1
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
2
|
Lan B, Wang Y. Thermostat-induced artificial lane formation in non-equilibrium molecular dynamics. J Chem Phys 2025; 162:024106. [PMID: 39774892 DOI: 10.1063/5.0242809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
While most thermostats in molecular dynamics are designed for equilibrium systems, their extension to non-equilibrium simulations has little theoretical justification. In the literature, an artifact referred to as "lane formation" was discovered; however, its cause remained unclear and was simply attributed to a constraint on velocity fluctuations or non-ergodicity in thermostats. In addition, global deterministic thermostatted dynamics was found to exhibit unceasing phase-space compression in steady states, incompatible with their expected stationary distributions and Gibbs entropy, which was mistakenly perceived as inescapable. In this work, we pinpoint that the dynamical cause of artificial lane formation is a stable fixed point in the momentum space induced by improper velocity rescaling, which produces effective repulsion between different species in a color flow, drains transverse kinetic energy and generates the unceasing compression. This artifact is deeply rooted in global deterministic thermostats, such as the Nosé-Hoover dynamics and configurational thermostat. With proper rescaling, the Langevin thermostat completely eliminates artificial lane formation and exemplifies how incompressible phase space and stationary distributions can be retained for non-equilibrium steady states.
Collapse
Affiliation(s)
- Biao Lan
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
3
|
Müller WA, Sarkis JR, Marczak LDF, Muniz AR. Computational analysis of the simultaneous application of ultrasound and electric fields in a lipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184364. [PMID: 38901662 DOI: 10.1016/j.bbamem.2024.184364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The combined application of electric fields and ultrasonic waves has shown promise in controlling cell membrane permeability, potentially resulting in synergistic effects that can be explored in the biotechnology industry. However, further clarification on how these processes interact is still needed. The objective of the present study was to investigate the atomic-scale effects of these processes on a DPPC lipid bilayer using molecular dynamics simulations. For higher electric fields, capable of independently forming pores, the application of an ultrasonic wave in the absence of cavitation yielded no additional effects on pore formation. However, for lower electric fields, the reduction in bilayer thickness induced by the shock wave catalyzed the electroporation process, effectively shortening the mean path that water molecules must traverse to form pores. When cavitation was considered, synergistic effects were evident only if the wave alone was able to generate pores through the formation of a water nanojet. In these cases, sonoporation acted as a mean to focus the electroporation effects on the initial pore formed by the nanojet. This study contributes to a better understanding of the synergy between electric fields and ultrasonic waves and to an optimal selection of processing parameters in practical applications of these processes.
Collapse
Affiliation(s)
- Wagner Augusto Müller
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | - Júlia Ribeiro Sarkis
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | | | - André Rodrigues Muniz
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Blanco-González A, Marrink SJ, Piñeiro Á, García-Fandiño R. Molecular insights into the effects of focused ultrasound mechanotherapy on lipid bilayers: Unlocking the keys to design effective treatments. J Colloid Interface Sci 2023; 650:1201-1210. [PMID: 37478737 DOI: 10.1016/j.jcis.2023.07.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Administration of focused ultrasounds (US) represents an attractive complement to classical therapies for a wide range of maladies, from cancer to neurological pathologies, as they are non-invasive, easily targeted, their dosage is easy to control, and they involve low risks. Different mechanisms have been proposed for their activity but the direct effect of their interaction with cell membranes is not well understood at the molecular level. This is in part due to the difficulty of designing experiments able to probe the required spatio-temporal resolutions. Here we use Molecular Dynamics (MD) simulations at two resolution levels and machine learning (ML) classification tools to shed light on the effects that focused US mechanotherapy methods have over a range of lipid bilayers. Our results indicate that the dynamic-structural response of the membrane models to the mechanical perturbations caused by the sound waves strongly depends on the lipid composition. The analyses performed on the MD trajectories contribute to a better understanding of the behavior of lipid membranes, and to open up a path for the rational design of new therapies for the long list of diseases characterized by specific lipid profiles of pathological membrane cells.
Collapse
Affiliation(s)
- Alexandre Blanco-González
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain; MD.USE Innovations S.L., Edificio Emprendia, 15782 Santiago de Compostela, Spain
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Linh NH, Man VH, Li MS, Wang J, Derreumaux P, Mai TL, Nguyen PH. Molecular dynamics simulation of cancer cell membrane perforated by shockwave induced bubble collapse. J Chem Phys 2022; 157:225102. [PMID: 36546791 DOI: 10.1063/5.0105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
It has been widely accepted that cancer cells are softer than their normal counterparts. This motivates us to propose, as a proof-of-concept, a method for the efficient delivery of therapeutic agents into cancer cells, while normal cells are less affected. The basic idea of this method is to use a water jet generated by the collapse of the bubble under shockwaves to perforate pores in the cell membrane. Given a combination of shockwave and bubble parameters, the cancer membrane is more susceptible to bending, stretching, and perforating than the normal membrane because the bending modulus of the cancer cell membrane is smaller than that of the normal cell membrane. Therefore, the therapeutic agent delivery into cancer cells is easier than in normal cells. Adopting two well-studied models of the normal and cancer membranes, we perform shockwave induced bubble collapse molecular dynamics simulations to investigate the difference in the response of two membranes over a range of shockwave impulse 15-30 mPa s and bubble diameter 4-10 nm. The simulation shows that the presence of bubbles is essential for generating a water jet, which is required for perforation; otherwise, pores are not formed. Given a set of shockwave impulse and bubble parameters, the pore area in the cancer membrane is always larger than that in the normal membrane. However, a too strong shockwave and/or too large bubble results in too fast disruption of membranes, and pore areas are similar between two membrane types. The pore closure time in the cancer membrane is slower than that in the normal membrane. The implications of our results for applications in real cells are discussed in some details. Our simulation may be useful for encouraging future experimental work on novel approaches for cancer treatment.
Collapse
Affiliation(s)
- Nguyen Hoang Linh
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | - Thi Ly Mai
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
6
|
Gu L, Wei T, Zhou M, Yang H, Zhou Y. Impact of Lipid Peroxidation on the Response of Cell Membranes to High-Speed Equibiaxial Stretching: A Computational Study. J Phys Chem B 2021; 125:10736-10747. [PMID: 34524826 DOI: 10.1021/acs.jpcb.1c05544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The difference between diseased and healthy cellular membranes in response to mechanical stresses is crucial for biology, as well as in the development of medical devices. However, the biomolecular mechanisms by which mechanical stresses interact with diseased cellular components remain largely unknown. In this work, we focus on the response of diseased cellular membranes with lipid peroxidation to high-speed tensile loadings. We find that the critical areal strain (ξc, when the pore forms) is highly sensitive to lipid peroxidation. For example, ξc of a fully oxidized bilayer is only 64 and 69% of the nonoxidized one at the stretching speed of 0.1 and 0.6 m/s, respectively. ξc decreases with the increase in the oxidized lipid ratio, regardless of the speeds. Also, the critical rupture tension of membranes exhibits a similar change. It is obvious that the oxidized membranes are more easily damaged than normal ones by high-speed stretching, which coincides with experimental findings. The reason is that peroxidation introduces a polar group to the tail of lipids, increases the hydrophilicity of tails, and warps the tails to the membrane-water interface, which causes loose accumulation and disorder of lipid tails. This can be deduced from the variation in the area per lipid and order parameter. In addition, the lowering stretching modulus and line tension of membranes (i.e., softening) after lipid peroxidation is also a significant factor. We reveal the difference between the peroxidized (diseased) and normal membrane in response to high-speed stretching, give the ξc value in the pore formation of membranes and analyze the influence of the stretching speed, peroxidation ratio, and molecular structure of phospholipids. We hope that the molecular-level information will be useful for the development of biological and medical devices in the future.
Collapse
Affiliation(s)
- Lingzhi Gu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Tong Wei
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China.,CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Mi Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China.,School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Yang
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
7
|
Sanwal R, Joshi K, Ditmans M, Tsai SSH, Lee WL. Ultrasound and Microbubbles for Targeted Drug Delivery to the Lung Endothelium in ARDS: Cellular Mechanisms and Therapeutic Opportunities. Biomedicines 2021; 9:biomedicines9070803. [PMID: 34356867 PMCID: PMC8301318 DOI: 10.3390/biomedicines9070803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by increased permeability of the alveolar–capillary membrane, a thin barrier composed of adjacent monolayers of alveolar epithelial and lung microvascular endothelial cells. This results in pulmonary edema and severe hypoxemia and is a common cause of death after both viral (e.g., SARS-CoV-2) and bacterial pneumonia. The involvement of the lung in ARDS is notoriously heterogeneous, with consolidated and edematous lung abutting aerated, less injured regions. This makes treatment difficult, as most therapeutic approaches preferentially affect the normal lung regions or are distributed indiscriminately to other organs. In this review, we describe the use of thoracic ultrasound and microbubbles (USMB) to deliver therapeutic cargo (drugs, genes) preferentially to severely injured areas of the lung and in particular to the lung endothelium. While USMB has been explored in other organs, it has been under-appreciated in the treatment of lung injury since ultrasound energy is scattered by air. However, this limitation can be harnessed to direct therapy specifically to severely injured lungs. We explore the cellular mechanisms governing USMB and describe various permutations of cargo administration. Lastly, we discuss both the challenges and potential opportunities presented by USMB in the lung as a tool for both therapy and research.
Collapse
Affiliation(s)
- Rajiv Sanwal
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kushal Joshi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
| | - Mihails Ditmans
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Scott S. H. Tsai
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
| | - Warren L. Lee
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence: ; Tel.: +416-864-6060 (ext. 77655)
| |
Collapse
|
8
|
Wei T, Gu L, Zhou M, Zhou Y, Yang H, Li M. Impact of Shock-Induced Cavitation Bubble Collapse on the Damage of Cell Membranes with Different Lipid Peroxidation Levels. J Phys Chem B 2021; 125:6912-6920. [PMID: 34133190 DOI: 10.1021/acs.jpcb.1c02483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the interaction mechanism between shock waves and cells is critical for advancing the medical applications of shock waves, we still have little understanding about it. This work aims to study the response of diseased cells subjected to lipid peroxidation to the nanojet from shock wave-induced bubble collapse by using the coarse-grained molecular dynamics simulation. Factors considered in the simulations include the shock velocity (up), movement time of piston (τp), bubble size (R), and peroxidation level of membranes. Here, we mainly focus on the role of peroxidation levels, that is, the degree (%) and the distribution of oxidized lipids in membranes. The results indicate that the shock damage threshold (up at which the pore in membranes is formed) of peroxidation membranes is less than that of normal membranes and decreases with the peroxidation degree. Importantly, the distribution of oxidized lipids has more effect on the damage threshold than the peroxidation degree. The threshold of membrane with 33% localized oxidized lipids is lower than that of membrane with 50% average oxidized lipids. The results can be explained by the stretching modulus (κs) and bending modulus (κb) of cell membranes. For example, the κb value (4.3 × 10-20 J) of 100% peroxidation membrane is about half of that (8.4 × 10-20 J) of a membrane without peroxidation. A lower modulus means high deformation under the same impact. Further analysis shows that peroxidation introduces a polar hydrophobic group to the tail of phospholipids that increases the hydrophilicity of tails and warps the tail of phospholipids toward the membrane-water interface, resulting in looser accumulation. This can be confirmed by the increased average phospholipid area with peroxidation levels. Indeed, most of the pores formed during the shock can heal. However, the permeation of water molecules across the healing membrane still increased. All these membrane-level information obtained from this study will be useful for improving the biomedical applications of shock waves.
Collapse
Affiliation(s)
- Tong Wei
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Lingzhi Gu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Mi Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Hong Yang
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Ming Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
9
|
Exploring ligand binding pathways on proteins using hypersound-accelerated molecular dynamics. Nat Commun 2021; 12:2793. [PMID: 33990583 PMCID: PMC8121818 DOI: 10.1038/s41467-021-23157-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Capturing the dynamic processes of biomolecular systems in atomistic detail remains difficult despite recent experimental advances. Although molecular dynamics (MD) techniques enable atomic-level observations, simulations of “slow” biomolecular processes (with timescales longer than submilliseconds) are challenging because of current computer speed limitations. Therefore, we developed a method to accelerate MD simulations by high-frequency ultrasound perturbation. The binding events between the protein CDK2 and its small-molecule inhibitors were nearly undetectable in 100-ns conventional MD, but the method successfully accelerated their slow binding rates by up to 10–20 times. Hypersound-accelerated MD simulations revealed a variety of microscopic kinetic features of the inhibitors on the protein surface, such as the existence of different binding pathways to the active site. Moreover, the simulations allowed the estimation of the corresponding kinetic parameters and exploring other druggable pockets. This method can thus provide deeper insight into the microscopic interactions controlling biomolecular processes. Molecular dynamics (MD) techniques enable atomic-level observations, but simulations of “slow” biomolecular processes are challenging because of current computer speed limitations. Here, the authors develop a method to accelerate MD simulations by high-frequency ultrasound perturbation and reveal binding events between the protein CDK2 and its small-molecule inhibitors.
Collapse
|
10
|
Sharifian Gh M. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Mol Pharm 2021; 18:2122-2141. [PMID: 33914545 DOI: 10.1021/acs.molpharmaceut.1c00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to measure the passive membrane permeation of drug-like molecules is of fundamental biological and pharmaceutical importance. Of significance, passive diffusion across the cellular membranes plays an effective role in the delivery of many pharmaceutical agents to intracellular targets. Hence, approaches for quantitative measurement of membrane permeability have been the topics of research for decades, resulting in sophisticated biomimetic systems coupled with advanced techniques. In this review, recent developments in experimental approaches along with theoretical models for quantitative and real-time analysis of membrane transport of drug-like molecules through mimetic and living cell membranes are discussed. The focus is on time-resolved fluorescence-based, surface plasmon resonance, and second-harmonic light scattering approaches. The current understanding of how properties of the membrane and permeant affect the permeation process is discussed.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
11
|
Man VH, Li MS, Derreumaux P, Wang J, Nguyen TT, Nangia S, Nguyen PH. Molecular mechanism of ultrasound interaction with a blood brain barrier model. J Chem Phys 2021; 153:045104. [PMID: 32752695 DOI: 10.1063/5.0010667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The brain is strictly protected by the blood brain barrier preventing the crossing of therapeutics to treat brain diseases. The high and low intensity focused ultrasound methods have been used to temporarily open the blood brain barrier, facilitating the transport of drugs. The methods are very promising because the opening is transient, localized, and noninvasive. However, the molecular mechanism of the opening is unknown, and this limits the development and application of these methods. With this in mind, we carry out a molecular dynamics simulation study to understand the interaction of ultrasound with the cell membrane and the tight junction. Our minimal blood brain barrier model is composed of two lipid bilayers, mimicking two portions of neighboring cells, connected together by a tight junction formed by a pair of two cis-dimers of the claudin-5 protein. Using an experimental ultrasound frequency of 50 MHz, simulations show that at low intensities, ultrasound does not impact the structure of the cell membranes and tight junction, implying that the direct interaction of ultrasound with the blood brain barrier is not responsible for the experimentally observed opening. At high intensities, the ultrasound pulls the monolayers of individual cell membrane lipid bilayers apart, creating air compartments inside the bilayers. This reduces the free energy barrier for the translocation of drugs across the lipid bilayer and enhances drug permeability. At very high intensities, the two monolayers are largely separated, resulting in cell damage and implying that the blood brain barrier is primarily opened at the experimentally observed damaged areas.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Philippe Derreumaux
- CNRS, Universite de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Toan T Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems, VNU University of Science, Vietnam National University, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam
| | - S Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, USA
| | - Phuong H Nguyen
- CNRS, Universite de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France
| |
Collapse
|
12
|
Effect of Amyloid-β Monomers on Lipid Membrane Mechanical Parameters-Potential Implications for Mechanically Driven Neurodegeneration in Alzheimer's Disease. Int J Mol Sci 2020; 22:ijms22010018. [PMID: 33375009 PMCID: PMC7792773 DOI: 10.3390/ijms22010018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that results in memory loss and the impairment of cognitive skills. Several mechanisms of AD’s pathogenesis were proposed, such as the progressive accumulation of amyloid-β (Aβ) and τ pathology. Nevertheless, the exact neurodegenerative mechanism of the Aβ remains complex and not fully understood. This paper proposes an alternative hypothesis of the mechanism based on maintaining the neuron membrane’s mechanical balance. The incorporation of Aβ decreases the lipid membrane’s elastic properties, which eventually leads to the impairment of membrane clustering, disruption of mechanical wave propagation, and change in gamma oscillations. The first two disrupt the neuron’s ability to function correctly while the last one decreases sensory encoding and perception enabling. To begin discussing this mechanical-balance hypothesis, we measured the effect of two selected peptides, Aβ-40 and Aβ-42, as well as their fluorescently labeled modification, on membrane mechanical properties. The decrease of bending rigidity, consistent for all investigated peptides, was observed using molecular dynamic studies and experimental flicker-noise techniques. Additionally, wave propagation was investigated with molecular dynamic studies in membranes with and without incorporated neurodegenerative peptides. A change in membrane behavior was observed in the membrane system with incorporated Aβ.
Collapse
|
13
|
Wang XF, Tao G, Wen P, Ren BX, Pang CQ, Du CX. Damage to the DPPC Membrane Induced by Shock Waves: Molecular Dynamics Simulations. J Phys Chem B 2020; 124:9535-9545. [DOI: 10.1021/acs.jpcb.0c06077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao-feng Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Gang Tao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peng Wen
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bao-xiang Ren
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chun-qiao Pang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chang-xing Du
- College of Zijin, Nanjing University of Science and Technology, Nanjing 210046, China
| |
Collapse
|
14
|
Hossain S, Abdelgawad A. Analysis of membrane permeability due to synergistic effect of controlled shock wave and electric field application. Electromagn Biol Med 2019; 39:20-29. [DOI: 10.1080/15368378.2019.1706553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shadeeb Hossain
- School of Science and Technology, Central Michigan University, Mount Pleasant, MI, USA
| | - Ahmed Abdelgawad
- School of Science and Technology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
15
|
Escoffre JM, Bouakaz A. Minireview: Biophysical Mechanisms of Cell Membrane Sonopermeabilization. Knowns and Unknowns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10151-10165. [PMID: 30525655 DOI: 10.1021/acs.langmuir.8b03538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbubble-assisted ultrasound has emerged as a promising method for the delivery of low-molecular-weight chemotherapeutic molecules, nucleic acids, therapeutic peptides, and antibodies in vitro and in vivo. Its clinical applications are under investigation for local delivery drug in oncology and neurology. However, the biophysical mechanisms supporting the acoustically mediated membrane permeabilization are not fully established. This review describes the present state of the investigations concerning the acoustically mediated stimuli (i.e., mechanical, chemical, and thermal stimuli) as well as the molecular and cellular actors (i.e., membrane pores and endocytosis) involved in the reversible membrane permeabilization process. The different hypotheses, which were proposed to give a biophysical description of the membrane permeabilization, are critically discussed.
Collapse
Affiliation(s)
- Jean-Michel Escoffre
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| |
Collapse
|
16
|
Man VH, Li MS, Wang J, Derreumaux P, Nguyen PH. Interaction mechanism between the focused ultrasound and lipid membrane at the molecular level. J Chem Phys 2019; 150:215101. [PMID: 31176320 PMCID: PMC7043851 DOI: 10.1063/1.5099008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022] Open
Abstract
Focused ultrasound (FUS) has a wide range of medical applications. Nowadays, the diagnostic and therapeutic ultrasound procedures are routinely used; effects of ultrasound on biological systems at the molecular level are, however, not fully understood. Experimental results on the interaction of the cell membrane, a simplest but important system component, with ultrasound are controversial. Molecular dynamics (MD) simulations could provide valuable insights, but there is no single study on the mechanism of the FUS induced structural changes in cell membranes. With this in mind, we develop a simple method to include FUS into a standard MD simulation. Adopting the 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid membrane as a representative model described by the MARTINI coarse-grained force field, and using experimental values of the ultrasound frequency and intensity, we show that the heat and bubble cavitation are not the primary direct mechanisms that cause structural changes in the membrane. The spatial pressure gradients between the focused and free regions and between the parallel and perpendicular directions to the membrane are the origin of the mechanism. These gradients force lipids to move out of the focused region, forming a lipid flow along the membrane diagonal. Lipids in the free region move in the opposite direction due to the conservation of the total momentum. These opposite motions create wrinkles along the membrane diagonal at low FUS intensities and tear up the membrane at high FUS intensities. Once the membrane is torn up, it is not easy to reform. The implication of our findings in the FUS-induced drug delivery is discussed in some detail.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
17
|
Koshiyama K, Taneo M, Shigematsu T, Wada S. Bicelle-to-Vesicle Transition of a Binary Phospholipid Mixture Guided by Controlled Local Lipid Compositions: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:3118-3123. [DOI: 10.1021/acs.jpcb.8b10682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kenichiro Koshiyama
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
| | - Masaki Taneo
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Taiki Shigematsu
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Shigeo Wada
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
18
|
Takahashi T, Nakagawa K, Tada S, Tsukamoto A. Low-energy shock waves evoke intracellular Ca 2+ increases independently of sonoporation. Sci Rep 2019; 9:3218. [PMID: 30824781 PMCID: PMC6397190 DOI: 10.1038/s41598-019-39806-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Low-energy shock waves (LESWs) accelerate the healing of a broad range of tissue injuries, including angiogenesis and bone fractures. In cells, LESW irradiations enhance gene expression and protein synthesis. One probable mechanism underlying the enhancements is mechanosensing. Shock waves also can induce sonoporation. Thus, sonoporation is another probable mechanism underlying the enhancements. It remains elusive whether LESWs require sonoporation to evoke cellular responses. An intracellular Ca2+ increase was evoked with LESW irradiations in endothelial cells. The minimum acoustic energy required for sufficient evocation was 1.7 μJ/mm2. With the same acoustic energy, sonoporation, by which calcein and propidium iodide would become permeated, was not observed. It was found that intracellular Ca2+ increases evoked by LESW irradiations do not require sonoporation. In the intracellular Ca2+ increase, actin cytoskeletons and stretch-activated Ca2+ channels were involved; however, microtubules were not. In addition, with Ca2+ influx through the Ca2+ channels, the Ca2+ release through the PLC-IP3-IP3R cascade contributed to the intracellular Ca2+ increase. These results demonstrate that LESW irradiations can evoke cellular responses independently of sonoporation. Rather, LESW irradiations evoke cellular responses through mechanosensing.
Collapse
Affiliation(s)
- Toru Takahashi
- Department of Applied Physics, Graduate School of Science and Engineering, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan
| | - Keiichi Nakagawa
- Department of Precise Engineering, Graduate School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shigeru Tada
- Department of Applied Physics, Graduate School of Science and Engineering, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan
| | - Akira Tsukamoto
- Department of Applied Physics, Graduate School of Science and Engineering, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan.
| |
Collapse
|
19
|
Effect of pressure profile of shock waves on lipid membrane deformation. PLoS One 2019; 14:e0212566. [PMID: 30789948 PMCID: PMC6383940 DOI: 10.1371/journal.pone.0212566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/05/2019] [Indexed: 11/19/2022] Open
Abstract
Use of shock waves to temporarily increase the permeability of the cell membrane is a promising approach in drug delivery and gene therapy to allow the translocation of macromolecules and small polar molecules into the cytoplasm. Our understanding of how the characteristics of the pressure profile of shock waves, such as peak pressure and pulse duration, influences membrane properties is limited. Here we study the response of lipid bilayer membranes to shock pulses with different pressure profiles using atomistic molecular dynamics simulations. From our simulation results, we find that the transient deformation/disordering of the membrane depends on both the magnitude and the pulse duration of the pressure profile of the shock pulse. For a low pressure impulse, peak pressure has a dominant effect on membrane structural changes, while for the high pressure impulse, we find that there exists an optimal pulse duration at which membrane deformation/disordering is maximized.
Collapse
|
20
|
Fraile A, Smyth M, Kohanoff J, Solov'yov AV. First principles simulation of damage to solvated nucleotides due to shock waves. J Chem Phys 2019; 150:015101. [PMID: 30621408 DOI: 10.1063/1.5028451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a first-principles molecular dynamics study of the effect of shock waves (SWs) propagating in a model biological medium. We find that the SW can cause chemical modifications through varied and complex mechanisms, in particular, phosphate-sugar and sugar-base bond breaks. In addition, the SW promotes the dissociation of water molecules, thus enhancing the ionic strength of the medium. Freed protons can hydrolyze base and sugar rings previously opened by the shock. However, many of these events are only temporary, and bonds reform rapidly. Irreversible damage is observed for pressures above 15-20 GPa. These results are important to gain a better understanding of the microscopic damage mechanisms underlying cosmic-ray irradiation in space and ion-beam cancer therapy.
Collapse
Affiliation(s)
- Alberto Fraile
- Atomistic Simulation Centre, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Maeve Smyth
- Atomistic Simulation Centre, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Jorge Kohanoff
- Atomistic Simulation Centre, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Andrey V Solov'yov
- MBN Research Center, Altenhöferallee 3, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Man VH, Truong PM, Li MS, Wang J, Van-Oanh NT, Derreumaux P, Nguyen PH. Molecular Mechanism of the Cell Membrane Pore Formation Induced by Bubble Stable Cavitation. J Phys Chem B 2018; 123:71-78. [DOI: 10.1021/acs.jpcb.8b09391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Phan Minh Truong
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Nguyen-Thi Van-Oanh
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
22
|
Nademi Y, Tang T, Uludağ H. Steered molecular dynamics simulations reveal a self-protecting configuration of nanoparticles during membrane penetration. NANOSCALE 2018; 10:17671-17682. [PMID: 30206609 DOI: 10.1039/c8nr04287j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell entry of polynucleotide-based therapeutic agents can be facilitated by nanoparticle (NP) mediated delivery. In this work, using steered molecular dynamics simulations, we simulated the membrane penetration process of a NP formed by 2 short interfering RNA (siRNA) and 6 polyethylenimine (PEI) molecules. To the best of our knowledge, this is the first set of simulations that explore the direct penetration of an siRNA/PEI NP through a membrane at an all-atom scale. Three types of PEI molecules were used for NP formation: a native PEI, a PEI modified with caprylic acids and a PEI modified with linoleic acids. We found that hydrogen bond formation between the PEIs and the membrane did not lead to instability of the siRNA/PEI NPs during the internalization process. Instead, our results suggested adoption of a "self-protecting" configuration by the siRNA/PEI NP during membrane penetration, where the siRNA/PEI NP becomes more compact and siRNAs become aligned, leading to more stable configurations while detaching from the membrane. The siRNA/PEI NP modified with linoleic acid showed the smallest structural change due to its strong intra-particle lipid associations and the resulting rigidity, while NP modified with caprylic acid showed the largest structural changes. Our observations provide unique insight into the structural changes of siRNA/PEI NPs when crossing the cell membrane, which can be important for the design of new NP carriers for nucleic acid delivery.
Collapse
Affiliation(s)
- Yousef Nademi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
23
|
Nan N, Si D, Hu G. Nanoscale cavitation in perforation of cellular membrane by shock-wave induced nanobubble collapse. J Chem Phys 2018; 149:074902. [DOI: 10.1063/1.5037643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nan Nan
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| | - Dongqing Si
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| | - Guohui Hu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| |
Collapse
|
24
|
Yaekashiwa N, Otsuki S, Hayashi S, Kawase K. Investigation of the non-thermal effects of exposing cells to 70-300 GHz irradiation using a widely tunable source. JOURNAL OF RADIATION RESEARCH 2018; 59:116-121. [PMID: 29281029 PMCID: PMC5951075 DOI: 10.1093/jrr/rrx075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 05/11/2023]
Abstract
This study investigated the effects of millimeter wave (MMW) irradiation with a wide range of frequencies on the proliferation and activity of normal human skin fibroblast (NB1RBG) and human glioblastoma (A172) cells. Very few studies have focused on low-power, long-term irradiation of cells with a widely tunable source. Our research examined non-thermal effects on cells exposed to radiation at low power with tunable frequencies from 70 GHz to 300 GHz. A widely tunable MMW source was set within a cell culture incubator. To avoid the effect of heat generation due to irradiation, the intensity was maintained below 10 μW and the device was arranged such that the irradiation came from underneath the cells. Irradiation was performed by sweeping from 70 GHz to 300 GHz in 1.0 GHz steps. The MMW source was positioned 100 mm away from the container in which the cells were cultured. Cells were exposed to MMWs for either 3, 70 or 94 h. Measurements of cell proliferation were made using the alternating current measurement method. We found no difference in proliferation between cells exposed to MMWs and unexposed cells. A colorimetric method using novel tetrazolium compound: MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] was used for cell activity and cytotoxicity assays. We found no difference in cellular activity or toxicity between MMW-exposed cells and sham cells. Our study thus found no non-thermal effect as a result of exposure of cells to 70 GHz to 300 GHz of radiation.
Collapse
Affiliation(s)
- Noriko Yaekashiwa
- RIKEN Center for Advanced Photonics, 519-1399 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
- Corresponding author. RIKEN Center for Advanced Photonics, 519-1399 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan. Tel: +81-22-228-2124; Fax: +81-22-228-2128;
| | - Sato Otsuki
- RIKEN Center for Advanced Photonics, 519-1399 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Shin’ichiro Hayashi
- RIKEN Center for Advanced Photonics, 519-1399 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Kodo Kawase
- RIKEN Center for Advanced Photonics, 519-1399 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
- Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
25
|
Xing J, Singh S, Zhao Y, Duan Y, Guo H, Hu C, Ma A, George R, Xing JZ, Kalluri A, Macwan I, Patra P, Chen J. Increasing vaccine production using pulsed ultrasound waves. PLoS One 2017; 12:e0187048. [PMID: 29176801 PMCID: PMC5703500 DOI: 10.1371/journal.pone.0187048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/12/2017] [Indexed: 01/14/2023] Open
Abstract
Vaccination is a safe and effective approach to prevent deadly diseases. To increase vaccine production, we propose that a mechanical stimulation can enhance protein production. In order to prove this hypothesis, Sf9 insect cells were used to evaluate the increase in the expression of a fusion protein from hepatitis B virus (HBV S1/S2). We discovered that the ultrasound stimulation at a frequency of 1.5 MHz, intensity of 60 mW/cm2, for a duration of 10 minutes per day increased HBV S1/S2 by 27%. We further derived a model for transport through a cell membrane under the effect of ultrasound waves, tested the key assumptions of the model through a molecular dynamics simulation package, NAMD (Nanoscale Molecular Dynamics program) and utilized CHARMM force field in a steered molecular dynamics environment. The results show that ultrasound waves can increase cell permeability, which, in turn, can enhance nutrient / waste exchange thus leading to enhanced vaccine production. This finding is very meaningful in either shortening vaccine production time, or increasing the yield of proteins for use as vaccines.
Collapse
Affiliation(s)
- Jida Xing
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Shrishti Singh
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, Connecticut, United States of America
| | - Yupeng Zhao
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Yan Duan
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
| | - Huining Guo
- Department of Physiatry, University of Alberta, Edmonton, Canada
| | - Chenxia Hu
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Allan Ma
- Akshaya Bio Inc., Edmonton, Alberta, Canada
| | | | - James Z. Xing
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Ankarao Kalluri
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, Connecticut, United States of America
| | - Isaac Macwan
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, Connecticut, United States of America
| | - Prabir Patra
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, Connecticut, United States of America
- Department of Mechanical Engineering, University of Bridgeport, Bridgeport, Connecticut, United States of America
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
26
|
Zhang L, Zhang Z, Jasa J, Li D, Cleveland RO, Negahban M, Jérusalem A. Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates. Sci Rep 2017; 7:8316. [PMID: 28814791 PMCID: PMC5559491 DOI: 10.1038/s41598-017-06827-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as “mechanical catalysts” to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.
Collapse
Affiliation(s)
- Lili Zhang
- University of Oxford, Department of Engineering Science, Oxford, OX1 3PJ, UK.
| | - Zesheng Zhang
- University of Nebraska-Lincoln, Department of Mechanical and Materials Engineering, Lincoln, NE 68588, USA
| | - John Jasa
- University of Nebraska-Lincoln, Department of Mechanical and Materials Engineering, Lincoln, NE 68588, USA
| | - Dongli Li
- University of Oxford, Institute of Biomedical Engineering, Oxford, OX3 7DQ, UK
| | - Robin O Cleveland
- University of Oxford, Institute of Biomedical Engineering, Oxford, OX3 7DQ, UK
| | - Mehrdad Negahban
- University of Nebraska-Lincoln, Department of Mechanical and Materials Engineering, Lincoln, NE 68588, USA
| | - Antoine Jérusalem
- University of Oxford, Department of Engineering Science, Oxford, OX1 3PJ, UK.
| |
Collapse
|
27
|
Wu YT, Adnan A. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain. Sci Rep 2017; 7:5323. [PMID: 28706307 PMCID: PMC5509702 DOI: 10.1038/s41598-017-05790-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/23/2017] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuan-Ting Wu
- Mechanical and Aerospace Engineering, the University of Texas at Arlington, Arlington, 76010, USA
| | - Ashfaq Adnan
- Mechanical and Aerospace Engineering, the University of Texas at Arlington, Arlington, 76010, USA.
| |
Collapse
|
28
|
Modena DAO, da Silva CN, Grecco C, Guidi RM, Moreira RG, Coelho AA, Sant’Ana E, de Souza JR. Extracorporeal shockwave: mechanisms of action and physiological aspects for cellulite, body shaping, and localized fat—Systematic review. J COSMET LASER THER 2017; 19:314-319. [DOI: 10.1080/14764172.2017.1334928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Débora A. Oliveira Modena
- Department of Surgery, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
- Ibramed Research Institute: Study Group in Technology Applied to Health, Amparo, Brazil
| | - Caroline Nogueira da Silva
- Human Development and Technologies, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
- Ibramed Research Institute: Study Group in Technology Applied to Health, Amparo, Brazil
| | - Clovis Grecco
- Ibramed Research Institute: Study Group in Technology Applied to Health, Amparo, Brazil
| | - Renata Michelini Guidi
- Ibramed Research Institute: Study Group in Technology Applied to Health, Amparo, Brazil
- Biomedical Engineering Department, Faculty of Electrical Engineering and Computing, University of Campinas (Unicamp), Campinas, Brazil
- Centro de Estudos e Formação Avançada Ibramed (CEFAI), Amparo, Brazil
| | - Renata Gomes Moreira
- Ibramed Research Institute: Study Group in Technology Applied to Health, Amparo, Brazil
| | - Andresa A. Coelho
- Ibramed Research Institute: Study Group in Technology Applied to Health, Amparo, Brazil
| | - Estela Sant’Ana
- Ibramed Research Institute: Study Group in Technology Applied to Health, Amparo, Brazil
| | - José Ricardo de Souza
- Ibramed Research Institute: Study Group in Technology Applied to Health, Amparo, Brazil
- Centro de Estudos e Formação Avançada Ibramed (CEFAI), Amparo, Brazil
| |
Collapse
|
29
|
|
30
|
Stauch T, Dreuw A. Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis. Chem Rev 2016; 116:14137-14180. [PMID: 27767298 DOI: 10.1021/acs.chemrev.6b00458] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In quantum mechanochemistry, quantum chemical methods are used to describe molecules under the influence of an external force. The calculation of geometries, energies, transition states, reaction rates, and spectroscopic properties of molecules on the force-modified potential energy surfaces is the key to gain an in-depth understanding of mechanochemical processes at the molecular level. In this review, we present recent advances in the field of quantum mechanochemistry and introduce the quantum chemical methods used to calculate the properties of molecules under an external force. We place special emphasis on quantum chemical force analysis tools, which can be used to identify the mechanochemically relevant degrees of freedom in a deformed molecule, and spotlight selected applications of quantum mechanochemical methods to point out their synergistic relationship with experiments.
Collapse
Affiliation(s)
- Tim Stauch
- Interdisciplinary Center for Scientific Computing , Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing , Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Shock Wave-Induced Damage of a Protein by Void Collapse. Biophys J 2016; 110:147-56. [PMID: 26745418 DOI: 10.1016/j.bpj.2015.11.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/28/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022] Open
Abstract
In this study, we report on a series of molecular dynamics simulations that were used to examine the effects of shock waves on a membrane-bound ion channel. A planar shock wave was found to compress the ion channel upon impact, but the protein geometry resembles the crystal structure as soon as the solvent density begins to dissipate. When a void was placed in close proximity to the membrane, the shock wave proved to be more destructive to the protein due to formation of a nanojet that results from the asymmetric collapse of the void. The nanojet was able to cause significant structural changes to the protein even at low piston velocities that are not able to directly cause poration of the membrane.
Collapse
|
32
|
Qi X, Zhao Y, Zhang J, Han D, Chen C, Huang Y, Chen X, Zhang X, Wang T, Li X. Increased Effects of Extracorporeal Shock Waves Combined with Gentamicin against Staphylococcus aureus Biofilms In Vitro and In Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2245-2252. [PMID: 27260244 DOI: 10.1016/j.ultrasmedbio.2016.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/22/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
An implant-associated bacterial infection is one of the most common and costly complications of orthopedic surgery. Once biofilms develop, it is extremely difficult to cure infections with antimicrobial agents. High-energy extracorporeal shock wave (ESW) treatment has been used for orthopedic-related diseases and has been found to be an effective bactericidal agent that is tolerable both in vitro and in vivo. The broad-spectrum antibiotic gentamicin exhibits bactericidal activity against Staphylococcus aureus, and bacterial resistance to gentamicin is lower. We tested the effectiveness of gentamicin in combination with ESW treatment against S. aureus biofilms in vivo and in vitro. The spread plate method, crystal violet staining, confocal laser scanning microscopy, scanning electron microscopy and microbiologic evaluation were used to compare the effects of combined treatment with those of either treatment alone. The results revealed statistically significant differences between the group treated with ESWs combined with gentamicin and all other groups. Our findings indicate that use of the combination of ESWs with gentamicin is more effective against S. aureus biofilms in vitro and in vivo.
Collapse
Affiliation(s)
- Xin Qi
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yaochao Zhao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jieyuan Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dan Han
- Department of Cardiology, Jinzhou Central Hospital, Jinzhou, China
| | - Chunyuan Chen
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Graduate School of Nanchang University, Nanchang, China
| | - Yinjun Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaofeng Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xianlong Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaolin Li
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
33
|
Permeability across lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2254-2265. [PMID: 27085977 DOI: 10.1016/j.bbamem.2016.03.032] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 11/22/2022]
Abstract
Molecular permeation through lipid membranes is a fundamental biological process that is important for small neutral molecules and drug molecules. Precise characterization of free energy surface and diffusion coefficients along the permeation pathway is required in order to predict molecular permeability and elucidate the molecular mechanisms of permeation. Several recent technical developments, including improved molecular models and efficient sampling schemes, are illustrated in this review. For larger penetrants, explicit consideration of multiple collective variables, including orientational, conformational degrees of freedom, are required to be considered in addition to the distance from the membrane center along the membrane normal. Although computationally demanding, this method can provide significant insights into the molecular mechanisms of permeation for molecules of medical and pharmaceutical importance. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
|
34
|
Bouakaz A, Zeghimi A, Doinikov AA. Sonoporation: Concept and Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:175-89. [PMID: 26486338 DOI: 10.1007/978-3-319-22536-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Contrast agents for ultrasound are now routinely used for diagnosis and imaging. In recent years, new promising possibilities for targeted drug delivery have been proposed that can be realized by using the microbubble composing ultrasound contrast agents (UCAs). The microbubbles can carry drugs and selectively adhere to specific sites in the human body. This capability, in combination with the effect known as sonoporation, provides great possibilities for localized drug delivery. Sonoporation is a process in which ultrasonically activated UCAs, pulsating nearby biological barriers (cell membrane or endothelial layer), increase their permeability and thereby enhance the extravasation of external substances. In this way drugs and genes can be delivered inside individual cells without serious consequences for the cell viability. Sonoporation has been validated both in-vitro using cell cultures and in-vivo in preclinical studies. However, today, the mechanisms by which molecules cross the biological barriers remain unrevealed despite a number of proposed theories. This chapter will provide a survey of the current studies on various hypotheses regarding the routes by which drugs are incorporated into cells or across the endothelial layer and possible associated microbubble acoustic phenomena.
Collapse
Affiliation(s)
- Ayache Bouakaz
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France.
| | - Aya Zeghimi
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| | - Alexander A Doinikov
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| |
Collapse
|
35
|
Sliozberg Y, Chantawansri T. Damage in spherical cellular membrane generated by the shock waves: coarse-grained molecular dynamics simulation of lipid vesicle. J Chem Phys 2015; 141:184904. [PMID: 25399159 DOI: 10.1063/1.4901130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Traumatic Brain Injury is a major health issue that is hard to diagnose since it often occurs without signs of external injuries. While it is well known that exposure of biological cells to shock waves causes damage to the cell membrane, it is currently unknown by which mechanisms damage is caused, and how it depends on physical parameters such as shock wave velocity, shock pulse duration, or shock pulse shape. In this computational study, we use a coarse-grained model of the lipid vesicle as a generic model of a cell membrane to elucidate the general principles of the cellular damage induced by the shock wave direct passage through the cranium. Results indicate that the extent of the liposome compression does not strongly depend on the pressure pulse and that liposome extension is very sensitive to the change in the negative pressure phase. The structural integrity of the vesicle is altered as pores form in the lipid membrane at overall pressure impulses generated by supersonic shock waves, which are greater than 5 Pa·s at single or repetitive exposure. Consequently, these permeability changes may lead to changes in the influx of sodium, potassium, and calcium ions.
Collapse
Affiliation(s)
- Yelena Sliozberg
- TKC Global at U.S. Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, Maryland 21005-5069, USA
| | - Tanya Chantawansri
- U.S. Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, Maryland 21005-5069, USA
| |
Collapse
|
36
|
Effects of Stretching Speed on Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular Dynamics Simulation. Sci Rep 2015; 5:15369. [PMID: 26471872 PMCID: PMC4607938 DOI: 10.1038/srep15369] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 11/09/2022] Open
Abstract
Rupture of biological cell membrane under mechanical stresses is critical for cell viability. It is triggered by local rearrangements of membrane molecules. We investigated the effects of stretching speed on mechanical rupture of phospholipid/cholesterol bilayers using unsteady molecular dynamics simulations. We focused on pore formation, the trigger of rupture, in a 40 mol% cholesterol-including bilayer. The unsteady stretching was modeled by proportional and temporal scaling of atom positions at stretching speeds from 0.025 to 30 m/s. The effects of the stretching speed on the critical areal strain, where the pore forms, is composed of two regimes. At low speeds (<1.0 m/s), the critical areal strain is insensitive to speed, whereas it significantly increases at higher speeds. Also, the strain is larger than that of a pure bilayer, regardless of the stretching speeds, which qualitatively agrees with available experimental data. Transient recovery of the cholesterol and phospholipid molecular orientations was evident at lower speeds, suggesting the formation of a stretch-induced interdigitated gel-like phase. However, this recovery was not confirmed at higher speeds or for the pure bilayer. The different responses of the molecular orientations may help explain the two regimes for the effect of stretching speed on pore formation.
Collapse
|
37
|
Scarpa C, Vindigni V, Bassetto F. Extracorporeal Acoustic Wave Therapy and Multiple Symmetric Lipomatosis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e430. [PMID: 26180731 PMCID: PMC4494500 DOI: 10.1097/gox.0000000000000407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/04/2015] [Indexed: 11/25/2022]
Abstract
Acoustic waves are mechanical waves recently used to activate tissue metabolism by exploiting the cell permeabilization caused by their passage. We report a case of a retroauricular lipoma in a 44-year-old woman affected by multiple symmetric lipomatosis and treated with extracorporeal acoustic wave therapy. The adipose thickness of the lipoma was reduced from 35.8 to 21 mm, with increased softness at palpatory examination.
Collapse
Affiliation(s)
- Carlotta Scarpa
- Clinic of Plastic and Reconstructive Surgery, University of Padova, Padova, Italy
| | - Vincenzo Vindigni
- Clinic of Plastic and Reconstructive Surgery, University of Padova, Padova, Italy
| | - Franco Bassetto
- Clinic of Plastic and Reconstructive Surgery, University of Padova, Padova, Italy
| |
Collapse
|
38
|
Adhikari U, Goliaei A, Berkowitz ML. Mechanism of Membrane Poration by Shock Wave Induced Nanobubble Collapse: A Molecular Dynamics Study. J Phys Chem B 2015; 119:6225-34. [DOI: 10.1021/acs.jpcb.5b02218] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Upendra Adhikari
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ardeshir Goliaei
- Department
of Biochemistry and Biophysics and Program in Molecular and Cellular
Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Max L. Berkowitz
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
39
|
Fu H, Comer J, Cai W, Chipot C. Sonoporation at Small and Large Length Scales: Effect of Cavitation Bubble Collapse on Membranes. J Phys Chem Lett 2015; 6:413-418. [PMID: 26261957 DOI: 10.1021/jz502513w] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ultrasound has emerged as a promising means to effect controlled delivery of therapeutic agents through cell membranes. One possible mechanism that explains the enhanced permeability of lipid bilayers is the fast contraction of cavitation bubbles produced on the membrane surface, thereby generating large impulses, which, in turn, enhance the permeability of the bilayer to small molecules. In the present contribution, we investigate the collapse of bubbles of different diameters, using atomistic and coarse-grained molecular dynamics simulations to calculate the force exerted on the membrane. The total impulse can be computed rigorously in numerical simulations, revealing a superlinear dependence of the impulse on the radius of the bubble. The collapse affects the structure of a nearby immobilized membrane, and leads to partial membrane invagination and increased water permeation. The results of the present study are envisioned to help optimize the use of ultrasound, notably for the delivery of drugs.
Collapse
Affiliation(s)
- Haohao Fu
- †Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jeffrey Comer
- ‡Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7565, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France
- §Nanotechnology Innovation Center of Kansas State, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, Kansas State University, P-213 Mosier Hall, Manhattan, Kansas 66506, United States
| | - Wensheng Cai
- †Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Christophe Chipot
- ‡Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7565, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France
- ∥Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, Illinois 61801, United States
- ⊥Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
40
|
Kaminski GA. Computational Studies of the Effect of Shock Waves on the Binding of Model Complexes. J Chem Theory Comput 2014; 10:4972-4981. [PMID: 25400519 PMCID: PMC4230379 DOI: 10.1021/ct500461s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 01/03/2023]
Abstract
We have simulated effects of a shock wave in water that would result from the collapse of a cavitation bubble on binding in model complexes. We have considered a benzene dimer, a pair of uracil molecules, a complex of fragments of the X-linked inhibitor of apoptosis and caspase-9, and a fragment of c-Myc oncoprotein in binding with its dimerization partner Max. The effect of the shock waves was simulated by adding a momentum to a slab of solvent water molecules and observing the system as the slab moved and caused changes. In the cases of the small molecular pairs, the passage of the shock waves lead to dissociation of the complexes. The behavior of the protein systems was more complex, yet significant disruption of the binding and geometry was also observed. In all the cases, the effects did not occur during the immediate impact of the high-momentum solvent molecules, but rather during the expansion of the compressed system that followed the passage of the waves. The rationale of the studies was in attempting to understand the strong effects that irradiation with a low-intensity ultrasound can have on biomolecular systems, because such ultrasound irradiation can cause cavitation bubbles to be produced and collapse, thus leading to local shock wave generation. The long-term objective is to contribute to future design of synergetic ultrasound and chemical drug strategy of protein inhibition.
Collapse
Affiliation(s)
- George A. Kaminski
- Department of Chemistry and
Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
41
|
Santo KP, Berkowitz ML. Shock Wave Induced Collapse of Arrays of Nanobubbles Located Next to a Lipid Membrane: Coarse-Grained Computer Simulations. J Phys Chem B 2014; 119:8879-89. [DOI: 10.1021/jp505720d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kolattukudy P. Santo
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Max L. Berkowitz
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
42
|
Steinhauser MO, Schmidt M. Destruction of cancer cells by laser-induced shock waves: recent developments in experimental treatments and multiscale computer simulations. SOFT MATTER 2014; 10:4778-88. [PMID: 24818846 DOI: 10.1039/c4sm00407h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this emerging area article we review recent progress in the mechanical destruction of cancer cells using laser-induced shock waves. The pure mechanical damaging and destruction of cancer cells associated with this technique possibly opens up a new route to tumor treatments and the corresponding therapies. At the same time progress in multiscale simulation techniques makes it possible to simulate mechanical properties of soft biological matter such as membranes, cytoskeletal networks and even whole cells and tissue. In this way an interdisciplinary approach to understanding key mechanisms in shock wave interactions with biological matter has become accessible. Mechanical properties of biological materials are also critical for many physiological processes and cover length scales ranging from the atomistic to the macroscopic scale. We argue that the latest developments and progress in experimentation enable the investigation of the shock wave interaction with cancer cells on multiple time- and length-scales. In this way the integrated use of experiment and simulation can address key challenges in this field. The exploration of the biological effects of laser-generated shock waves on a fundamental level constitutes an emerging multidisciplinary research area combining scientific methods from the areas of physics, biology, medicine and computer science.
Collapse
Affiliation(s)
- Martin Oliver Steinhauser
- Fraunhofer Research Group "Shock Waves in Soft Biological Matter", Ernst-Mach-Institut, EMI, Eckerstrasse 4, Freiburg, Germany.
| | | |
Collapse
|
43
|
Hydrodynamic determinants of cell necrosis and molecular delivery produced by pulsed laser microbeam irradiation of adherent cells. Biophys J 2014; 105:2221-31. [PMID: 24209868 DOI: 10.1016/j.bpj.2013.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/28/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022] Open
Abstract
Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180-1100 ps and pulse energies of 0.5-10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μs after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J≳0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035≲J≲0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J≲0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two-orders-of-magnitude range of pulse energy and pulse duration. These results provide a mechanistic foundation and design strategy applicable to a broad range of laser-based cellular manipulation procedures.
Collapse
|
44
|
Molecular dynamics simulation of interlayer water embedded in phospholipid bilayer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 36:49-56. [DOI: 10.1016/j.msec.2013.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/14/2013] [Accepted: 11/22/2013] [Indexed: 11/18/2022]
|
45
|
Santo KP, Berkowitz ML. Shock wave interaction with a phospholipid membrane: Coarse-grained computer simulations. J Chem Phys 2014; 140:054906. [DOI: 10.1063/1.4862987] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Abstract
We review recent computer simulation studies of undulating lipid bilayers. Theoretical interpretations of such fluctuating membranes are most commonly based on generalized Helfrich-type elastic models, with additional contributions of local "protrusions" and/or density fluctuations. Such models provide an excellent basis for describing the fluctuations of tensionless bilayers in the fluid Lαphase at a quantitative level.However, this description is found to fail for membranes in the gel phase and for membranes subject to high tensions. The fluctuations of tilted gel membranes (Lβ′phase) show a signature of the modulated ripple structure Pβ′, which is a nearby phase observed in the pretransition regime between the Lαand Lβ′state. This complicates a quantitative analysis on mesoscopic length scales. In the case of fluid membranes under tension, the large-wavelength fluctuation modes are found to be significantly softer than predicted by theory.In the latter context, we also address the general problem of the relation between frame tension and the fluctuation tension, which has been discussed somewhat controversially in recent years. Simulations of very simple model membranes with fixed area show that the fluctuations should be controlled by the frame tension, and not by the internal tension.
Collapse
Affiliation(s)
- FRIEDERIKE SCHMID
- Institute of Physics, Johannes-Gutenberg University of Mainz, D-55099 Mainz, Germany
| |
Collapse
|
47
|
Ganzenmüller GC, Hiermaier S, Steinhauser MO. Consistent temperature coupling with thermal fluctuations of smooth particle hydrodynamics and molecular dynamics. PLoS One 2012; 7:e51989. [PMID: 23300586 PMCID: PMC3530546 DOI: 10.1371/journal.pone.0051989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 11/09/2012] [Indexed: 11/18/2022] Open
Abstract
We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy) thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain - internal energy and heat capacity versus particle velocity - are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance.
Collapse
Affiliation(s)
- Georg C Ganzenmüller
- Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, Freiburg, Germany.
| | | | | |
Collapse
|
48
|
Ando T, Sato S, Toyooka T, Kobayashi H, Nawashiro H, Ashida H, Obara M. Photomechanical wave-driven delivery of siRNAs targeting intermediate filament proteins promotes functional recovery after spinal cord injury in rats. PLoS One 2012; 7:e51744. [PMID: 23272155 PMCID: PMC3522723 DOI: 10.1371/journal.pone.0051744] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022] Open
Abstract
The formation of glial scars after spinal cord injury (SCI) is one of the factors inhibiting axonal regeneration. Glial scars are mainly composed of reactive astrocytes overexpressing intermediate filament (IF) proteins such as glial fibrillary acidic protein (GFAP) and vimentin. In the current study, we delivered small interfering RNAs (siRNAs) targeting these IF proteins to SCI model rats using photomechanical waves (PMWs), and examined the restoration of motor function in the rats. PMWs are generated by irradiating a light-absorbing material with 532-nm nanosecond laser pulses from a Q-switched Nd:YAG laser. PMWs can site-selectively increase the permeability of the cell membrane for molecular delivery. Rat spinal cord was injured using a weight-drop device and the siRNA(s) solutions were intrathecally injected into the vicinity of the exposed SCI, to which PMWs were applied. We first confirmed the substantial uptake of fluorescence-labeled siRNA by deep glial cells; then we delivered siRNAs targeting GFAP and vimentin into the lesion. The treatment led to a significant improvement in locomotive function from five days post-injury in rats that underwent PMW-mediated siRNA delivery. This was attributable to the moderate silencing of the IF proteins and the subsequent decrease in the cavity area in the injured spinal tissue.
Collapse
Affiliation(s)
- Takahiro Ando
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Shunichi Sato
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Japan
- * E-mail:
| | - Terushige Toyooka
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroaki Kobayashi
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Nawashiro
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Ashida
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Minoru Obara
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| |
Collapse
|
49
|
Wrenn SP, Dicker SM, Small EF, Dan NR, Mleczko M, Schmitz G, Lewin PA. Bursting bubbles and bilayers. Am J Cancer Res 2012; 2:1140-59. [PMID: 23382772 PMCID: PMC3563150 DOI: 10.7150/thno.4305] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/18/2012] [Indexed: 11/13/2022] Open
Abstract
This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol) (PEG) - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power) with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented, including those involving microbubbles to deliver cargo into a cell, and those - not necessarily involving microubbles - to release cargo from a phospholipid vesicle (or reverse sonoporation). It is shown that the rate of (reverse) sonoporation from liposomes correlates with phospholipid bilayer phase behavior, liquid-disordered phases giving appreciably faster release than liquid-ordered phases. Moreover, liquid-disordered phases exhibit evidence of two release mechanisms, which are described well mathematically by enhanced diffusion (possibly via dilation of membrane phospholipids) and irreversible membrane disruption, whereas liquid-ordered phases are described by a single mechanism, which has yet to be positively identified. The ability to tune release kinetics with bilayer composition makes reverse sonoporation of phospholipid vesicles a promising methodology for controlled drug delivery. Moreover, nesting of microbubbles inside vesicles constitutes a truly “theranostic” vehicle, one that can be used for both long-lasting, safe imaging and for controlled drug delivery.
Collapse
|
50
|
Masui T, Ota I, Kanno M, Yane K, Hosoi H. Low-intensity ultrasound enhances the anticancer activity of cetuximab in human head and neck cancer cells. Exp Ther Med 2012; 5:11-16. [PMID: 23251234 PMCID: PMC3524017 DOI: 10.3892/etm.2012.739] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/28/2012] [Indexed: 11/30/2022] Open
Abstract
The potential clinical use of ultrasound in inducing cell apoptosis and enhancing the effects of anticancer drugs in the treatment of cancers has previously been investigated. In this study, the combined effects of low-intensity ultrasound (LIU) and cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody, on cell killing and induction of apoptosis in HSC-3 and HSC-4 head and neck cancer cells, and its mechanisms were investigated. Experiments were divided into 4 groups: non-treated (CNTRL), cetuximab-treated (CETU), ultrasound-treated (UST) and the combination of cetuximab and US-treated (COMB). Cell viability was assessed by trypan blue staining assay and induction of apoptosis was detected by fluorescein isothiocyanate (FITC)-Annexin V and propidium iodide (PI) staining assay at 24 h after cetuximab and/or US treatment. To elucidate the effect of cetuximab and US on EGFR signaling and apoptosis in head and neck cancer cells after the treatments, the expression of EGFR, phospho-EGFR, and the activation of caspase-3 were evaluated with western blotting. More cell killing features were evident in the COMB group in HSC-3 and HSC-4 cells compared with the other groups. No differences in EGFR expression among the CETU, UST and COMB groups was observed, while the expression of phospho-EGFR in the CETU group was downregulated compared with that in the CNTRL group. Phospho-EGFR expression was much more downregulated in the COMB group compared with that in the other groups. In addition, the activation of caspase-3 in the UST group was upregulated compared with that in the CNTRL group. Caspase-3 activation was much more upregulated in the COMB group than that in the other groups. These data indicated that LIU was able to enhance the anticancer effect of cetuximab in HSC-3 and HSC-4 head and neck cancer cells.
Collapse
Affiliation(s)
- Takashi Masui
- Departments of Otolaryngology-Head and Neck Surgery and
| | | | | | | | | |
Collapse
|