1
|
Munafò I, Costa D, Milano G, Munaò G. Absorption of Polypropylene in Dipalmitoylphosphatidylcholine Membranes: The Role of Molecular Weight and Initial Configuration of Polymer Chains. J Phys Chem B 2024; 128:9905-9916. [PMID: 39322978 DOI: 10.1021/acs.jpcb.4c05035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We study by molecular dynamics simulations the absorption of polypropylene (PP) chains within a dipalmitoylphosphatidylcholine (DPPC) lipid membrane in aqueous solvent. DPPC represents the most abundant phospholipid in biological membranes, while PP is one of the most common synthetic polymers diffused in the anthropic environment. By following in detail the absorption process, and the corresponding structural modification undergone by the membrane, we show how the initial configuration and the PP molecular weight determine the overall behavior of the system. Specifically, if PP chains initially lie on the DPPC surface, they are fully absorbed; likewise, polymers initially included within the membrane cannot escape from. On the other hand, if polymers are placed sufficiently apart from the membrane, they have time to join together and coalesce into a few nanoparticles. At contact, such nanoparticles may completely dissolve (for low molecular weight) and then be absorbed. For high molecular weight, not all of them dissolve, and therefore the system attains a condition in which some of the chains are absorbed, while others form a residual nanoparticle staying outside (but in contact with) the membrane. Such a state─albeit energetically unfavorable with respect to a condition in which all PP chains are absorbed─remains stable, at the least over a substantial simulation time, extending in our study up to 1.6 μs. The tendency for polymers to spontaneously form aggregates, which then prefer to stay in contact with the membrane, is further corroborated by calculation of the DPPC-nanoparticle potential of mean force.
Collapse
Affiliation(s)
- Isabella Munafò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Dino Costa
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Milano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Napoli, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
De Mel JU, Klisch S, Gupta S, Schneider GJ. Ion-Mediated Structural Discontinuities in Phospholipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14990-15000. [PMID: 38978402 PMCID: PMC11270981 DOI: 10.1021/acs.langmuir.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Despite intense research, methods for controlling soft matter's spontaneous self-assembly into well-defined layers remain a significant challenge. We observed ion-induced structural discontinuities of phospholipid vesicles that can be exploited for controlled self-assembly of soft materials, using DOPC and NaCl as a model system. The observations were made for the 0.25 wt % lipid concentration. We used dynamic light scattering, zeta-potential measurement, cryo-electron microscopy, small-angle X-ray, and small-angle neutron scattering to understand the reason for the discontinuities. For salt concentrations below 8 mM, we observed a decrease in the liposome diameter with increased NaCl concentration. Above 8 mM, we measured a discontinuity; the radius increases within a very narrow salt concentration range within less than 0.1 mM and then decreases for values greater than 8 mM. At 75 mM, the radius becomes constant until it grows again at around 500 mM. Microscopy and scattering experiments show a transition from unilamellar to bilamellar at 8 mM and to trilamellar at 75 mM. At 500 mM, we found a heterogeneous liposome system with many different bilayer numbers. All the experimental observations indicate that declining solvent quality and increasing osmotic pressure direct lipids to expel preferentially to the inner compartment. Upon reaching a critical concentration, excess lipids can form a new bilayer. This spontaneous self-assembly process causes simultaneous shrinkage of the aqueous core and expansion of the vesicle. This approach opens an intriguing path for controlling the self-assembly of bioinspired colloids.
Collapse
Affiliation(s)
- Judith U. De Mel
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Stefanie Klisch
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sudipta Gupta
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Gerald J. Schneider
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Schlaich A, Daldrop JO, Kowalik B, Kanduč M, Schneck E, Netz RR. Water Structuring Induces Nonuniversal Hydration Repulsion between Polar Surfaces: Quantitative Comparison between Molecular Simulations, Theory, and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7896-7906. [PMID: 38578930 PMCID: PMC11025125 DOI: 10.1021/acs.langmuir.3c03656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
Polar surfaces in water typically repel each other at close separations, even if they are charge-neutral. This so-called hydration repulsion balances the van der Waals attraction and gives rise to a stable nanometric water layer between the polar surfaces. The resulting hydration water layer is crucial for the properties of concentrated suspensions of lipid membranes and hydrophilic particles in biology and technology, but its origin is unclear. It has been suggested that surface-induced molecular water structuring is responsible for the hydration repulsion, but a quantitative proof of this water-structuring hypothesis is missing. To gain an understanding of the mechanism causing hydration repulsion, we perform molecular simulations of different planar polar surfaces in water. Our simulated hydration forces between phospholipid bilayers agree perfectly with experiments, validating the simulation model and methods. For the comparison with theory, it is important to split the simulated total surface interaction force into a direct contribution from surface-surface molecular interactions and an indirect water-mediated contribution. We find the indirect hydration force and the structural water-ordering profiles from the simulations to be in perfect agreement with the predictions from theoretical models that account for the surface-induced water ordering, which strongly supports the water-structuring hypothesis for the hydration force. However, the comparison between the simulations for polar surfaces with different headgroup architectures reveals significantly different decay lengths of the indirect water-mediated hydration-force, which for laterally homogeneous water structuring would imply different bulk-water properties. We conclude that laterally inhomogeneous water ordering, induced by laterally inhomogeneous surface structures, shapes the hydration repulsion between polar surfaces in a decisive manner. Thus, the indirect water-mediated part of the hydration repulsion is caused by surface-induced water structuring but is surface-specific and thus nonuniversal.
Collapse
Affiliation(s)
- Alexander Schlaich
- Stuttgart
Center for Simulation Science (SC SimTech), University of Stuttgart, 70569 Stuttgart, Germany
- Institute
for Computational Physics, University of
Stuttgart, 70569 Stuttgart, Germany
| | - Jan O. Daldrop
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Bartosz Kowalik
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Matej Kanduč
- Department
of Theoretical Physics, Jožef Stefan
Institute, SI-1000 Ljubljana, Slovenia
| | - Emanuel Schneck
- Institut
für Physik Kondensierter Materie, Technische Universität Darmstadt, Hochschulstrasse 8, Darmstadt 64289, Germany
| | - Roland R. Netz
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
4
|
Lifshiz-Simon S, Kunz W, Zemb T, Talmon Y. Ion effects on co-existing pseudo-phases in aqueous surfactant solutions: cryo-TEM, rheometry, and quantification. J Colloid Interface Sci 2024; 660:177-191. [PMID: 38241866 DOI: 10.1016/j.jcis.2024.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
HYPOTHESIS Specific alkaline cation effects control the area per headgroup of alkylester sulphates, which modifies the spontaneous packing of the surfactants. The resulting effective packing minimizes the total bending energy frustration and results in a Boltzmann distribution of coexisting pseudo-phases. These pseudo-phases constitute of micelles and other structures of complex morphology: cylindrical sections, end-caps, branching points, and bilayers, all in dynamic equilibrium. According to our model, excess of end-caps or excess of branching points lead to low viscosity, whereas comparable amounts of both structures lead to viscosity maxima. Relative occurrence of branching points and end-caps is the molecular mechanism at the origin of the salt-sensitive viscosity peak in the "salt-curve" (viscosity against salt concentration at fixed surfactant concentration). Up to now, and as indicated in former papers, this has been a pure model without microscopic verification. EXPERIMENTS In this work, we introduce explicit counting of the number of coexisting pseudo-phases as observed by state-of-the-art cryogenic transmission electron microscopy (cryo-TEM). The model system used, i.e., sodium laurylethersulfate (SLES)/salt/water, is very common as part of cosmetic formulations. As added salts, we used Li+, Na+, K+, and Cs+ chlorides. In parallel to imaging, we measured the macroscopic viscosities of the different solutions. FINDINGS With cryogenic transmission electron microscopy (cryo-TEM), we imaged a variety of morphologies (pseudo-phases) in the different aqueous surfactant/salt solutions: cylindrical micelles with end-caps, discs surrounded by "rims", entangled thread-like micelles with branching points, networks with gliding branching points, and bilayers. The relative chemical potentials of these morphologies could be approximated simply by counting the relative proportion of their occurrence. This simple multi-scale approach avoids any ad-hoc "specificity" assumption of ions, and is based on the bending energy model in an extended version of the Benedek "ladder model". It is capable of explaining and even quantifying the location of all viscosity peaks in the "salt-curves" for the different cations investigated, thus confirming the previously proposed model experimentally, and - thanks to cryo-TEM - for the first time on a microscopic scale. Moreover, this approach can also be applied when the added cations lead to newly observed pseudo-phases, such as discs and vesicles. To the best of our knowledge, this is the first time that cryo-TEM is used, together with a mesoscopic model, to describe a macroscopic property such as viscosity and specific ion effects on it, without any a priori assumption about these effects. So, in total, we could a) confirm the predictions of the previously developed model, b) use cryo-TEM imaging and viscosity measurements to predict and find unusual morphologies when varying the cations of the added salt, and c) count the pseudo-phases in cryo-TEM micrographs to quantitatively explain the different nanostructures.
Collapse
Affiliation(s)
- Sapir Lifshiz-Simon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg 93040, Germany
| | - Thomas Zemb
- Institute for Separation Chemistry ICSM, CEA, CNRS, University of Montpellier, ENSCM, Marcoule 30207, France
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
5
|
He X, Ewing AG. Hofmeister Series: From Aqueous Solution of Biomolecules to Single Cells and Nanovesicles. Chembiochem 2023; 24:e202200694. [PMID: 37043703 DOI: 10.1002/cbic.202200694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Indexed: 04/14/2023]
Abstract
Hofmeister effects play a critical role in numerous physicochemical and biological phenomena, including the solubility and/or accumulation of proteins, the activities of enzymes, ion transport in biochannels, the structure of lipid bilayers, and the dynamics of vesicle opening and exocytosis. This minireview focuses on how ionic specificity affects the physicochemical properties of biomolecules to regulate cellular exocytosis, vesicular content, and nanovesicle opening. We summarize recent progress in further understanding Hofmeister effects on biomacromolecules and their applications in biological systems. These important steps have increased our understanding of the Hofmeister effects on cellular exocytosis, vesicular content, and nanovesicle opening. Increasing evidence is firmly establishing that the ions along the Hofmeister series play an important role in living organisms that has often been ignored.
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| |
Collapse
|
6
|
Klačić T, Bohinc K, Kovačević D. Suppressing the Hofmeister Anion Effect by Thermal Annealing of Thin-Film Multilayers Made of Weak Polyelectrolytes. Macromolecules 2022; 55:9571-9582. [PMID: 36397937 PMCID: PMC9661731 DOI: 10.1021/acs.macromol.2c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Indexed: 11/30/2022]
Abstract
![]()
Thin films made of
weak polyelectrolytes poly(allylamine hydrochloride)
(PAH) and poly(acrylic acid) (PAA) have been fabricated on silicon
wafers using the layer-by-layer (LbL) method. To study the influence
of counteranion type on the growth and properties of PAH/PAA multilayers,
the nature of the supporting sodium salt was varied from cosmotropic
to chaotropic anions (F–, Cl–,
and ClO4–). Results of ellipsometry and
AFM measurements indicate that the film thickness and surface roughness
systematically increase on the order F– < Cl– < ClO4–. Furthermore,
we found that the hydrophobicity of the PAH/PAA multilayer also follows
the described trend when a polycation is the terminating layer. However,
the heating of PAH/PAA multilayers to 60 °C during the LbL assembly
suppressed the influence of background anions on the multilayer formation
and properties. On the basis of the obtained results, it could be
concluded that thermal annealing induces changes at the polymer–air
interface in the sense of reorientation and migration of polymer chains.
Collapse
Affiliation(s)
- Tin Klačić
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Davor Kovačević
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Bochicchio D, Cantu L, Cadario MV, Palchetti L, Natali F, Monticelli L, Rossi G, Del Favero E. Polystyrene perturbs the structure, dynamics, and mechanical properties of DPPC membranes: An experimental and computational study. J Colloid Interface Sci 2021; 605:110-119. [PMID: 34311305 DOI: 10.1016/j.jcis.2021.07.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Synthetic plastic oligomers can interact with the cells of living organisms by different ways. They can be intentionally administered to the human body as part of nanosized biomedical devices. They can be inhaled by exposed workers, during the production of multicomponent, polymer-based nanocomposites. They can leak out of food packaging. Most importantly, they can result from the degradation of plastic waste, and enter the food chain. A physicochemical characterization of the effects of synthetic polymers on the structure and dynamics of cell components is still lacking. Here, we combine a wide spectrum of experimental techniques (calorimetry, x-ray, and neutron scattering) with atomistic Molecular Dynamics simulations to study the interactions between short chains of polystyrene (25 monomers) and model lipid membranes (DPPC, in both gel and fluid phase). We find that doping doses of polystyrene oligomers alter the thermal properties of DPPC, stabilizing the fluid lipid phase. They perturb the membrane structure and dynamics, in a concentration-dependent fashion. Eventually, they modify the mechanical properties of DPPC, reducing its bending modulus in the fluid phase. Our results call for a systematic, interdisciplinary assessment of the mechanisms of interaction of synthetic, everyday use polymers with cell membranes.
Collapse
Affiliation(s)
- Davide Bochicchio
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Laura Cantu
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA V.le F.lli Cervi 93, 20090 Segrate, Italy
| | - Maria Vittoria Cadario
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA V.le F.lli Cervi 93, 20090 Segrate, Italy
| | - Leonardo Palchetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA V.le F.lli Cervi 93, 20090 Segrate, Italy
| | - Francesca Natali
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Luca Monticelli
- IBCP, CNRS, UMR 5086, 7 Passage du Vercors, 69007 Lyon, France
| | - Giulia Rossi
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy.
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA V.le F.lli Cervi 93, 20090 Segrate, Italy.
| |
Collapse
|
8
|
De Mel JU, Gupta S, Perera RM, Ngo L, Zolnierczuk P, Bleuel M, Pingali SV, Schneider GJ. Influence of External NaCl Salt on Membrane Rigidity of Neutral DOPC Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9356-9367. [PMID: 32672981 DOI: 10.1021/acs.langmuir.0c01004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sodium chloride (NaCl) is a very common molecule in biotic and abiotic aqueous environments. In both cases, variation of ionic strength is inevitable. In addition to the osmotic variation posed by such perturbations, the question of whether the interactions of monovalent ions Na+ and Cl-, especially with the neutral head groups of phospholipid membranes are impactful enough to change the membrane rigidity, is still not entirely understood. We investigated the dynamics of 1,2-di-(octadecenoyl)-sn-glycero-3-phosphocholine (DOPC) vesicles with zwitterionic neutral head groups in the fluid phase with increasing external salt concentration. At higher salt concentrations, we observe an increase in bending rigidity from neutron spin echo (NSE) spectroscopy and an increase in bilayer thickness from small-angle X-ray scattering (SAXS). We compared different models to distinguish membrane undulations, lipid tail motions, and the translational diffusion of the vesicles. All of the models indicate an increase in bending rigidity by a factor of 1.3-3.6. We demonstrate that even down to t > 10 ns and for Q > 0.07 Å-1, the observed NSE relaxation spectra are influenced by translational diffusion of the vesicles. For t < 5 ns, the lipid tail motion dominates the intermediate dynamic structure factor. As the salt concentration increases, this contribution diminishes. We introduced a time-dependent analysis for the bending rigidity that highlights only a limited Zilman-Granek time window in which the rigidity is physically meaningful.
Collapse
Affiliation(s)
- Judith U De Mel
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sudipta Gupta
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Rasangi M Perera
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ly Ngo
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Piotr Zolnierczuk
- Jülich Centre for Neutron Science (JCNS), Outstation at SNS, POB 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8562, United States
| | - Sai Venkatesh Pingali
- Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), POB 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Gerald J Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
He X, Ewing AG. Counteranions in the Stimulation Solution Alter the Dynamics of Exocytosis Consistent with the Hofmeister Series. J Am Chem Soc 2020; 142:12591-12595. [PMID: 32598145 PMCID: PMC7386575 DOI: 10.1021/jacs.0c05319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
We
show that the Hofmeister series of ions can be used to explain
the cellular changes in exocytosis observed by single-cell amperometry
for different counteranions. The formation, expansion, and closing
of the membrane fusion pore during exocytosis was found to be strongly
dependent on the counteranion species in solution. With stimulation
of chaotropic anions (e.g., ClO4–), the
expansion and closing time of the fusion pore are longer, suggesting
chaotropes can extend the duration of exocytosis compared with kosmotropic
anions (e.g., Cl–). At a concentration of 30 mM,
the two parameters (e.g., t1/2 and tfall) that define the duration of exocytosis
vary with the Hofmeister series (Cl– < Br– < NO3– ≤ ClO4– < SCN–). More interestingly,
fewer (e.g., Nfoot/Nevents) and smaller (e.g., Ifoot) prespike events are observed when chaotropes are counterions in
the stimulation solution, and the values can be sorted by the reverse
Hofmeister series (Cl– ≥ Br– > NO3– > ClO4– > SCN–). Based on ion specificity,
an adsorption-repulsion
mechanism, we suggest that the exocytotic Hofmeister series effect
originates from a looser swelling lipid bilayer structure due to the
adsorption and electrostatic repulsion of chaotropes on the hydrophobic
portion of the membrane. Our results provide a chemical link between
the Hofmeister series and the cellular process of neurotransmitter
release via exocytosis and provide a better physical framework to
understand this important phenomenon.
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| |
Collapse
|
10
|
Susceptibility of biomembrane structure towards amphiphiles, ionic liquids, and deep eutectic solvents. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2020. [DOI: 10.1016/bs.abl.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density. Molecules 2019; 25:molecules25010132. [PMID: 31905730 PMCID: PMC6982888 DOI: 10.3390/molecules25010132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 11/17/2022] Open
Abstract
Influence of sodium salts of selected chaotropic anions from the Hofmeister series (NaCl, NaBr, NaNO3, NaI) on the surface charge density of phosphatidylcholine membranes was studied. Small unilamellar lipid vesicles were used as a model system in the investigations. The theoretical and experimental approach to the interactions between inorganic anions and phosphatidylcholine membranes is presented. Experimental membrane surface charge densities data were determined as a function of pH of the aqueous electrolytes using microelectrophoresis method. The quantitative description of the interactions between zwitterionic phosphatidylcholine membrane and monovalent anions is presented. The equilibria constants of the binding of solution ions onto phospholipid surface were calculated. Knowledge of these parameters was essential to determine the theoretical membrane surface charge density values. The theoretical data were compared to the experimental ones in order to verify the mathematical model. Both approaches indicate that the anion-phosphatidylcholine membrane interaction increases with the size of the anion. The adsorption of chaotropic anions to membranes was found to follow the Hofmeister series I- > NO3- > Br- > Cl-.
Collapse
|
12
|
Interactions of a short hyaluronan chain with a phospholipid membrane. Colloids Surf B Biointerfaces 2019; 184:110539. [PMID: 31629183 DOI: 10.1016/j.colsurfb.2019.110539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 01/06/2023]
Abstract
Hyaluronic acid and phospholipids are two components that are present in the synovial fluid, and both are implicated as important facilitators of joint lubrication. In this work we aim to clarify how hyaluronic acid interacts with a phospholipid bilayer through their molecular interactions at the bilayer surface. To this end we performed molecular dynamics simulations of one hyaluronic acid molecule at a phospholipid bilayer in aqueous solution. The simulations were carried out for two aqueous solutions of equal concentrations, containing either NaCl or CaCl2. We analyzed hydrogen bonds, hydrophobic contacts and cation mediated bridges to clarify how hyaluoronic acid binds to a phospholipid bilayer. The analysis shows that calcium ions promote longer lasting bonds between the species as they create calcium ion bridges between the carboxylate group of hyaluronic acid and the phosphate group of the phospholipid. This type of additional bonding does not significantly influence the total number of contact created, but rather stabilizes the contact. The presented results can facilitate understanding of the role of hyaluronic acid and phospholipid interactions in terms of lubrication of articular cartilage.
Collapse
|
13
|
Varade SR, Ghosh P. Foaming in aqueous solutions of zwitterionic surfactant in presence of monovalent salts: The specific ion effect. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1647178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shailesh R. Varade
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Pallab Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
14
|
Pullanchery S, Yang T, Cremer PS. Introduction of Positive Charges into Zwitterionic Phospholipid Monolayers Disrupts Water Structure Whereas Negative Charges Enhances It. J Phys Chem B 2018; 122:12260-12270. [DOI: 10.1021/acs.jpcb.8b08476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Cationic interaction with phosphatidylcholine in a lipid cubic phase studied with electrochemical impedance spectroscopy and small angle X-ray scattering. J Colloid Interface Sci 2018; 528:321-329. [PMID: 29860201 DOI: 10.1016/j.jcis.2018.05.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Electrochemical Impedance Spectroscopy (EIS) can be used to investigate cationic interaction with the choline headgroup in the ternary system of monoolein/dioleoylphosphatidylcholine/water (MO/DOPC/H2O). EXPERIMENTS EIS was used to estimate the resistance and capacitance of a freestanding membrane of a lipid cubic phase (LCP). The membrane was formed in a small cylindrical aperture separating two compartments, containing one Pt electrode each. The impedance experiments were carried out in a two electrode setup with electrolyte solutions made of KCl, CsCl, MgCl2 and CaCl2 filling the compartments at two different ionic strength. Small angle X-ray diffraction (SAXRD) was used to establish the structure and cell unit parameters of the LCP. FINDINGS The interpretation of ionic interaction with phosphatidylcholine was based on estimated membrane resistances and capacitances from EIS measurements. The magnitude of cationic interaction with the lipid headgroup in the water channels is correlated to the membrane resistance that increases in the order Cs+ < K+ < Mg2+ < Ca2+ following the Hofmeister direct series and also reflecting the order of intrinsic binding constants. The membrane capacitance and SAXRD results are discussed as an effect of cationic interaction and it was possible to observe both swelling and condensing effects. The stability of the cubic phase throughout the experiments was confirmed by SAXRD.
Collapse
|
16
|
The effect of H 3O + on the membrane morphology and hydrogen bonding of a phospholipid bilayer. Biophys Rev 2018; 10:1371-1376. [PMID: 30219992 DOI: 10.1007/s12551-018-0454-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022] Open
Abstract
At the 2017 meeting of the Australian Society for Biophysics, we presented the combined results from two recent studies showing how hydronium ions (H3O+) modulate the structure and ion permeability of phospholipid bilayers. In the first study, the impact of H3O+ on lipid packing had been identified using tethered bilayer lipid membranes in conjunction with electrical impedance spectroscopy and neutron reflectometry. The increased presence of H3O+ (i.e. lower pH) led to a significant reduction in membrane conductivity and increased membrane thickness. A first-order explanation for the effect was assigned to alterations in the steric packing of the membrane lipids. Changes in packing were described by a critical packing parameter (CPP) related to the interfacial area and volume and shape of the membrane lipids. We proposed that increasing the concentraton of H3O+ resulted in stronger hydrogen bonding between the phosphate oxygens at the water-lipid interface leading to a reduced area per lipid and slightly increased membrane thickness. At the meeting, a molecular model for these pH effects based on the result of our second study was presented. Multiple μs-long, unrestrained molecular dynamic (MD) simulations of a phosphatidylcholine lipid bilayer were carried out and showed a concentration dependent reduction in the area per lipid and an increase in bilayer thickness, in agreement with experimental data. Further, H3O+ preferentially accumulated at the water-lipid interface, suggesting the localised pH at the membrane surface is much lower than the bulk bathing solution. Another significant finding was that the hydrogen bonds formed by H3O+ ions with lipid headgroup oxygens are, on average, shorter in length and longer-lived than the ones formed in bulk water. In addition, the H3O+ ions resided for longer periods in association with the carbonyl oxygens than with either phosphate oxygen in lipids. In summary, the MD simulations support a model where the hydrogen bonding capacity of H3O+ for carbonyl and phosphate oxygens is the origin of the pH-induced changes in lipid packing in phospholipid membranes. These molecular-level studies are an important step towards a better understanding of the effect of pH on biological membranes.
Collapse
|
17
|
Deplazes E, Poger D, Cornell B, Cranfield CG. The effect of hydronium ions on the structure of phospholipid membranes. Phys Chem Chem Phys 2018; 20:357-366. [DOI: 10.1039/c7cp06776c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work studies the mechanisms by which hydronium ions modulate the structure of phospholipid bilayers.
Collapse
Affiliation(s)
- Evelyne Deplazes
- School of Biomedical Sciences
- Curtin Health Innovation Research Institute and Curtin Institute for Computation
- Curtin University
- Perth
- Australia
| | - David Poger
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | | | | |
Collapse
|
18
|
Room-temperature ionic liquids meet bio-membranes: the state-of-the-art. Biophys Rev 2017; 9:309-320. [PMID: 28779453 DOI: 10.1007/s12551-017-0279-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022] Open
Abstract
Room-temperature ionic liquids (RTIL) are a new class of organic salts whose melting temperature falls below the conventional limit of 100 °C. Their low vapor pressure, moreover, has made these ionic compounds the solvents of choice of the so-called green chemistry. For these and other peculiar characteristics, they are increasingly used in industrial applications. However, studies of their interaction with living organisms have highlighted mild to severe health hazards. Since their cytotoxicity shows a positive correlation with their lipophilicity, several chemical-physical studies of their interactions with biomembranes have been carried out in the last few years, aiming to identify the molecular mechanisms behind their toxicity. Cation chain length and anion nature of RTILs have seemed to affect lipophilicity and, in turn, their toxicity. However, the emerging picture raises new questions, points to the need to assess toxicity on a case-by-case basis, but also suggests a potential positive role of RTILs in pharmacology, bio-medicine and bio-nanotechnology. Here, we review this new subject of research, and comment on the future and the potential importance of this emerging field of study.
Collapse
|
19
|
Ruiz-Rincón S, González-Orive A, de la Fuente JM, Cea P. Reversible Monolayer-Bilayer Transition in Supported Phospholipid LB Films under the Presence of Water: Morphological and Nanomechanical Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7538-7547. [PMID: 28691823 DOI: 10.1021/acs.langmuir.7b01268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mixed monolayer Langmuir-Blodgett (LB) films of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol (Chol) in the 1:1 ratio have been prepared onto solid mica substrates. Upon immersion in water or in an aqueous HEPES solution (pH 7.4) the monolayer LB films were spontaneously converted into well-organized bilayers leaving free mica areas. The process has been demonstrated to be reversible upon removal of the aqueous solution, resulting in remarkably free of defects monolayers that are homogeneously distributed onto the mica. In addition, the nanomechanical properties exhibited by the as-formed bilayers have been determined by means of AFM breakthrough force studies. The bilayers formed by immersion of the monolayer in an aqueous media exhibit nanomechanical properties and stability under compression analogous to those of DPPC:Chol supported bilayers obtained by other methods previously described in the literature. Consequently, the hydration of a monolayer LB film has been revealed as an easy method to produce well-ordered bilayers that mimic the cell membrane and that could be used as model cell membranes.
Collapse
Affiliation(s)
| | | | - Jesús M de la Fuente
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC , 50009 Zaragoza, Spain
- Networking Biomedical Research Center of Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza , 50009, Zaragoza, Spain
| |
Collapse
|
20
|
Fink L, Feitelson J, Noff R, Dvir T, Tamburu C, Raviv U. Osmotic Stress Induced Desorption of Calcium Ions from Dipolar Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5636-5641. [PMID: 28514855 DOI: 10.1021/acs.langmuir.7b00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interaction between multivalent ions and lipid membranes with saturated tails and dipolar (net neutral) headgroups can lead to adsorption of the ions onto the membrane. The ions charge the membranes and contribute to electrostatic repulsion between them, in a similar manner to membranes containing charged lipids. Using solution X-ray scattering and the osmotic stress method, we measured and modeled the pressure-distance curves between partially charged membranes containing mixtures of charged (1,2-dilauroyl-sn-glycero-3-phospho-l-serine, DLPS) and dipolar (1,2-dilauroyl-sn-glycero-3-phosphocholine, DLPC) lipids over a wide range of membrane charge densities. We then compared these pressure-distance curves with those of DLPC membranes in the presence of 10 mM CaCl2. Our data and modeling show that when low osmotic stress is applied to the DLPC bilayers, the membrane charge density is equivalent to that of a charged membrane containing ca. 4 mol % DLPS and 96 mol % DLPC. As the osmotic stress increased, the charge density of the DLPC membrane decreased and resembled that of a membrane containing ca. 1 mol % DLPS. These data are consistent with desorption of the calcium ions from the DLPC membrane with increasing osmotic stress.
Collapse
Affiliation(s)
- Lea Fink
- Institute of Chemistry and Center for Nanoscience and Nanotechnology and ‡Racah Institute of Physics, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Jehuda Feitelson
- Institute of Chemistry and Center for Nanoscience and Nanotechnology and ‡Racah Institute of Physics, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Roy Noff
- Institute of Chemistry and Center for Nanoscience and Nanotechnology and ‡Racah Institute of Physics, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Tom Dvir
- Institute of Chemistry and Center for Nanoscience and Nanotechnology and ‡Racah Institute of Physics, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Carmen Tamburu
- Institute of Chemistry and Center for Nanoscience and Nanotechnology and ‡Racah Institute of Physics, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Uri Raviv
- Institute of Chemistry and Center for Nanoscience and Nanotechnology and ‡Racah Institute of Physics, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
21
|
Leontidis E. Investigations of the Hofmeister series and other specific ion effects using lipid model systems. Adv Colloid Interface Sci 2017; 243:8-22. [PMID: 28395857 DOI: 10.1016/j.cis.2017.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/02/2017] [Indexed: 11/28/2022]
Abstract
From the ion point-of-view specific ion effects (SIE) arise as an interplay of ionic size and shape and charge distribution. However in aqueous systems SIE invariably involve water, and at surfaces they involve both interacting surface groups and local fields emanating from the surface. In this review we highlight the fundamental importance of ionic size and hydration on SIE, properties which encompass all types of interacting forces and ion-pairing phenomena and make the Hofmeister or lyotropic series of ions pertinent to a broad range of systems and phenomena. On the other hand ionic hydrophobicity and complexation capacity also determine ionic behavior in a variety of contexts. Over the years we have carried out carefully designed experiments on a few selected soft matter model systems, most involving zwitterionic phospholipids, to assess the importance of fundamental ionic and interfacial properties on ion specific effects. By tuning down direct Coulomb interactions, working with different interfacial geometries, and carefully tuning ion-lipid headgroup interactions it is possible to assess the importance of different parameters contributing to ion specific behavior. We argue that the majority of specific ion effects involving relatively simple soft matter systems can be at least qualitatively understood and demystified.
Collapse
|
22
|
Ricci M, Trewby W, Cafolla C, Voïtchovsky K. Direct observation of the dynamics of single metal ions at the interface with solids in aqueous solutions. Sci Rep 2017; 7:43234. [PMID: 28230209 PMCID: PMC5322364 DOI: 10.1038/srep43234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/23/2017] [Indexed: 01/14/2023] Open
Abstract
The dynamics of ions adsorbed at the surface of immersed charged solids plays a central role in countless natural and industrial processes such as crystal growth, heterogeneous catalysis, electrochemistry, or biological function. Electrokinetic measurements typically distinguish between a so-called Stern layer of ions and water molecules directly adsorbed on to the solid’s surface, and a diffuse layer of ions further away from the surface. Dynamics within the Stern layer remain poorly understood, largely owing to a lack of in-situ atomic-level insights. Here we follow the dynamics of single Rb+ and H3O+ ions at the surface of mica in water using high-resolution atomic force microscopy with 25 ms resolution. Our results suggest that single hydrated Rb+ions reside τ1 = 104 ± 5 ms at a given location, but this is dependent on the hydration state of the surface which evolves on a slower timescale of τ2 = 610 ± 30 ms depending on H3O+ adsorption. Increasing the liquid’s temperature from 5 °C to 65 °C predictably decreases the apparent glassiness of the interfacial water, but no clear effect on the ions’ dynamics was observed, indicating a diffusion-dominated process. These timescales are remarkably slow for individual monovalent ions and could have important implications for interfacial processes in electrolytes.
Collapse
Affiliation(s)
- Maria Ricci
- University of Cambridge, Cavendish Laboratory, Cambridge CB3 0HE, UK
| | - William Trewby
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | | | | |
Collapse
|
23
|
|
24
|
Rahimi Z, Shahbazi Y, Ahmadi F. Polypyrrole as an Efficient Solid-Phase Extraction Sorbent for Determination of Chloramphenicol Residue in Chicken Liver, Kidney, and Meat. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0656-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Zhang Z, Moxey M, Alswieleh A, Morse AJ, Lewis AL, Geoghegan M, Leggett GJ. Effect of Salt on Phosphorylcholine-based Zwitterionic Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5048-5057. [PMID: 27133955 DOI: 10.1021/acs.langmuir.6b00763] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A quantitative investigation of the responses of surface-grown biocompatible brushes of poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) to different types of salt has been carried out using ellipsometry, quartz crystal microbalance (QCM) measurements, and friction force microscopy. Both cations and anions of varying valency over a wide range of concentrations were examined. Ellipsometry shows that the height of the brushes is largely independent of the ionic strength, confirming that the degree of swelling of the polymer is independent of the ionic character of the medium. In contrast, QCM measurements reveal significant changes in mass and dissipation to the PMPC brush layer, suggesting that ions bind to phosphorylcholine (PC) groups in PMPC molecules, which results in changes in the stiffness of the brush layer, and the binding affinity varies with salt type. Nanotribological measurements made using friction force microscopy show that the coefficient of friction decreases with increasing ionic strength for a variety of salts, supporting the conclusion drawn from QCM measurements. It is proposed that the binding of ions to the PMPC molecules does not change their hydration state, and hence the height of the surface-grown polymeric brushes. However, the balance of the intra- and intermolecular interactions is strongly dependent upon the ionic character of the medium between the hydrated chains, modulating the interactions between the zwitterionic PC pendant groups and, consequently, the stiffness of the PMPC molecules in the brush layer.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Mark Moxey
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Abdullah Alswieleh
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Andrew J Morse
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Andrew L Lewis
- Biocompatibles UK Ltd. , Chapman House, Farnham Business Park, Weydon Lane, Farnham, Surrey GU9 8QL, United Kingdom
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield , Sheffield S3 7RH, United Kingdom
| | - Graham J Leggett
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
26
|
Furlan AL, Jobin ML, Pianet I, Dufourc EJ, Géan J. Flavanol/lipid interaction: a novel molecular perspective in the description of wine astringency & bitterness and antioxidant action. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.07.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Song J, Kang TH, Kim MW, Han S. Ion specific effects: decoupling ion-ion and ion-water interactions. Phys Chem Chem Phys 2015; 17:8306-22. [PMID: 25761273 PMCID: PMC4656249 DOI: 10.1039/c4cp05992a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ion-specific effects in aqueous solution, known as the Hofmeister effect, are prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effect based on a series of recent experimental observations. These effects are not considered in the classical descriptions of ion effects, such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and therefore they fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance of being developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interactions and ion-water interactions from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of the ion-water interactions in solution. The Hofmeister ion effect observed for biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interactions is the modulation of water diffusion dynamics near ions in a bulk ion solution, as well as near biological liposome surfaces. This is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction energy values derived from experimental data for various ions are compared with theoretical values in the literature. Ultimately, quantifying ion-induced changes in the surface energy for the purpose of developing valid theoretical models for ion-water interactions will be critical to rationalizing the Hofmeister effect.
Collapse
Affiliation(s)
- Jinsuk Song
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
28
|
The dehydration dynamics of a model cell membrane induced by cholesterol analogue 6-ketocholestanol investigated using sum frequency generation vibrational spectroscopy. Sci China Chem 2015. [DOI: 10.1007/s11426-014-5308-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Yan C, Mu T. Molecular understanding of ion specificity at the peptide bond. Phys Chem Chem Phys 2015; 17:3241-9. [DOI: 10.1039/c4cp04055d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reveals the relationship between the Hofmeister ions effect and the electrostatic potential surfaces of the ions.
Collapse
Affiliation(s)
- Chuanyu Yan
- Department of Chemistry
- Renmin University of China
- Beijing
- P. R. China
| | - Tiancheng Mu
- Department of Chemistry
- Renmin University of China
- Beijing
- P. R. China
| |
Collapse
|
30
|
Ionic strength and composition govern the elasticity of biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy. Chem Phys Lipids 2014; 186:17-29. [PMID: 25447291 DOI: 10.1016/j.chemphyslip.2014.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 12/15/2022]
Abstract
Infrared (IR) spectroscopy was used to quantify the ion mixture effect of seawater (SW), particularly the contribution of Mg(2+) and Ca(2+) as dominant divalent cations, on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-posphocholine (DMPC) bilayers. The changed character of the main transition at 24 °C from sharp to gradual in films and the 1 °C shift of the main transition temperature in dispersions reflect the interactions of lipid headgroups with the ions in SW. Force spectroscopy was used to quantify the nanomechanical hardness of a DMPC supported lipid bilayer (SLB). Considering the electrostatic and ion binding equilibrium contributions while systematically probing the SLB in various salt solutions, we showed that ionic strength had a decisive influence on its nanomechanics. The mechanical hardness of DMPC SLBs in the liquid crystalline phase linearly increases with the increasing fraction of all ion-bound lipids in a series of monovalent salt solutions. It also linearly increases in the gel phase but almost three times faster (the corresponding slopes are 4.9 nN/100 mM and 13.32 nN/100 mM, respectively). We also showed that in the presence of divalent ions (Ca(2+) and Mg(2+)) the bilayer mechanical hardness was unproportionally increased, and that was accompanied with the decrease of Na(+) ion and increase of Cl(-) ion bound lipids. The underlying process is a cooperative and competitive ion binding in both the gel and the liquid crystalline phase. Bilayer hardness thus turned out to be very sensitive to ionic strength as well as to ionic composition of the surrounding medium. In particular, the indicated correlation helped us to emphasize the colligative properties of SW as a naturally occurring complex ion mixture.
Collapse
|
31
|
Przybyło M, Drabik D, Łukawski M, Langner M. Effect of Monovalent Anions on Water Transmembrane Transport. J Phys Chem B 2014; 118:11470-9. [DOI: 10.1021/jp505687d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Magda Przybyło
- Laboratory for Biophysics of Macromolecular Aggregates,
Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Pl. Grunwaldzki 13, 50-370 Wroclaw, Poland
| | - Dominik Drabik
- Laboratory for Biophysics of Macromolecular Aggregates,
Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Pl. Grunwaldzki 13, 50-370 Wroclaw, Poland
| | - Maciej Łukawski
- Laboratory for Biophysics of Macromolecular Aggregates,
Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Pl. Grunwaldzki 13, 50-370 Wroclaw, Poland
| | - Marek Langner
- Laboratory for Biophysics of Macromolecular Aggregates,
Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Pl. Grunwaldzki 13, 50-370 Wroclaw, Poland
| |
Collapse
|
32
|
Kanduč M, Schlaich A, Schneck E, Netz RR. Hydration repulsion between membranes and polar surfaces: simulation approaches versus continuum theories. Adv Colloid Interface Sci 2014; 208:142-52. [PMID: 24612664 DOI: 10.1016/j.cis.2014.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 11/28/2022]
Abstract
A review of various computer simulation approaches for the study of the hydration repulsion between lipid membranes and polar surfaces is presented. We discuss different methods and compare their advantages and limitations. We consider interaction pressures, interaction thermodynamics, and interaction mechanisms. We take a close look at the influence of the experimental boundary conditions and at repulsion mechanisms due to the unfavorable overlap of interfacial water layers. To this end, we analyze several distinct water order parameters in simulations of interacting polar surfaces and compare the results to the predictions of simple continuum theories.
Collapse
Affiliation(s)
- Matej Kanduč
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany; Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia.
| | - Alexander Schlaich
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Emanuel Schneck
- Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France.
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
33
|
Furlan AL, Castets A, Nallet F, Pianet I, Grélard A, Dufourc EJ, Géan J. Red wine tannins fluidify and precipitate lipid liposomes and bicelles. A role for lipids in wine tasting? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5518-26. [PMID: 24787144 DOI: 10.1021/la5005006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sensory properties of red wine tannins are bound to complex interactions between saliva proteins, membranes taste receptors of the oral cavity, and lipids or proteins from the human diet. Whereas astringency has been widely studied in terms of tannin-saliva protein colloidal complexes, little is known about interactions between tannins and lipids and their implications in the taste of wine. This study deals with tannin-lipid interactions, by mimicking both oral cavity membranes by micrometric size liposomes and lipid droplets in food by nanometric isotropic bicelles. Deuterium and phosphorus solid-state NMR demonstrated the membrane hydrophobic core disordering promoted by catechin (C), epicatechin (EC), and epigallocatechin gallate (EGCG), the latter appearing more efficient. C and EGCG destabilize isotropic bicelles and convert them into an inverted hexagonal phase. Tannins are shown to be located at the membrane interface and stabilize the lamellar phases. These newly found properties point out the importance of lipids in the complex interactions that happen in the mouth during organoleptic feeling when ingesting tannins.
Collapse
Affiliation(s)
- Aurélien L Furlan
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux , IPB, F-33600 Pessac, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Bauduin P, Zemb T. Perpendicular and lateral equations of state in layered systems of amphiphiles. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Redondo-Morata L, Giannotti MI, Sanz F. Structural impact of cations on lipid bilayer models: Nanomechanical properties by AFM-force spectroscopy. Mol Membr Biol 2013; 31:17-28. [DOI: 10.3109/09687688.2013.868940] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
McCarley RL, Forsythe JC, Loew M, Mendoza MF, Hollabaugh NM, Winter JE. Release rates of liposomal contents are controlled by kosmotropes and chaotropes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13991-5. [PMID: 24160736 PMCID: PMC3932753 DOI: 10.1021/la402740k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Contents release from redox-responsive liposomes is anion-specific. Liposomal contents release is initiated by the contact of apposed liposome bilayers having in their outer leaflet 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), whose presence is due to the redox-stimulated removal of a quinone propionic acid protecting group (Q) from Q-DOPE lipids. Contents release occurs upon the phase transition of DOPE from its lamellar liquid-crystalline phase (Lα) to its hexagonal-II inverted micelle (HII) phase. Contents release is slower in the presence of weakly hydrated chaotropic anions versus highly hydrated kosmotropic anions and is attributed to ion accumulation near the zwitterionic DOPE headgroups, in turn altering the headgroup hydration, as indicated by the Lα → HII phase transition temperature, TH, for DOPE. The results are significant, not only for mechanistic aspects of liposome contents release in DOPE-based systems but also for drug delivery applications wherein exist at drug targeting sites variations in the type and concentration of ions and neutral species.
Collapse
|
37
|
Vashchenko OV, Ermak YL, Lisetski LN. Univalent ions in phospholipid model membranes: Thermodynamic and hydration aspects. Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s0006350913040180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
Tarafdar PK, Reddy ST, Swamy MJ. Effect of Hofmeister Series Anions on the Thermotropic Phase Behavior of Bioactive O-Acylcholines. J Phys Chem B 2013; 117:9900-9. [DOI: 10.1021/jp403964k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Musti J. Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
39
|
A tale of two ions and their membrane interactions: clearly the same or clearly different? Biophys J 2013; 104:746-7. [PMID: 23442952 DOI: 10.1016/j.bpj.2013.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/10/2013] [Indexed: 11/24/2022] Open
|
40
|
Tatur S, Maccarini M, Barker R, Nelson A, Fragneto G. Effect of functionalized gold nanoparticles on floating lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6606-14. [PMID: 23638939 DOI: 10.1021/la401074y] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The development of novel nano-engineered materials poses important questions regarding the impact of these new materials on living systems. Possible adverse effects must be assessed in order to prevent risks for health and the environment. On the other hand, a thorough understanding of their interaction with biological systems might also result in the creation of novel biomedical applications. We present a study on the interaction of model lipid membranes with gold nanoparticles (AuNP) of different surface modifications. Neutron reflectometry experiments on zwitterionic lipid double bilayers were performed in the presence of AuNP functionalized with cationic and anionic head groups. Structural information was obtained that provided insight into the fate of the AuNPs with regard to the integrity of the model cell membranes. The AuNPs functionalized with cationic head groups penetrate into the hydrophobic moiety of the lipid bilayers and cause membrane disruption at an increased concentration. In contrast, the AuNPs functionalized with anionic head groups do not enter but seem to impede the destruction of the lipid bilayer at an alkaline pH. The information obtained might influence the strategy for a better nanoparticle risk assessment based on a surface charge evaluation and contribute to nano-safety considerations during their design.
Collapse
Affiliation(s)
- Sabina Tatur
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States.
| | | | | | | | | |
Collapse
|
41
|
Bustad HJ, Skjaerven L, Ying M, Halskau Ø, Baumann A, Rodriguez-Larrea D, Costas M, Underhaug J, Sanchez-Ruiz JM, Martinez A. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues. PLoS One 2012. [PMID: 23189152 PMCID: PMC3506662 DOI: 10.1371/journal.pone.0049671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.
Collapse
Affiliation(s)
| | - Lars Skjaerven
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ming Ying
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Øyvind Halskau
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - David Rodriguez-Larrea
- Facultad de Ciencias, Departamento de Quimica Fisica, Universidad de Granada, Granada, Spain
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Miguel Costas
- Facultad de Ciencias, Departamento de Quimica Fisica, Universidad de Granada, Granada, Spain
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México DF, México
| | - Jarl Underhaug
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jose M. Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Quimica Fisica, Universidad de Granada, Granada, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
42
|
Ren P, Chun J, Thomas DG, Schnieders MJ, Marucho M, Zhang J, Baker NA. Biomolecular electrostatics and solvation: a computational perspective. Q Rev Biophys 2012; 45:427-91. [PMID: 23217364 PMCID: PMC3533255 DOI: 10.1017/s003358351200011x] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.
Collapse
Affiliation(s)
- Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin
| | | | | | | | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio
| | - Jiajing Zhang
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Nathan A. Baker
- To whom correspondence should be addressed. Pacific Northwest National Laboratory, PO Box 999, MSID K7-29, Richland, WA 99352. Phone: +1-509-375-3997,
| |
Collapse
|
43
|
Oldham ED, Xie W, Farnoud AM, Fiegel J, Lehmler HJ. Disruption of phosphatidylcholine monolayers and bilayers by perfluorobutane sulfonate. J Phys Chem B 2012; 116:9999-10007. [PMID: 22834732 PMCID: PMC3464004 DOI: 10.1021/jp304412p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent environmental contaminants resistant to biological and chemical degradation due to the presence of carbon-fluorine bonds. These compounds exhibit developmental toxicity in vitro and in vivo. The mechanisms of toxicity may involve partitioning into lipid bilayers. We investigated the interaction between perfluorobutane sulfonate (PFBS), an emerging PFAA, and model phosphatidylcholine (PC) lipid assemblies (i.e., dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholine) using fluorescence anisotropy and Langmuir monolayer techniques. PFBS decreased the transition temperature and transition width of PC bilayers. The apparent membrane partition coefficients ranged from 4.9 × 10(2) to 8.2 × 10(2). The effects on each PC were comparable. The limiting molecular area of PC monolayers increased, and the surface pressure at collapse decreased in a concentration-dependent manner. The compressibility of all three PCs was decreased by PFBS. In summary, PFBS disrupted different model lipid assemblies, indicating potential for PFBS to be a human toxicant. However, the effects of PFBS are not as pronounced as those seen with longer chain PFAAs.
Collapse
Affiliation(s)
- E. Davis Oldham
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242
| | - Wei Xie
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242
| | - Amir M. Farnoud
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242
| | - Jennifer Fiegel
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
44
|
Zimmermann R, Küttner D, Renner L, Kaufmann M, Werner C. Fluidity modulation of phospholipid bilayers by electrolyte ions: insights from fluorescence microscopy and microslit electrokinetic experiments. J Phys Chem A 2012; 116:6519-25. [PMID: 22304400 DOI: 10.1021/jp212364q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluidity and charging of supported bilayer lipid membranes (sBLMs) prepared from 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) were studied by fluorescence recovery after photobleaching (FRAP) and microslit electrokinetic measurements at varying pH and ionic composition of the electrolyte. Measurements in neutral electrolytes (KCl, NaCl) revealed a strong correlation between the membrane fluidity and the membrane charging due to unsymmetrical water ion adsorption (OH(-) ≫ H(3)O(+)). The membrane fluidity significantly decreased below the isoelectric point of 3.9, suggesting a phase transition in the bilayer. The interactions of both chaotropic anions and strongly kosmotropic cations with the zwitterionic lipids were found to be related with nearly unhindered lipid mobility in the acidic pH range. While for the chaotropic anions the observed effect correlates with the increased negative net charge at low pH, no correlation was found between the changes in the membrane fluidity and charge in the presence of kosmotropic cations. We discuss the observed phenomena with respect to the interaction of the electrolyte ions with the lipid headgroup and the influence of this process on the headgroup orientation and hydration as well as on the lipid packaging.
Collapse
Affiliation(s)
- Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
| | | | | | | | | |
Collapse
|
45
|
Berkowitz ML, Vácha R. Aqueous solutions at the interface with phospholipid bilayers. Acc Chem Res 2012; 45:74-82. [PMID: 21770470 DOI: 10.1021/ar200079x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a sense, life is defined by membranes, because they delineate the barrier between the living cell and its surroundings. Membranes are also essential for regulating the machinery of life throughout many interfaces within the cell's interior. A large number of experimental, computational, and theoretical studies have demonstrated how the properties of water and ionic aqueous solutions change due to the vicinity of membranes and, in turn, how the properties of membranes depend on the presence of aqueous solutions. Consequently, understanding the character of aqueous solutions at their interface with biological membranes is critical to research progress on many fronts. The importance of incorporating a molecular-level description of water into the study of biomembrane surfaces was demonstrated by an examination of the interaction between phospholipid bilayers that can serve as model biological membranes. The results showed that, in addition to well-known forces, such as van der Waals and screened Coulomb, one has to consider a repulsion force due to the removal of water between surfaces. It was also known that physicochemical properties of biological membranes are strongly influenced by the specific character of the ions in the surrounding aqueous solutions because of the observation that different anions produce different effects on muscle twitch tension. In this Account, we describe the interaction of pure water, and also of aqueous ionic solutions, with model membranes. We show that a symbiosis of experimental and computational work over the past few years has resulted in substantial progress in the field. We now better understand the origin of the hydration force, the structural properties of water at the interface with phospholipid bilayers, and the influence of phospholipid headgroups on the dynamics of water. We also improved our knowledge of the ion-specific effect, which is observed at the interface of the phospholipid bilayer and aqueous solution, and its connection with the Hofmeister series. Nevertheless, despite substantial progress, many issues remain unresolved. Thus, for example, we still cannot satisfactorily explain the force of interaction between phospholipid bilayers immersed in aqueous solutions of NaI. Although we try to address many issues here, the scope of the discussion is limited and does not cover such important topics as the influence of ionic solutions on phases of bilayers, the influence of salts on the properties of Langmuir monolayers containing lipid molecules, or the influence of aqueous solutions on bilayers containing mixtures of lipids. We anticipate that the future application of more powerful experimental techniques, in combination with more advanced computational hardware, software, and theory, will produce molecular-level information about these important topics and, more broadly, will further illuminate our understanding of interfaces between aqueous solutions and biological membranes.
Collapse
Affiliation(s)
- Max L. Berkowitz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robert Vácha
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, United Kingdom
| |
Collapse
|
46
|
Redondo-Morata L, Oncins G, Sanz F. Force spectroscopy reveals the effect of different ions in the nanomechanical behavior of phospholipid model membranes: the case of potassium cation. Biophys J 2012; 102:66-74. [PMID: 22225799 DOI: 10.1016/j.bpj.2011.10.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/06/2011] [Accepted: 10/24/2011] [Indexed: 10/14/2022] Open
Abstract
How do metal cations affect the stability and structure of phospholipid bilayers? What role does ion binding play in the insertion of proteins and the overall mechanical stability of biological membranes? Investigators have used different theoretical and microscopic approaches to study the mechanical properties of lipid bilayers. Although they are crucial for such studies, molecular-dynamics simulations cannot yet span the complexity of biological membranes. In addition, there are still some experimental difficulties when it comes to testing the ion binding to lipid bilayers in an accurate way. Hence, there is a need to establish a new approach from the perspective of the nanometric scale, where most of the specific molecular phenomena take place. Atomic force microscopy has become an essential tool for examining the structure and behavior of lipid bilayers. In this work, we used force spectroscopy to quantitatively characterize nanomechanical resistance as a function of the electrolyte composition by means of a reliable molecular fingerprint that reveals itself as a repetitive jump in the approaching force curve. By systematically probing a set of bilayers of different composition immersed in electrolytes composed of a variety of monovalent and divalent metal cations, we were able to obtain a wealth of information showing that each ion makes an independent and important contribution to the gross mechanical resistance and its plastic properties. This work addresses the need to assess the effects of different ions on the structure of phospholipid membranes, and opens new avenues for characterizing the (nano)mechanical stability of membranes.
Collapse
Affiliation(s)
- Lorena Redondo-Morata
- Institute for Bioengineering of Catalonia, University of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
47
|
Kralchevsky PA, Danov KD, Basheva ES. Hydration force due to the reduced screening of the electrostatic repulsion in few-nanometer-thick films. Curr Opin Colloid Interface Sci 2011. [DOI: 10.1016/j.cocis.2011.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Ninham BW, Duignan TT, Parsons DF. Approaches to hydration, old and new: Insights through Hofmeister effects. Curr Opin Colloid Interface Sci 2011. [DOI: 10.1016/j.cocis.2011.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Parsegian V, Zemb T. Hydration forces: Observations, explanations, expectations, questions. Curr Opin Colloid Interface Sci 2011. [DOI: 10.1016/j.cocis.2011.06.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Venkatesan K, Dave N, Thiyagarajan K, Iyer H. A STUDY ON INTERACTION OF ION-PAIRING AGENT IN SEPARATION OF HUMAN INSULIN AND GLYCOSYLATED HUMAN INSULIN USING REVERSE PHASE LIQUID CHROMATOGRAPHY. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826076.2011.591025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
| | - Nitesh Dave
- a Research and Development, Biocon Ltd. , Karnataka, India
| | | | - Harish Iyer
- a Research and Development, Biocon Ltd. , Karnataka, India
| |
Collapse
|