse
|
23
|
Maity BK, Das AK, Dey S, Moorthi UK, Kaur A, Dey A, Surendran D, Pandit R, Kallianpur M, Chandra B, Chandrakesan M, Arumugam S, Maiti S. Ordered and Disordered Segments of Amyloid-β Drive Sequential Steps of the Toxic Pathway. ACS Chem Neurosci 2019; 10:2498-2509. [PMID: 30763064 DOI: 10.1021/acschemneuro.9b00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
While the roles of intrinsically disordered protein domains in driving interprotein interactions are increasingly well-appreciated, the mechanism of toxicity of disease-causing disordered proteins remains poorly understood. A prime example is Alzheimer's disease (AD) associated amyloid beta (Aβ). Aβ oligomers are highly toxic partially structured peptide assemblies with a distinct ordered region (residues ∼10-40) and a shorter disordered region (residues ∼1-9). Here, we investigate the role of this disordered domain and its relation to the ordered domain in the manifestation of toxicity through a set of Aβ fragments and stereoisomers designed for this purpose. We measure their effects on lipid membranes and cultured neurons, probing their toxicity, intracellular distributions, and specific molecular interactions using the techniques of confocal imaging, lattice light sheet imaging, fluorescence lifetime imaging, and fluorescence correlation spectroscopy. Remarkably, we find that neither part-Aβ10-40 or Aβ1-9, is toxic by itself. The ordered part (Aβ10-40) is the major determinant of how Aβ attaches to lipid bilayers, enters neuronal cells, and localizes primarily in the late endosomal compartments. However, once Aβ enters the cell, it is the disordered part (only when it is connected to the rest of the peptide) that has a strong and stereospecific interaction with an unknown cellular component, as demonstrated by distinct changes in the fluorescence lifetime of a fluorophore attached to the N-terminal. This interaction appears to commit Aβ to the toxic pathway. Our findings correlate well with Aβ sites of familial AD mutations, a significant fraction of which cluster in the disordered region. We conclude that, while the ordered region dictates attachment and cellular entry, the key to toxicity lies in the ordered part presenting the disordered part for a specific cellular interaction.
Collapse
Affiliation(s)
- Barun Kumar Maity
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Anand Kant Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Simli Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | | | | - Arpan Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Dayana Surendran
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Rucha Pandit
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Mamata Kallianpur
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Bappaditya Chandra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Muralidharan Chandrakesan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
24
|
Xing X, Zhao W, Hu D, Kang B, Shi H, Lee JY, Ai H. Tautomerization Effect of Histidines on Oligomer Aggregation of β-Amyloid(1-40/42) during the Early Stage: Tautomerism Hypothesis for Misfolding Protein Aggregation. ACS Chem Neurosci 2019; 10:2602-2608. [PMID: 30813720 DOI: 10.1021/acschemneuro.9b00094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As the intrinsic origin of the hypothesis for β-amyloid (Aβ) from Alzheimer's disease, histidine behaviors were found to play a crucial role in Aβ aggregation. To investigate the histidine behaviors during the early stage of aggregation, Aβ40/42 pentamers with different histidine isomer states were simulated at the atomic level. Results show that five Aβ40 (δδδ) and Aβ42 (εδδ) monomers can rapidly decrease the aggregation threshold, promote stable pentamer formation, and increase pentamer contents by 51.8% and 56.7%, respectively, as compared with the values of their wild-type (εεε) counterparts. Additionally, pentamers of Aβ40 (δδδ) and Aβ42 (εδδ) have different aggregation pathways and disassembly species, Tr+D and Te+M, during the growth of the pentamer. This work discloses the significance of histidine tautomerization in Aβ aggregation, implying a potential way to control Aβ aggregation and develop the assembly inhibitors.
Collapse
Affiliation(s)
- Xiaofeng Xing
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wei Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dingkun Hu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Jin Yong Lee
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
25
|
Lockhart C, Smith AK, Klimov DK. Methionine Oxidation Changes the Mechanism of Aβ Peptide Binding to the DMPC Bilayer. Sci Rep 2019; 9:5947. [PMID: 30976055 PMCID: PMC6459879 DOI: 10.1038/s41598-019-42304-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
Using all-atom explicit solvent replica exchange molecular dynamics simulations with solute tempering, we study the effect of methionine oxidation on Aβ10–40 peptide binding to the zwitterionic DMPC bilayer. By comparing oxidized and reduced peptides, we identified changes in the binding mechanism caused by this modification. First, Met35 oxidation unravels C-terminal helix in the bound peptides. Second, oxidation destabilizes intrapeptide interactions and expands bound peptides. We explain these outcomes by the loss of amphiphilic character of the C-terminal helix due to oxidation. Third, oxidation “polarizes” Aβ binding to the DMPC bilayer by strengthening the interactions of the C-terminus with lipids while largely releasing the rest of the peptide from bilayer. Fourth, in contrast to the wild-type peptide, oxidized Aβ induces significantly smaller bilayer thinning and drop in lipid density within the binding footprint. These observations are the consequence of mixing oxidized peptide amino acids with lipids promoted by enhanced Aβ conformational fluctuations. Fifth, methionine oxidation reduces the affinity of Aβ binding to the DMPC bilayer by disrupting favorable intrapeptide interactions upon binding, which offset the gains from better hydration. Reduced binding affinity of the oxidized Aβ may represent the molecular basis for its reduced cytotoxicity.
Collapse
Affiliation(s)
| | - Amy K Smith
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Dmitri K Klimov
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
26
|
Sil TB, Sahoo B, Bera SC, Garai K. Quantitative Characterization of Metastability and Heterogeneity of Amyloid Aggregates. Biophys J 2019; 114:800-811. [PMID: 29490242 DOI: 10.1016/j.bpj.2017.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 01/13/2023] Open
Abstract
Amyloids are heterogeneous assemblies of extremely stable fibrillar aggregates of proteins. Although biological activities of the amyloids are dependent on its conformation, quantitative evaluation of heterogeneity of amyloids has been difficult. Here we use disaggregation of the amyloids of tetramethylrhodamine-labeled Aβ (TMR-Aβ) to characterize its stability and heterogeneity. Disaggregation of TMR-Aβ amyloids, monitored by fluorescence recovery of TMR, was negligible in native buffer even at low nanomolar concentrations but the kinetics increased exponentially with addition of denaturants such as urea or GdnCl. However, dissolution of TMR-Aβ amyloids is different from what is expected in the case of thermodynamic solubility. For example, the fraction of soluble amyloids is found to be independent of total concentration of the peptide at all concentrations of the denaturants. Additionally, soluble fraction is dependent on growth conditions such as temperature, pH, and aging of the amyloids. Furthermore, amyloids undissolved in a certain concentration of the denaturant do not show any further dissolution after dilution in the same solvent; instead, these require higher concentrations of the denaturant. Taken together, our results indicate that amyloids are a heterogeneous ensemble of metastable states. Furthermore, dissolution of each structurally homogeneous member requires a unique threshold concentration of denaturant. Fraction of soluble amyloids as a function of concentration of denaturants is found to be sigmoidal. The sigmoidal curve becomes progressively steeper with progressive seeding of the amyloids, although the midpoint remains unchanged. Therefore, heterogeneity of the amyloids is a major determinant of the steepness of the sigmoidal curve. The sigmoidal curve can be fit assuming a normal distribution for the population of the amyloids of various kinetic stabilities. We propose that the mean and the standard deviation of the normal distribution provide quantitative estimates of mean kinetic stability and heterogeneity, respectively, of the amyloids in a certain preparation.
Collapse
Affiliation(s)
- Timir Baran Sil
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | - Bankanidhi Sahoo
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | | | - Kanchan Garai
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India.
| |
Collapse
|
27
|
Au DF, Ostrovsky D, Fu R, Vugmeyster L. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils. J Biol Chem 2019; 294:5840-5853. [PMID: 30737281 DOI: 10.1074/jbc.ra118.006559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/08/2019] [Indexed: 11/06/2022] Open
Abstract
Amyloid fibril deposits observed in Alzheimer's disease comprise amyloid-β (Aβ) protein possessing a structured hydrophobic core and a disordered N-terminal domain (residues 1-16). The internal flexibility of the disordered domain is likely essential for Aβ aggregation. Here, we used 2H static solid-state NMR methods to probe the dynamics of selected side chains of the N-terminal domain of Aβ1-40 fibrils. Line shape and relaxation data suggested a two-state model in which the domain's free state undergoes a diffusive motion that is quenched in the bound state, likely because of transient interactions with the structured C-terminal domain. At 37 °C, we observed freezing of the dynamics progressively along the Aβ sequence, with the fraction of the bound state increasing and the rate of diffusion decreasing. We also found that without solvation, the diffusive motion is quenched. The solvent acted as a plasticizer reminiscent of its role in the onset of global dynamics in globular proteins. As the temperature was lowered, the fraction of the bound state exhibited sigmoidal behavior. The midpoint of the freezing curve coincided with the bulk solvent freezing for the N-terminal residues and increased further along the sequence. Using 2H R 1ρ measurements, we determined the conformational exchange rate constant between the free and bound states under physiological conditions. Zinc-induced aggregation leads to the enhancement of the dynamics, manifested by the faster conformational exchange, faster diffusion, and lower freezing-curve midpoints.
Collapse
Affiliation(s)
- Dan Fai Au
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado, Denver, Colorado 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, Florida 32310
| | - Liliya Vugmeyster
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204.
| |
Collapse
|
28
|
Charlton T, Shah V, Lynch T, Candreva J, Chau E, Yang Y, Kim H, Wood A, Kim JR. Amyloid Aggregation of Bacillus circulans Xylanase under Native Conditions and its Modulation by β-Amyloid-Derived Peptide Fragments. Chembiochem 2018; 19:2566-2574. [PMID: 30332530 DOI: 10.1002/cbic.201800472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/13/2018] [Indexed: 12/31/2022]
Abstract
The aggregation of intrinsically disordered proteins into fibrils is implicated in many neurodegenerative diseases. Amyloid aggregation is a generic property of proteins as evidenced by globular proteins that often form amyloid aggregates under partially denaturing conditions. Recently, multiple lines of evidence have suggested that the amyloid aggregation of globular proteins can also occur under native conditions. Unfortunately, amyloid aggregation under native conditions has been demonstrated in only a handful of cases. Engineering a globular protein's amyloid aggregation might benefit from its fusion to an amyloid-derived fragment with reduced aggregation propensity. Unfortunately, the impacts of such fragments on the amyloid aggregation under native conditions have yet to be examined. In this study, we show that a globular protein, Bacillus circulans xylanase (BCX), can aggregate to form amyloid fibrils under native conditions. When BCX was mixed with or fused to the non-self-aggregating fragments, KLVFWAK and ELVFWAE-which were derived from β-amyloid (Aβ)-they modulated the BCX amyloid aggregation to differing extents. This study also provides insight into a correlation between the kinetic stability and amyloid aggregation of BCX, and supports a view that Aβ-derived fragments can be useful for the modulating amyloid aggregation of some, though not all, proteins.
Collapse
Affiliation(s)
- Timothy Charlton
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Vandan Shah
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Tonianna Lynch
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jason Candreva
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Edward Chau
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - YanXi Yang
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Hyunjoo Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Amy Wood
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
29
|
Roberts EK, Wong KM, Lee EJ, Le MM, Patel DM, Paravastu AK. Post-assembly α-helix to β-sheet structural transformation within SAF-p1/p2a peptide nanofibers. SOFT MATTER 2018; 14:8986-8996. [PMID: 30375627 DOI: 10.1039/c8sm01754a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report an unanticipated helix-to-sheet structural transformation within an assembly of SAF-p1 and SAF-p2a designer peptides. Solid-state NMR spectroscopic data support the assembled structure that was targeted by rational peptide design: an α-helical coiled-coil co-assembly of both peptides. Subsequent to assembly, however, the system converts to a β-sheet structure that continues to exhibit nearest-neighbor interactions between the two peptide components. The structural transition occurs at pH 7.4 and exhibits strongly temperature-dependent kinetics between room temperature (weeks) and 40 °C (minutes). We further observed evidence of reversibility on the timescale of months at 4 °C. The structural conversion from the anticipated structure to an unexpected structure highlights an important aspect to the challenge of designing peptide assemblies. Furthermore, the conformational switching mechanism mediated by a prerequisite α-helical nanostructure represents a previously unknown route for β-sheet designer peptide assembly.
Collapse
Affiliation(s)
- Evan K Roberts
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Buchanan LE, Maj M, Dunkelberger EB, Cheng PN, Nowick JS, Zanni MT. Structural Polymorphs Suggest Competing Pathways for the Formation of Amyloid Fibrils That Diverge from a Common Intermediate Species. Biochemistry 2018; 57:6470-6478. [PMID: 30375231 DOI: 10.1021/acs.biochem.8b00997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is now recognized that many amyloid-forming proteins can associate into multiple fibril structures. Here, we use two-dimensional infrared spectroscopy to study two fibril polymorphs formed by human islet amyloid polypeptide (hIAPP or amylin), which is associated with type 2 diabetes. The polymorphs exhibit different degrees of structural organization near the loop region of hIAPP fibrils. The relative populations of these polymorphs are systematically altered by the presence of macrocyclic peptides which template β-sheet formation at specific sections of the hIAPP sequence. These experiments are consistent with polymorphs that result from competing pathways for fibril formation and that the macrocycles bias hIAPP aggregation toward one pathway or the other. Another macrocyclic peptide that matches the loop region but extends the lag time leaves the relative populations of the polymorphs unaltered, suggesting that the branching point for structural divergence occurs after the lag phase, when the oligomers convert into seeds that template fibril formation. Thus, we conclude that the structures of the polymorphs stem from restricting oligomers along diverging folding pathways, which has implications for drug inhibition, cytotoxicity, and the free energy landscape of hIAPP aggregation.
Collapse
Affiliation(s)
- Lauren E Buchanan
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Michał Maj
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Emily B Dunkelberger
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Pin-Nan Cheng
- Department of Chemistry , University of California-Irvine , Irvine , California 92697-2025 , United States
| | - James S Nowick
- Department of Chemistry , University of California-Irvine , Irvine , California 92697-2025 , United States
| | - Martin T Zanni
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| |
Collapse
|
31
|
Kar RK, Brender JR, Ghosh A, Bhunia A. Nonproductive Binding Modes as a Prominent Feature of Aβ 40 Fiber Elongation: Insights from Molecular Dynamics Simulation. J Chem Inf Model 2018; 58:1576-1586. [PMID: 30047732 DOI: 10.1021/acs.jcim.8b00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The formation of amyloid fibers has been implicated in a number of neurodegenerative diseases. The growth of amyloid fibers is strongly thermodynamically favorable, but kinetic traps exist where the incoming monomer binds in an incompatible conformation that blocks further elongation. Unfortunately, this process is difficult to follow experimentally at the atomic level. It is also too complex to simulate in full detail and to date has been explored either through coarse-grained simulations, which may miss many important interactions, or full atomic simulations, in which the incoming peptide is constrained to be near the ideal fiber geometry. Here we use an alternate approach starting from a docked complex in which the monomer is from an experimental NMR structure of one of the major conformations in the unbound ensemble, a largely unstructured peptide with the central hydrophobic region in a 310 helix. A 1000 ns full atomic simulation in explicit solvent shows the formation of a metastable intermediate by sequential, concerted movements of both the fiber and the monomer. A Markov state model shows that the unfolded monomer is trapped at the end of the fiber in a set of interconverting antiparallel β-hairpin conformations. The simulation here may serve as a model for the binding of other non-β-sheet conformations to amyloid fibers.
Collapse
Affiliation(s)
- Rajiv K Kar
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Jeffrey R Brender
- Radiation Biology Branch , National Institutes of Health , Bethesda , Maryland 20814 , United States
| | - Anirban Ghosh
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Anirban Bhunia
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| |
Collapse
|
32
|
Guo ZH, Yang CI, Ho CI, Huang SJ, Chen YC, Tai HC, Chan JCC. Fibrillization of β-Amyloid Peptides via Chemically Modulated Pathway. Chemistry 2018; 24:4939-4943. [PMID: 29380450 DOI: 10.1002/chem.201706001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 11/11/2022]
Abstract
The aggregation of β-amyloid peptides is closely associated with Alzheimer's disease. We have used liposomes to modulate the early aggregation events of 40-residue β-amyloid peptides. The spatial confinement provided by liposomes leads to the formation of nonfibrillar aggregates of β-amyloid peptides. These on-pathway β-sheet intermediates were used to seed the fibrillization of the monomer peptides. Solid-state NMR spectroscopy revealed that the resultant fibrils have a more uniform structure than those formed in liposome-free solution.
Collapse
Affiliation(s)
- Zhong-Hong Guo
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chien-I Yang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Cheng-I Ho
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yin-Chung Chen
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hwan-Ching Tai
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
33
|
Liu Y, Ren B, Zhang Y, Sun Y, Chang Y, Liang G, Xu L, Zheng J. Molecular simulation aspects of amyloid peptides at membrane interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1906-1916. [PMID: 29421626 DOI: 10.1016/j.bbamem.2018.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
Abstract
The interactions of amyloid peptides with cell membranes play an important role in maintaining the integrity and functionality of cell membrane. A thorough molecular-level understanding of the structure, dynamics, and interactions between amyloid peptides and cell membranes is critical to amyloid aggregation and toxicity mechanisms for the bench-to-bedside applications. Here we review the most recent computational studies of amyloid peptides at model cell membranes. Different mechanisms of action of amyloid peptides on/in cell membranes, targeted by different computational techniques at different lengthscales and timescales, are rationally discussed. Finally, we have proposed some new insights into the remaining challenges and perspectives for future studies to improve our understanding of the activity of amyloid peptides associated with protein-misfolding diseases. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Yonglan Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China; Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States
| | - Baiping Ren
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States
| | - Yanxian Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical EngineeringChung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China; Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States.
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States.
| |
Collapse
|
34
|
Dudukovic NA, Hudson BC, Paravastu AK, Zukoski CF. Self-assembly pathways and polymorphism in peptide-based nanostructures. NANOSCALE 2018; 10:1508-1516. [PMID: 29303206 DOI: 10.1039/c7nr06724k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dipeptide derivative molecules can self-assemble into space-filling nanofiber networks at low volume fractions (<1%), allowing the formation of molecular gels with tunable mechanical properties. The self-assembly of dipeptide-based molecules is reminiscent of pathological amyloid fibril formation by naturally occurring polypeptides. Fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) is the most widely studied such molecule, but the thermodynamic and kinetic phenomena giving rise to Fmoc-FF gel formation remain poorly understood. We have previously presented evidence that the gelation process is a first order phase transition characterized by low energy barriers to nucleation, short induction times, and rapid quasi-one-dimensional crystal growth, stemming from solvent-solute interactions and highly specific molecular packing. Here, we discuss the phase behavior of Fmoc-FF in different solvents. We find that Fmoc-FF gel formation can be induced in apolar solvents, in addition to previously established pathways in aqueous systems. We further show that in certain solvent systems anisotropic crystals (nanofibers) are an initial metastable state, after which macroscopic crystal aggregates with no preferred axis of growth are formed. The molecular conformation is sensitive to solvent composition during assembly, indicating that Fmoc-FF may be a simple model system to study complex thermodynamic and kinetic phenomena involved in peptide self-assembly.
Collapse
Affiliation(s)
- Nikola A Dudukovic
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551, USA.
| | | | | | | |
Collapse
|
35
|
Huang D, Hudson BC, Gao Y, Roberts EK, Paravastu AK. Solid-State NMR Structural Characterization of Self-Assembled Peptides with Selective 13C and 15N Isotopic Labels. Methods Mol Biol 2018; 1777:23-68. [PMID: 29744827 PMCID: PMC7490753 DOI: 10.1007/978-1-4939-7811-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
For the structural characterization methods discussed here, information on molecular conformation and intermolecular organization within nanostructured peptide assemblies is discerned through analysis of solid-state NMR spectral features. This chapter reviews general NMR methodologies, requirements for sample preparation, and specific descriptions of key experiments. An attempt is made to explain choices of solid-state NMR experiments and interpretation of results in a way that is approachable to a nonspecialist. Measurements are designed to determine precise NMR peak positions and line widths, which are correlated with secondary structures, and probe nuclear spin-spin interactions that report on three-dimensional organization of atoms. The formulation of molecular structural models requires rationalization of data sets obtained from multiple NMR experiments on samples with carefully chosen 13C and 15N isotopic labels. The information content of solid-state NMR data has been illustrated mostly through the use of simulated data sets and references to recent structural work on amyloid fibril-forming peptides and designer self-assembling peptides.
Collapse
Affiliation(s)
- Danting Huang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Benjamin C Hudson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuan Gao
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Evan K Roberts
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
36
|
Affiliation(s)
- Jancy Nixon Abraham
- Polymer Science and Engineering Division; CSIR National Chemical Laboratory; Pune India
| | - Corinne Nardin
- Université de Pau et des Pays de l'Adour (UPPA), Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux (IPREM); Equipe Physique et Chimie des Polymères (EPCP); Pau France
| |
Collapse
|
37
|
Scheidt HA, Adler J, Zeitschel U, Höfling C, Korn A, Krueger M, Roßner S, Huster D. Pyroglutamate-Modified Amyloid β (11- 40) Fibrils Are More Toxic than Wildtype Fibrils but Structurally Very Similar. Chemistry 2017; 23:15834-15838. [DOI: 10.1002/chem.201703909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Holger A. Scheidt
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| | - Juliane Adler
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain Research; Leipzig University; Liebigstr. 19 04103 Leipzig Germany
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research; Leipzig University; Liebigstr. 19 04103 Leipzig Germany
| | - Alexander Korn
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| | - Martin Krueger
- Institute of Anatomy; Leipzig University; Eilenburger Str. 14-15 04317 Leipzig Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research; Leipzig University; Liebigstr. 19 04103 Leipzig Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| |
Collapse
|
38
|
Lockhart C, Klimov DK. Cholesterol Changes the Mechanisms of Aβ Peptide Binding to the DMPC Bilayer. J Chem Inf Model 2017; 57:2554-2565. [PMID: 28910085 DOI: 10.1021/acs.jcim.7b00431] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using isobaric-isothermal all-atom replica-exchange molecular dynamics (REMD) simulations, we investigated the equilibrium binding of Aβ10-40 monomers to the zwitterionic dimyristoylphosphatidylcholine (DMPC) bilayer containing cholesterol. Our previous REMD simulations, which studied binding of the same peptide to the cholesterol-free DMPC bilayer, served as a control, against which we measured the impact of cholesterol. Our findings are as follows. First, addition of cholesterol to the DMPC bilayer partially expels the Aβ peptide from the hydrophobic core and promotes its binding to bilayer polar headgroups. Using thermodynamic and energetics analyses, we argued that Aβ partial expulsion is not related to cholesterol-induced changes in lateral pressure within the bilayer but is caused by binding energetics, which favors Aβ binding to the surface of the densely packed cholesterol-rich bilayer. Second, cholesterol has a protective effect on the DMPC bilayer structure against perturbations caused by Aβ binding. More specifically, cholesterol reduces bilayer thinning and overall depletion of bilayer density beneath the Aβ binding footprint. Third, we found that the Aβ peptide contains a single cholesterol binding site, which involves hydrophobic C-terminal amino acids (Ile31-Val36), Phe19, and Phe20 from the central hydrophobic cluster, and cationic Lys28 from the turn region. This binding site accounts for about 76% of all Aβ-cholesterol interactions. Because cholesterol binding site in the Aβ10-40 peptide does not contain the GXXXG motif featured in cholesterol interactions with the transmembrane domain C99 of the β-amyloid precursor protein, we argued that the binding mechanisms for Aβ and C99 are distinct reflecting their different conformations and positions in the lipid bilayer. Fourth, cholesterol sharply reduces the helical propensity in the bound Aβ peptide. As a result, cholesterol largely eliminates the emergence of helical structure observed upon Aβ transition from a water environment to the cholesterol-free DMPC bilayer. We explain this effect by the formation of hydrogen bonds between cholesterol and the Aβ backbone, which prevent helix formation. Taken together, we expect that our simulations will advance understanding of a molecular-level mechanism behind the role of cholesterol in Alzheimer's disease.
Collapse
Affiliation(s)
- Christopher Lockhart
- School of Systems Biology, George Mason University , Manassas, Virginia 20110, United States
| | - Dmitri K Klimov
- School of Systems Biology, George Mason University , Manassas, Virginia 20110, United States
| |
Collapse
|
39
|
Risør MW, Juhl DW, Bjerring M, Mathiesen J, Enghild JJ, Nielsen NC, Otzen DE. Critical Influence of Cosolutes and Surfaces on the Assembly of Serpin-Derived Amyloid Fibrils. Biophys J 2017; 113:580-596. [PMID: 28793213 DOI: 10.1016/j.bpj.2017.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Many proteins and peptides self-associate into highly ordered and structurally similar amyloid cross-β aggregates. This fibrillation is critically dependent on properties of the protein and the surrounding environment that alter kinetic and thermodynamic equilibria. Here, we report on dominating surface and solution effects on the fibrillogenic behavior and amyloid assembly of the C-36 peptide, a circulating bioactive peptide from the α1-antitrypsin serine protease inhibitor. C-36 converts from an unstructured peptide to mature amyloid twisted-ribbon fibrils over a few hours when incubated on polystyrene plates under physiological conditions through a pathway dominated by surface-enhanced nucleation. In contrast, in plates with nonbinding surfaces, slow bulk nucleation takes precedence over surface catalysis and leads to fibrillar polymorphism. Fibrillation is strongly ion-sensitive, underlining the interplay between hydrophilic and hydrophobic forces in molecular self-assembly. The addition of exogenous surfaces in the form of silica glass beads and polyanionic heparin molecules potently seeds the amyloid conversion process. In particular, heparin acts as an interacting template that rapidly forces β-sheet aggregation of C-36 to distinct amyloid species within minutes and leads to a more homogeneous fibril population according to solid-state NMR analysis. Heparin's template effect highlights its role in amyloid seeding and homogeneous self-assembly, which applies both in vitro and in vivo, where glycosaminoglycans are strongly associated with amyloid deposits. Our study illustrates the versatile thermodynamic landscape of amyloid formation and highlights how different experimental conditions direct C-36 into distinct macromolecular structures.
Collapse
Affiliation(s)
- Michael W Risør
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Dennis W Juhl
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Morten Bjerring
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Jan J Enghild
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Niels C Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Daniel E Otzen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
40
|
Shi JM, Zhang L, Liu EQ. Dissecting the behaviour of β-amyloid peptide variants during oligomerization and fibrillation. J Pept Sci 2017; 23:810-817. [PMID: 28795459 DOI: 10.1002/psc.3028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
The oligomerization and fibrillation of β-amyloid (Aβ) peptides are important events in the pathogenesis of Alzheimer's disease. However, the motifs within the Aβ sequence that contribute to oligomerization and fibrillation and the complex interplay among these short motifs are unclear. In this study, the oligomerization and fibrillation abilities of the Aβ variants Aβ1-28, Aβ1-36, Aβ11-42, Aβ17-42, Aβ1-40 and Aβ1-42 were examined by thioflavin T fluorescence, western blotting and transmission electron microscopy. Compared with two C-terminal-truncated peptides (i.e. Aβ1-28 and Aβ1-36), Aβ11-42, Aβ17-42 and Aβ1-42 had stronger abilities to form oligomers. This indicated that amino acids 37-42 strengthen the β-hairpin structure of Aβ. Both Aβ1-42 and Aβ1-40 could form fibres, but Aβ17-42 formed irregular fibres, suggesting that amino acids 1-17 were essential for Aβ fibre formation. Aβ1-28 and Aβ1-36 exhibited weak oligomerization and fibrillation, implying that they formed an unstable β-hairpin structure owing to the incomplete C-terminal region. Intermediate peptides were likely to form a stable structure, consistent with previous results. This work explains the roles and interplay among motifs within Aβ during oligomerization and fibrillation. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jing-Ming Shi
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China.,School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University, Xi'an, 710061, China
| | - En-Qi Liu
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| |
Collapse
|
41
|
Vugmeyster L, Ostrovsky D, Hoatson GL, Qiang W, Falconer IB. Solvent-Driven Dynamical Crossover in the Phenylalanine Side-Chain from the Hydrophobic Core of Amyloid Fibrils Detected by 2H NMR Relaxation. J Phys Chem B 2017; 121:7267-7275. [PMID: 28699757 PMCID: PMC5567839 DOI: 10.1021/acs.jpcb.7b04726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aromatic residues are important markers of dynamical changes in proteins' hydrophobic cores. In this work we investigated the dynamics of the F19 side-chain in the core of amyloid fibrils across a wide temperature range of 300 to 140 K. We utilized solid-state 2H NMR relaxation to demonstrate the presence of a solvent-driven dynamical crossover between different motional regimes, often also referred to as the dynamical transition. In particular, the dynamics are dominated by small-angle fluctuations at low temperatures and by π-flips of the aromatic ring at high temperatures. The crossover temperature is more than 43 degrees lower for the hydrated state of the fibrils compared to the dry state, indicating that interactions with water facilitate π-flips. Further, crossover temperatures are shown to be very sensitive to polymorphic states of the fibrils, such as the 2-fold and 3-fold symmetric morphologies of the wild-type protein as well as D23N mutant protofibrils. We speculate that these differences can be attributed, at least partially, to enhanced interactions with water in the 3-fold polymorph, which has been shown to have a water-accessible cavity. Combined with previous studies of methyl group dynamics, the results highlight the presence of multiple dynamics modes in the core of the fibrils, which was originally believed to be quite rigid.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, Denver, CO 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado at Denver, Denver, CO 80204
| | - Gina L. Hoatson
- Department of Physics, College of William and Mary, Williamsburg, Virginia, 23187
| | - Wei Qiang
- Department of Chemistry, Binghamton University, Binghamton, NY 13902
| | - Isaac B. Falconer
- Department of Chemistry, University of Colorado at Denver, Denver, CO 80204
| |
Collapse
|
42
|
Vugmeyster L, Ostrovsky D. Static solid-state 2H NMR methods in studies of protein side-chain dynamics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 101:1-17. [PMID: 28844219 PMCID: PMC5576518 DOI: 10.1016/j.pnmrs.2017.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 05/27/2023]
Abstract
In this review, we discuss the experimental static deuteron NMR techniques and computational approaches most useful for the investigation of side-chain dynamics in protein systems. Focus is placed on the interpretation of line shape and relaxation data within the framework of motional modeling. We consider both jump and diffusion models and apply them to uncover glassy behaviors, conformational exchange and dynamical transitions in proteins. Applications are chosen from globular and membrane proteins, amyloid fibrils, peptide adsorbed on surfaces and proteins specific to connective tissues.
Collapse
|
43
|
Kinetics and polymorphs of yeast prion Sup35NM amyloidogenesis. Int J Biol Macromol 2017; 102:1241-1249. [PMID: 28476595 DOI: 10.1016/j.ijbiomac.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/14/2017] [Accepted: 05/01/2017] [Indexed: 11/22/2022]
Abstract
Amyloidogenic proteins often form many types of aggregates, which are a critical determinant of cytotoxicity and tissue specificity. However, the molecular mechanisms underlying the generation of distinct amyloids and their influence on cells remain largely unknown. We herein investigated the polymorphic amyloid formation of the yeast prion protein, Sup35NM, an intrinsically disordered N-terminal fragment of Sup35, under various conditions and its potential relationship to cytotoxicity. Sup35NM aggregated to amyloid fibrils with distinct kinetics, structures, morphologies, tinctorial properties, and conformational stabilities depending on the concentration of NaCl, pH, and temperature, indicating the polymorphic amyloidogenesis of Sup35NM. Detailed kinetic analyses of Sup35NM amyloid formation revealed a strong inverse correlation between the lag time and elongation rate without a correlation between kinetic and structural parameters. These results suggest that kinetic polymorphisms due to distinct nucleation and elongation rates result in structural polymorphs of amyloid fibrils, and also that conditions that enhance or inhibit the nucleation of Sup35NM promote or delay fibril growth. The deleterious effects of polymorphic Sup35NM amyloid fibrils on membrane integrity and cell vitality were minimal. We hypothesize that the innocuous polymorphic nature of Sup35NM amyloid fibrils may be beneficial for gaining time for prion infection prior to cell death.
Collapse
|
44
|
Chiricotto M, Melchionna S, Derreumaux P, Sterpone F. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation. J Chem Phys 2017; 145:035102. [PMID: 27448906 DOI: 10.1063/1.4958323] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aβ16-22 peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned the essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aβ16-22 peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aβ16-22 peptide system, the simulation of ∼300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aβ16-22 peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.
Collapse
Affiliation(s)
- Mara Chiricotto
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, University Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Simone Melchionna
- CNR-ISC, Institute for Complex System, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, University Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, University Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
45
|
Kinoshita M, Kakimoto E, Terakawa MS, Lin Y, Ikenoue T, So M, Sugiki T, Ramamoorthy A, Goto Y, Lee YH. Model membrane size-dependent amyloidogenesis of Alzheimer's amyloid-β peptides. Phys Chem Chem Phys 2017; 19:16257-16266. [DOI: 10.1039/c6cp07774a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We herein report the mechanism of amyloid formation of amyloid-β (Aβ) peptides on small (SUV) and large unilamellar vesicles (LUVs), which consist of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids.
Collapse
Affiliation(s)
| | - Erina Kakimoto
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| | - Mayu S. Terakawa
- Institute for Protein Research
- Osaka University
- Suita
- Japan
- Department of Biochemistry
| | - Yuxi Lin
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| | - Tatsuya Ikenoue
- Institute for Protein Research
- Osaka University
- Suita
- Japan
- Department of Chemistry
| | - Masatomo So
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| | | | | | - Yuji Goto
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| | - Young-Ho Lee
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| |
Collapse
|
46
|
Vallino Costassa E, Fiorini M, Zanusso G, Peletto S, Acutis P, Baioni E, Maurella C, Tagliavini F, Catania M, Gallo M, Faro ML, Chieppa MN, Meloni D, D'Angelo A, Paciello O, Ghidoni R, Tonoli E, Casalone C, Corona C. Characterization of Amyloid-β Deposits in Bovine Brains. J Alzheimers Dis 2016; 51:875-87. [PMID: 26890772 PMCID: PMC4927890 DOI: 10.3233/jad-151007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Amyloid-β (Aβ) deposits are seen in aged individuals of many mammalian species that possess the same aminoacid sequence as humans. This study describes Aβ deposition in 102 clinically characterized cattle brains from animals aged 0 to 20 years. Extracellular and intracellular Aβ deposition was detected with 4G8 antibody in the cortex, hippocampus, and cerebellum. X-34 staining failed to stain Aβ deposits, indicating the non β-pleated nature of these deposits. Western blot analysis and surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry revealed in Tris, Triton, and formic acid fractions the presence of different Aβ peptides, characterized mainly by C-terminally truncated forms. Exploration of the genetic variability of APOE, PSEN1, and PSEN2 genes involved in Alzheimer’s disease pathogenesis revealed several previously unreported polymorphisms. This study demonstrates certain similarities between Aβ deposition patterns exhibited in cattle brains and those in the human brain in early stages of aging. Furthermore, the identification of the same Aβ peptides reported in humans, but unable to form aggregates, supports the hypothesis that cattle may be protected against amyloid plaque formation.
Collapse
Affiliation(s)
- Elena Vallino Costassa
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Michele Fiorini
- Dipartimento di Scienze Neurologiche Biomediche e del Movimento, Universitá di Verona, Policlinico "G.B. Rossi" Borgo Roma, Verona, Italy
| | - Gianluigi Zanusso
- Dipartimento di Scienze Neurologiche Biomediche e del Movimento, Universitá di Verona, Policlinico "G.B. Rossi" Borgo Roma, Verona, Italy
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Pierluigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Elisa Baioni
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Cristiana Maurella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | | | | | - Marina Gallo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Monica Lo Faro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Maria Novella Chieppa
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Daniela Meloni
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Antonio D'Angelo
- Dipartimento di Scienze Veterinarie, Sezione Clinica Medica, Universitá di Torino, Grugliasco (TO), Italy
| | - Orlando Paciello
- Dipartimento di Patologia e Sanitá Animale, Universitá di Napoli Federico II, Napoli, Italy
| | - Roberta Ghidoni
- Laboratorio Marcatori Molecolari, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Elisa Tonoli
- Laboratorio Marcatori Molecolari, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| |
Collapse
|
47
|
Zhang M, Ren B, Chen H, Sun Y, Ma J, Jiang B, Zheng J. Molecular Simulations of Amyloid Structures, Toxicity, and Inhibition. Isr J Chem 2016. [DOI: 10.1002/ijch.201600075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Baiping Ren
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Hong Chen
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Jie Ma
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
- State Key Laboratory of Pollution Control and Resource Reuse School of Environmental Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Binbo Jiang
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
- College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| |
Collapse
|
48
|
Fibrils of Truncated Pyroglutamyl-Modified Aβ Peptide Exhibit a Similar Structure as Wildtype Mature Aβ Fibrils. Sci Rep 2016; 6:33531. [PMID: 27650059 PMCID: PMC5030707 DOI: 10.1038/srep33531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/26/2016] [Indexed: 12/03/2022] Open
Abstract
Fibrillation of differently modified amyloid β peptides and deposition as senile plaques are hallmarks of Alzheimer’s disease. N-terminally truncated variants, where the glutamate residue 3 is converted into cyclic pyroglutamate (pGlu), form particularly toxic aggregates. We compare the molecular structure and dynamics of fibrils grown from wildtype Aβ(1–40) and pGlu3-Aβ(3–40) on the single amino acid level. Thioflavin T fluorescence, electron microscopy, and X-ray diffraction reveal the general morphology of the amyloid fibrils. We found good agreement between the 13C and 15N NMR chemical shifts indicative for a similar secondary structure of both fibrils. A well-known interresidual contact between the two β-strands of the Aβ fibrils could be confirmed by the detection of interresidual cross peaks in a 13C-13C NMR correlation spectrum between the side chains of Phe 19 and Leu 34. Small differences in the molecular dynamics of residues in the proximity to the pyroglutamyl-modified N-terminus were observed as measured by DIPSHIFT order parameter experiments.
Collapse
|
49
|
Lockhart C, Klimov DK. The Alzheimer's disease A β peptide binds to the anionic DMPS lipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1118-28. [DOI: 10.1016/j.bbamem.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/24/2022]
|
50
|
Yoshihara H, Saito J, Tanabe A, Amada T, Asakura T, Kitagawa K, Asada S. Characterization of Novel Insulin Fibrils That Show Strong Cytotoxicity Under Physiological pH. J Pharm Sci 2016; 105:1419-26. [DOI: 10.1016/j.xphs.2016.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 01/29/2023]
|