1
|
Omwansu W, Musembi R, Derese S. Structural characterization of codon 129 polymorphism in prion peptide segments (PrP127-132) using the Markov State Models. J Mol Graph Model 2025; 135:108927. [PMID: 39746241 DOI: 10.1016/j.jmgm.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
The human prion protein gene (PRNP) consists of two common alleles that encode either methionine or valine residues at codon 129. Polymorphism at codon 129 of the prion protein (PRNP) gene is closely associated with genetic variations and susceptibility to specific variants of prion diseases. The presence of these different alleles, known as the PRNP codon 129 polymorphism, plays a significant role in disease susceptibility and progression. For instance, the prion fragment 127-132 (PrP127-132) has been implicated in the development of variant Creutzfeldt-Jakob disease (vCJD), due to the presence of methionine or valine at codon 129. This study aims to unravel the early structural changes brought by the presence of polymorphism at codon 129. Using molecular dynamics (MD) simulations, we present evidence highlighting a spectrum of structural transitions, uncovering the nuanced conformational heterogeneity governing the polymorphic behavior of the PrP127-132 chain. The Markov state model (MSM) analysis was able to predict several metastable states of these chains and established a kinetic network that describes transitions between these states. Additionally, the MSM analysis showed extra stability of the PrP-M129 polymorph due to less random-coiled motions, the formation of a salt bridge, and an increase in the number of native contacts. The pathogenicity of PrP-V129 can be attributed to enhanced random motion and the absence of a salt bridge.
Collapse
Affiliation(s)
- Wycliffe Omwansu
- Department of Physics, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Robinson Musembi
- Department of Physics, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Solomon Derese
- Department of Chemistry, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
2
|
Ilie IM, Caflisch A. Antibody binding increases the flexibility of the prion protein. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140827. [PMID: 35931365 DOI: 10.1016/j.bbapap.2022.140827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Prion diseases are associated with the conversion of the cellular prion protein (PrP) into a pathogenic conformer (PrPSc). A proposed therapeutic approach to avoid the pathogenic transformation is to develop antibodies that bind to PrP and stabilize its structure. POM1 and POM6 are two monoclonal antibodies that bind the globular domain of PrP and have different biological responses, i.e., trigger neurotoxicity mimicking prion infections (POM1) or prevent neurotoxicity (POM6). The crystal structures of PrP in complex with the two antibodies show similar epitopes which seems inconsistent with the opposite phenotypes. Here, we investigate the influence of the POM1 and POM6 antibodies on the flexibility of the mouse PrP by molecular dynamics simulations. The simulations reveal that the POM6/PrP interface is less stable than the POM1/PrP interface, ascribable to localized polar mismatches at the interface, despite the former complex having a larger epitope than the latter. In the presence of any of the two antibodies, the flexibility of the globular domain increases everywhere except for the β1-α1 loop in the POM1/PrP complex which suggests the involvement of this loop in the pathological conversion. The secondary structure of PrP is preserved whereas the polar interactions involving residues Glu146, Arg156 and Arg208 are modified upon antibody binding.
Collapse
Affiliation(s)
- Ioana M Ilie
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| |
Collapse
|
3
|
Shao D, Zhang Q, Xu P, Jiang Z. Effects of the Temperature and Salt Concentration on the Structural Characteristics of the Protein (PDB Code 1BBL). Polymers (Basel) 2022; 14:polym14112134. [PMID: 35683807 PMCID: PMC9182825 DOI: 10.3390/polym14112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of the temperature and salt solution on the structural characteristics of the protein 1BBL was investigated by molecular dynamics simulations. The paper presents simulation results regarding the non-bonded energy and the structural stability of the protein immersed in salt solutions with different concentrations and temperatures. Our work demonstrates that the electrostatic potential energy and van der Waals energy of the system show the opposite changes with the influence of the external environment. Since the electrostatic potential energy changes more obviously, it is dominated in the non-bonding interactions. The structural parameters, such as the root mean square deviation and the radius of gyration, increased initially and decreased afterward with the increase of the salt concentration. The protein presented the loose structure with a relative low stability when it was immersed in a monovalent solution with a salt concentration of 0.8 mol/L. The salt concentration corresponding to the maximum value of structural parameters in the monovalent salt solution was double that in the divalent salt solution. It was also concluded that the protein presented a compact and stable structure when immersed in salt solutions with a high concentration of 2.3 mol/L. The analysis of the root mean square deviation and root mean square fluctuation of the protein sample also exhibited that the structural stability and chain flexibility are strongly guided by the effect of the temperature. These conclusions help us to understand the structural characteristics of the protein immersed in the salt solutions with different concentrations and temperatures.
Collapse
|
4
|
Nguyen PH, Tufféry P, Derreumaux P. Dynamics of Amyloid Formation from Simplified Representation to Atomistic Simulations. Methods Mol Biol 2022; 2405:95-113. [PMID: 35298810 DOI: 10.1007/978-1-0716-1855-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid fibril formation is an intrinsic property of short peptides, non-disease proteins, and proteins associated with neurodegenerative diseases. Aggregates of the Aβ and tau proteins, the α-synuclein protein, and the prion protein are observed in the brain of Alzheimer's, Parkinson's, and prion disease patients, respectively. Due to the transient short-range and long-range interactions of all species and their high aggregation propensities, the conformational ensemble of these devastating proteins, the exception being for the monomeric prion protein, remains elusive by standard structural biology methods in bulk solution and in lipid membranes. To overcome these limitations, an increasing number of simulations using different sampling methods and protein models have been performed. In this chapter, we first review our main contributions to the field of amyloid protein simulations aimed at understanding the early aggregation steps of short linear amyloid peptides, the conformational ensemble of the Aβ40/42 dimers in bulk solution, and the stability of Aβ aggregates in lipid membrane models. Then we focus on our studies on the interactions of amyloid peptides/inhibitors to prevent aggregation, and long amyloid sequences, including new results on a monomeric tau construct.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Pierre Tufféry
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
5
|
Sanz-Hernández M, De Simone A. Backbone NMR assignments of the C-terminal domain of the human prion protein and its disease-associated T183A variant. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:193-196. [PMID: 33590433 PMCID: PMC7974147 DOI: 10.1007/s12104-021-10005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders associated with the misfolding and aggregation of the human prion protein (huPrP). Despite efforts into investigating the process of huPrP aggregation, the mechanisms triggering its misfolding remain elusive. A number of TSE-associated mutations of huPrP have been identified, but their role at the onset and progression of prion diseases is unclear. Here we report the NMR assignments of the C-terminal globular domain of the wild type huPrP and the pathological mutant T183A. The differences in chemical shifts between the two variants reveal conformational alterations in some structural elements of the mutant, whereas the analyses of secondary shifts and random coil index provide indications on the putative mechanisms of misfolding of T183A huPrP.
Collapse
Affiliation(s)
- Máximo Sanz-Hernández
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK.
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
6
|
Mechanism of misfolding of the human prion protein revealed by a pathological mutation. Proc Natl Acad Sci U S A 2021; 118:2019631118. [PMID: 33731477 PMCID: PMC7999870 DOI: 10.1073/pnas.2019631118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The misfolding and aggregation of the human prion protein (PrP) is associated with transmissible spongiform encephalopathies (TSEs). Intermediate conformations forming during the conversion of the cellular form of PrP into its pathological scrapie conformation are key drivers of the misfolding process. Here, we analyzed the properties of the C-terminal domain of the human PrP (huPrP) and its T183A variant, which is associated with familial forms of TSEs. We show that the mutation significantly enhances the aggregation propensity of huPrP, such as to uniquely induce amyloid formation under physiological conditions by the sole C-terminal domain of the protein. Using NMR spectroscopy, biophysics, and metadynamics simulations, we identified the structural characteristics of the misfolded intermediate promoting the aggregation of T183A huPrP and the nature of the interactions that prevent this species to be populated in the wild-type protein. In support of these conclusions, POM antibodies targeting the regions that promote PrP misfolding were shown to potently suppress the aggregation of this amyloidogenic mutant.
Collapse
|
7
|
Yu KH, Huang MY, Lee YR, Lin YK, Chen HR, Lee CI. The Effect of Octapeptide Repeats on Prion Folding and Misfolding. Int J Mol Sci 2021; 22:ijms22041800. [PMID: 33670336 PMCID: PMC7918816 DOI: 10.3390/ijms22041800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Misfolding of prion protein (PrP) into amyloid aggregates is the central feature of prion diseases. PrP has an amyloidogenic C-terminal domain with three α-helices and a flexible tail in the N-terminal domain in which multiple octapeptide repeats are present in most mammals. The role of the octapeptides in prion diseases has previously been underestimated because the octapeptides are not located in the amyloidogenic domain. Correlation between the number of octapeptide repeats and age of onset suggests the critical role of octapeptide repeats in prion diseases. In this study, we have investigated four PrP variants without any octapeptides and with 1, 5 and 8 octapeptide repeats. From the comparison of the protein structure and the thermal stability of these proteins, as well as the characterization of amyloids converted from these PrP variants, we found that octapeptide repeats affect both folding and misfolding of PrP creating amyloid fibrils with distinct structures. Deletion of octapeptides forms fewer twisted fibrils and weakens the cytotoxicity. Insertion of octapeptides enhances the formation of typical silk-like fibrils but it does not increase the cytotoxicity. There might be some threshold effect and increasing the number of peptides beyond a certain limit has no further effect on the cell viability, though the reasons are unclear at this stage. Overall, the results of this study elucidate the molecular mechanism of octapeptides at the onset of prion diseases.
Collapse
|
8
|
Abstract
Self-assembly of proteins and peptides into the amyloid fold is a widespread phenomenon in the natural world. The structural hallmark of self-assembly into amyloid fibrillar assemblies is the cross-beta motif, which conveys distinct morphological and mechanical properties. The amyloid fibril formation has contrasting results depending on the organism, in the sense that it can bestow an organism with the advantages of mechanical strength and improved functionality or, on the contrary, could give rise to pathological states. In this chapter we review the existing information on amyloid-like peptide aggregates, which could either be derived from protein sequences, but also could be rationally or de novo designed in order to self-assemble into amyloid fibrils under physiological conditions. Moreover, the development of self-assembled fibrillar biomaterials that are tailored for the desired properties towards applications in biomedical or environmental areas is extensively analyzed. We also review computational studies predicting the amyloid propensity of the natural amino acid sequences and the structure of amyloids, as well as designing novel functional amyloid materials.
Collapse
Affiliation(s)
- C. Kokotidou
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| | - P. Tamamis
- Texas A&M University, Artie McFerrin Department of Chemical Engineering College Station Texas 77843-3122 USA
| | - A. Mitraki
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| |
Collapse
|
9
|
Di Natale C, La Manna S, Avitabile C, Florio D, Morelli G, Netti PA, Marasco D. Engineered β-hairpin scaffolds from human prion protein regions: Structural and functional investigations of aggregates. Bioorg Chem 2020; 96:103594. [PMID: 31991323 DOI: 10.1016/j.bioorg.2020.103594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022]
Abstract
The investigation of conformational features of regions of amyloidogenic proteins are of great interest to deepen the structural changes and consequent self-aggregation mechanisms at the basis of many neurodegenerative diseases. Here we explore the effect of β-hairpin inducing motifs on regions of prion protein covering strands S1 and S2. In detail, we unveiled the structural and functional features of two model chimeric peptides in which natural sequences are covalently linked together by two dipeptides (l-Pro-Gly and d-Pro-Gly) that are known to differently enhance β-hairpin conformations but both containing N- and the C-terminal aromatic cap motifs to further improve interactions between natural strands. Spectroscopic investigations at solution state indicate that primary assemblies of the monomers of both constructs follow different aggregativemechanisms during the self-assembly: these distinctions, evidenced by CD and ThT emission spectroscopies, reflect into great morphological differences of nanostructures and suggest that rigid β-hairpin conformations greatly limit amyloid-like fibrillogenesis. Overall data confirm the important role exerted by the β-structure of regions S1 and S2 during the aggregation process and lead to speculate to its persistence even in unfolding conditions.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Concetta Avitabile
- Institute of Biostructures and Bioimaging (IBB), National Research Council, Via Mezzocannone 16, 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; Task force di Ateneo"METODOLOGIE ANALITICHE PER LA SALVAGUARDIA DEI BENI CULTURALI" MASBC, University of Naples "Federico II", Italy.
| |
Collapse
|
10
|
Wille H, Dorosh L, Amidian S, Schmitt-Ulms G, Stepanova M. Combining molecular dynamics simulations and experimental analyses in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:33-110. [PMID: 31928730 DOI: 10.1016/bs.apcsb.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fold of a protein determines its function and its misfolding can result in loss-of-function defects. In addition, for certain proteins their misfolding can lead to gain-of-function toxicities resulting in protein misfolding diseases such as Alzheimer's, Parkinson's, or the prion diseases. In all of these diseases one or more proteins misfold and aggregate into disease-specific assemblies, often in the form of fibrillar amyloid deposits. Most, if not all, protein misfolding diseases share a fundamental molecular mechanism that governs the misfolding and subsequent aggregation. A wide variety of experimental methods have contributed to our knowledge about misfolded protein aggregates, some of which are briefly described in this review. The misfolding mechanism itself is difficult to investigate, as the necessary timescale and resolution of the misfolding events often lie outside of the observable parameter space. Molecular dynamics simulations fill this gap by virtue of their intrinsic, molecular perspective and the step-by-step iterative process that forms the basis of the simulations. This review focuses on molecular dynamics simulations and how they combine with experimental analyses to provide detailed insights into protein misfolding and the ensuing diseases.
Collapse
Affiliation(s)
- Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Lee J, Chang I, Yu W. Atomic insights into the effects of pathological mutants through the disruption of hydrophobic core in the prion protein. Sci Rep 2019; 9:19144. [PMID: 31844149 PMCID: PMC6915724 DOI: 10.1038/s41598-019-55661-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Destabilization of prion protein induces a conformational change from normal prion protein (PrPC) to abnormal prion protein (PrPSC). Hydrophobic interaction is the main driving force for protein folding, and critically affects the stability and solvability. To examine the importance of the hydrophobic core in the PrP, we chose six amino acids (V176, V180, T183, V210, I215, and Y218) that make up the hydrophobic core at the middle of the H2-H3 bundle. A few pathological mutants of these amino acids have been reported, such as V176G, V180I, T183A, V210I, I215V, and Y218N. We focused on how these pathologic mutations affect the hydrophobic core and thermostability of PrP. For this, we ran a temperature-based replica-exchange molecular dynamics (T-REMD) simulation, with a cumulative simulation time of 28 μs, for extensive ensemble sampling. From the T-REMD ensemble, we calculated the protein folding free energy difference between wild-type and mutant PrP using the thermodynamic integration (TI) method. Our results showed that pathological mutants V176G, T183A, I215V, and Y218N decrease the PrP stability. At the atomic level, we examined the change in pair-wise hydrophobic interactions from valine-valine to valine-isoleucine (and vice versa), which is induced by mutation V180I, V210I (I215V) at the 180th-210th (176th-215th) pair. Finally, we investigated the importance of the π-stacking between Y218 and F175.
Collapse
Affiliation(s)
- Juhwan Lee
- Center for Proteome Biophysics, DGIST, Daegu, 42988, Korea.
- Department of Emerging Material Sciences, DGIST, Daegu, 42988, Korea.
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea.
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea.
| | - Iksoo Chang
- Center for Proteome Biophysics, DGIST, Daegu, 42988, Korea
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Korea
| | - Wookyung Yu
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea.
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea.
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
12
|
Mondal B, Reddy G. A Transient Intermediate Populated in Prion Folding Leads to Domain Swapping. Biochemistry 2019; 59:114-124. [DOI: 10.1021/acs.biochem.9b00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| |
Collapse
|
13
|
Zhou S, Shi D, Liu X, Yao X, Da LT, Liu H. pH-Induced Misfolding Mechanism of Prion Protein: Insights from Microsecond-Accelerated Molecular Dynamics Simulations. ACS Chem Neurosci 2019; 10:2718-2729. [PMID: 31070897 DOI: 10.1021/acschemneuro.8b00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The conformational transition of prion protein (PrP) from a native form PrPC to a pathological isoform PrPSc is the main cause of a number of prion diseases in human and animals. Thus, understanding the molecular basis of conformational transition of PrP will be valuable for unveiling the etiology of PrP-related diseases. Here, to explore the potential misfolding mechanism of PrP under the acidic condition, which is known to promote PrP misfolding and trigger its aggregation, the conventional and accelerated molecular dynamics (MD) simulations combined with the Markov state model (MSM) analysis were performed. The conventional MD simulations reveal that, at an acidic pH, the globular domain of PrP is partially unfolded, particularly for the α2 C-terminus. Structural analysis of the key macrostates obtained by MSM indicates that the α2 C-terminus and the β2-α2 loop may serve as important sites for the pH-induced PrP misfolding. Meanwhile, the α1 may also participate in the pH-induced structural conversion by moving away from the α2-α3 subdomain. Notably, dynamical network analysis of the key metastable states indicates that the protonated H187 weakens the interactions between the α2 C-terminus, α1-β2 loop, and α2-α3 loop, leading these domains, especially the α2 C-terminus, to become unstable and to begin to misfold. Therefore, the α2 C-terminus plays a key role in the PrP misfolding process and serves as a potential site for drug targeting. Overall, our findings can deepen the understanding of the pathogenesis related to PrP and provide useful guidance for the future drug discovery.
Collapse
Affiliation(s)
- Shuangyan Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Ilie IM, Caflisch A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem Rev 2019; 119:6956-6993. [DOI: 10.1021/acs.chemrev.8b00731] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioana M. Ilie
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| |
Collapse
|
15
|
Uslupehlivan M, Deveci R, Ün C. In silico investigation of the prion protein glycosylation profiles in relation to scrapie disease resistance in domestic sheep (Ovis aries). Mol Cell Probes 2018; 42:1-9. [PMID: 30261281 DOI: 10.1016/j.mcp.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/07/2018] [Accepted: 09/23/2018] [Indexed: 01/04/2023]
Abstract
The prion protein is a membrane-bound glycoprotein which consists mainly α-helix structure. In contrast, the infectious prion protein shows the beta-sheet structure. The prion-associated diseases are all lethal neurodegenerative abnormalities, called transmissible spongiform encephalopathies. Scrapie is the most common type of these illnesses affecting sheep, goats, and moufflon. The VRQ, AHQ, ARR and N146S polymorphisms in the sheep prion gene have been found to be associated with resistance to scrapie disease. So far, the relationship of polymorphisms to three-dimensional protein structures, post-translational modifications, and scrapie resistance has not been studied. In this study, the potential N- and O-glycosylation positions of sheep prion protein polymorphisms were analyzed, the secondary and three-dimensional protein structure models were predicted, three-dimensional glycoprotein models were constructed and the role of glycosylation positions in protein interactions was investigated. Here, we found that protein secondary and three-dimensional structures vary among polymorphisms. Moreover, we found wild-type prion and all polymorphic variants show N-glycosylation at Asn184 and Asn200 positions, while O-glycosylation profiles are variant-specific. We also found that structural changes among prion polymorphisms leads to the formation of variant spesific O-glycosylation profiles and these positions are associated with protein interactions. Based on these findings, we suggest that O-glycosylation may be effective on resistance/susceptibility of sheep prion polymorphisms to scrapie disease.
Collapse
Affiliation(s)
- Muhammet Uslupehlivan
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| | - Remziye Deveci
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| | - Cemal Ün
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| |
Collapse
|
16
|
Gao Y, Zhu T, Zhang C, Zhang JZ, Mei Y. Comparison of the unfolding and oligomerization of human prion protein under acidic and neutral environments by molecular dynamics simulations. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Lima AN, de Oliveira RJ, Braz ASK, de Souza Costa MG, Perahia D, Scott LPB. Effects of pH and aggregation in the human prion conversion into scrapie form: a study using molecular dynamics with excited normal modes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:583-590. [PMID: 29546436 DOI: 10.1007/s00249-018-1292-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
There are two different prion conformations: (1) the cellular natural (PrPC) and (2) the scrapie (PrPSc), an infectious form that tends to aggregate under specific conditions. PrPC and PrPSc are widely different regarding secondary and tertiary structures. PrPSc contains more and longer β-strands compared to PrPC. The lack of solved PrPSc structures precludes a proper understanding of the mechanisms related to the transition between cellular and scrapie forms, as well as the aggregation process. In order to investigate the conformational transition between PrPC and PrPSc, we applied MDeNM (molecular dynamics with excited normal modes), an enhanced sampling simulation technique that has been recently developed to probe large structural changes. These simulations yielded new structural rearrangements of the cellular prion that would have been difficult to obtain with standard MD simulations. We observed an increase in β-sheet formation under low pH (≤ 4) and upon oligomerization, whose relevance was discussed on the basis of the energy landscape theory for protein folding. The characterization of intermediate structures corresponding to transition states allowed us to propose a conversion model from the cellular to the scrapie prion, which possibly ignites the fibril formation. This model can assist the design of new drugs to prevent neurological disorders related to the prion aggregation mechanism.
Collapse
Affiliation(s)
- Angelica Nakagawa Lima
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Antônio Sérgio Kimus Braz
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | | | - David Perahia
- Laboratorie de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Cachan, France
| | - Luis Paulo Barbour Scott
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil.
| |
Collapse
|
18
|
Zhou S, Liu X, An X, Yao X, Liu H. Molecular Dynamics Simulation Study on the Binding and Stabilization Mechanism of Antiprion Compounds to the "Hot Spot" Region of PrP C. ACS Chem Neurosci 2017; 8:2446-2456. [PMID: 28795797 DOI: 10.1021/acschemneuro.7b00214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Structural transitions in the prion protein from the cellular form, PrPC, into the pathological isoform, PrPSc, are regarded as the main cause of the transmissible spongiform encephalopathies, also known as prion diseases. Hence, discovering and designing effective antiprion drugs that can inhibit PrPC to PrPSc conversion is regarded as a promising way to cure prion disease. Among several strategies to inhibit PrPC to PrPSc conversion, stabilizing the native PrPC via specific binding is believed to be one of the valuable approaches and many antiprion compounds have been reported based on this strategy. However, the detailed mechanism to stabilize the native PrPC is still unknown. As such, to unravel the stabilizing mechanism of these compounds to PrPC is valuable for the further design and discovery of antiprion compounds. In this study, by molecular dynamics simulation method, we investigated the stabilizing mechanism of several antiprion compounds on PrPC that were previously reported to have specific binding to the "hot spot" region of PrPC. Our simulation results reveal that the stabilization mechanism of specific binding compounds can be summarized as (I) to stabilize both the flexible C-terminal of α2 and the hydrophobic core, such as BMD42-29 and GN8; (II) to stabilize the hydrophobic core, such as J1 and GJP49; (III) to stabilize the overall structure of PrPC by high binding affinity, as NPR-056. In addition, as indicated by the H-bond analysis and decomposition analysis of binding free energy, the residues N159 and Q160 play an important role in the specific binding of the studied compounds and all these compounds interact with PrPC in a similar way with the key interacting residues L130 in the β1 strand, P158, N159, Q160, etc. in the α1-β2 loop, and H187, T190, T191, etc. in the α2 C-terminus although the compounds have large structural difference. As a whole, our obtained results can provide some insights into the specific binding mechanism of main antiprion compounds to the "hot spot" region of PrPC at the molecular level and also provide guidance for effective antiprion drug design in the future.
Collapse
Affiliation(s)
- Shuangyan Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and
Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaoli An
- State Key Laboratory of Applied Organic Chemistry and
Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and
Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research
in Chinese Medicine, Macau Institute for Applied Research in Medicine
and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Moulick R, Udgaonkar JB. Identification and Structural Characterization of the Precursor Conformation of the Prion Protein which Directly Initiates Misfolding and Oligomerization. J Mol Biol 2017; 429:886-899. [DOI: 10.1016/j.jmb.2017.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
|
20
|
Chamachi NG, Chakrabarty S. Temperature-Induced Misfolding in Prion Protein: Evidence of Multiple Partially Disordered States Stabilized by Non-Native Hydrogen Bonds. Biochemistry 2017; 56:833-844. [DOI: 10.1021/acs.biochem.6b01042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Neharika G. Chamachi
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
21
|
Bergasa-Caceres F, Rabitz HA. Macromolecular Crowding Facilitates the Conformational Transition of on-Pathway Molten Globule States of the Prion Protein. J Phys Chem B 2016; 120:11093-11101. [DOI: 10.1021/acs.jpcb.6b05696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Herschel A. Rabitz
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| |
Collapse
|
22
|
Sabareesan AT, Udgaonkar JB. Pathogenic Mutations within the Disordered Palindromic Region of the Prion Protein Induce Structure Therein and Accelerate the Formation of Misfolded Oligomers. J Mol Biol 2016; 428:3935-3947. [PMID: 27545411 DOI: 10.1016/j.jmb.2016.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022]
Abstract
Little is understood about how the intrinsically disordered N-terminal region (NTR) of the prion protein modulates its misfolding and aggregation, which lead to prion disease. In this study, two pathogenic mutations, G113V and A116V, in the palindromic region of the NTR are shown to have no effect on the structure, stability, or dynamics of native mouse prion protein (moPrP) but nevertheless accelerate misfolding and oligomerization. For wild-type moPrP, misfolding and oligomerization appear to occur concurrently, while for both mutant variants, oligomerization is shown to precede misfolding. Kinetic hydrogen-deuterium exchange-mass spectrometry experiments show that sequence segment 89-132 from the NTR becomes structured, albeit weakly, during the oligomerization of both mutant variants. Importantly, this structure formation occurs prior to structural conversion in the C-terminal domain and appears to be the reason that the formation of misfolded oligomers is accelerated by the pathogenic mutations.
Collapse
Affiliation(s)
- A T Sabareesan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.
| |
Collapse
|
23
|
Singh J, Udgaonkar JB. Unraveling the Molecular Mechanism of pH-Induced Misfolding and Oligomerization of the Prion Protein. J Mol Biol 2016; 428:1345-1355. [PMID: 26854758 DOI: 10.1016/j.jmb.2016.01.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/31/2022]
Abstract
The misfolding of the prion protein (PrP) to aggregated forms is linked to several neurodegenerative diseases. Misfolded oligomeric forms of PrP are associated with neurotoxicity and/or infectivity, but the molecular mechanism by which they form is still poorly understood. A reduction in pH is known to be a key factor that triggers misfolded oligomer formation by PrP, but the residues whose protonation is linked with misfolding remain unidentified. The structural consequences of the protonation of these residues also remain to be determined. In the current study, amino acid residues whose protonation is critical for PrP misfolding and oligomerization have been identified using site-directed mutagenesis and misfolding/oligomerization assays. It is shown that the protonation of either H186 or D201, which mimics the effects of pathogenic mutations (H186R and D201N) at both residue sites, is critically linked to the stability, misfolding and oligomerization of PrP. Hydrogen-deuterium exchange studies coupled with mass spectrometry show that the protonation of either H186 or D201 leads to the same common structural change: increased structural dynamics in helix 1 and that in the loop between helix 1 and β-strand 2. It is shown that the protonation of either of these residues is sufficient for accelerating misfolded oligomer formation, most likely because the protonation of either residue causes the same structural perturbation. Hence, the increased structural dynamics in helix 1 and that in the loop between helix 1 and β-strand 2 appear to play an early critical role in acid-induced misfolding of PrP.
Collapse
Affiliation(s)
- Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.
| |
Collapse
|
24
|
Bastida A, Zúñiga J, Requena A, Miguel B, Candela ME, Soler MA. Conformational Changes of Trialanine in Water Induced by Vibrational Relaxation of the Amide I Mode. J Phys Chem B 2016; 120:348-57. [PMID: 26690744 DOI: 10.1021/acs.jpcb.5b09753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most of the protein-based diseases are caused by anomalies in the functionality and stability of these molecules. Experimental and theoretical studies of the conformational dynamics of proteins are becoming in this respect essential to understand the origin of these anomalies. However, a description of the conformational dynamics of proteins based on mechano-energetic principles still remains elusive because of the intrinsic high flexibility of the peptide chains, the participation of weak noncovalent interactions, and the role of the ubiquitous water solvent. In this work, the conformational dynamics of trialanine dissolved in water (D2O) is investigated through Molecular Dynamics (MD) simulations combined with instantaneous normal modes (INMs) analysis both at equilibrium and after the vibrational excitation of the C-terminal amide I mode. The conformational equilibrium between α and pPII conformers is found to be altered by the intramolecular relaxation of the amide I mode as a consequence of the different relaxation pathways of each conformer which modify the amount of vibrational energy stored in the torsional motions of the tripeptide, so the α → pPII and pPII → α conversion rates are increased differently. The selectivity of the process comes from the shifts of the vibrational frequencies with the conformational changes that modify the resonance conditions driving the intramolecular energy flows.
Collapse
Affiliation(s)
- Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia , 30100 Murcia, Spain
| | - José Zúñiga
- Departamento de Química Física, Universidad de Murcia , 30100 Murcia, Spain
| | - Alberto Requena
- Departamento de Química Física, Universidad de Murcia , 30100 Murcia, Spain
| | - Beatriz Miguel
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena , 30203 Cartagena, Spain
| | | | - Miguel Angel Soler
- Department of Medical and Biological Sciences, University of Udine , 33100 Udine, Italy
| |
Collapse
|
25
|
Menon S, Sengupta N. Perturbations in inter-domain associations may trigger the onset of pathogenic transformations in PrP(C): insights from atomistic simulations. MOLECULAR BIOSYSTEMS 2016; 11:1443-53. [PMID: 25855580 DOI: 10.1039/c4mb00689e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of the predominantly α-helical cellular prion protein (PrP(C)) to the misfolded β-sheet enriched Scrapie form (PrP(Sc)) is a critical event in prion pathogenesis. However, the conformational triggers that lead to the isoform conversion (PrP(C) to PrP(Sc)) remain obscure, and conjectures about the role of unusually hydrophilic, short helix H1 of the C-terminal globular domain in the transition are varied. Helix H1 is anchored to helix H3 via a few stabilizing polar interactions. We have employed fully atomistic molecular dynamics simulations to study the effects triggered by a minor perturbation in the network of these non-bonded interactions in PrP(C). The elimination of just one of the key H1-H3 hydrogen bonds led to a cascade of conformational changes that are consistent with those observed in partially unfolded intermediates of PrP(C), with pathogenic mutations and in low pH environments. Our analyses reveal that the perturbation results in the enhanced conformational flexibility of the protein. The resultant enhancement in the dynamics leads to overall increased solvent exposure of the hydrophobic core residues and concomitant disruption of the H1-H3 inter-domain salt bridge network. This study lends credence to the hypothesis that perturbing the cooperativity of the stabilizing interactions in the PrP(C) globular domain can critically affect its dynamics and may lead to structural transitions of pathological relevance.
Collapse
Affiliation(s)
- Sneha Menon
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | | |
Collapse
|
26
|
Atkinson CJ, Zhang K, Munn AL, Wiegmans A, Wei MQ. Prion protein scrapie and the normal cellular prion protein. Prion 2016; 10:63-82. [PMID: 26645475 PMCID: PMC4981215 DOI: 10.1080/19336896.2015.1110293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrP(C)) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.
Collapse
Affiliation(s)
- Caroline J. Atkinson
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Kai Zhang
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Alan L. Munn
- Laboratory of Yeast Cell Biology, Molecular Basis of Disease Program, Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Adrian Wiegmans
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Ming Q. Wei
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
27
|
Moulick R, Das R, Udgaonkar JB. Partially Unfolded Forms of the Prion Protein Populated under Misfolding-promoting Conditions: CHARACTERIZATION BY HYDROGEN EXCHANGE MASS SPECTROMETRY AND NMR. J Biol Chem 2015; 290:25227-40. [PMID: 26306043 DOI: 10.1074/jbc.m115.677575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 12/16/2022] Open
Abstract
The susceptibility of the cellular prion protein (PrP(C)) to convert to an alternative misfolded conformation (PrP(Sc)), which is the key event in the pathogenesis of prion diseases, is indicative of a conformationally flexible native (N) state. In the present study, hydrogen-deuterium exchange (HDX) in conjunction with mass spectrometry and nuclear magnetic resonance spectroscopy were used for the structural and energetic characterization of the N state of the full-length mouse prion protein, moPrP(23-231), under conditions that favor misfolding. The kinetics of HDX of 34 backbone amide hydrogens in the N state were determined at pH 4. In contrast to the results of previous HDX studies on the human and Syrian hamster prion proteins at a higher pH, various segments of moPrP were found to undergo different extents of subglobal unfolding events at pH 4, a pH at which the protein is known to be primed to misfold to a β-rich conformation. No residual structure around the disulfide bond was observed for the unfolded state at pH 4. The N state of the prion protein was observed to be at equilibrium with at least two partially unfolded forms (PUFs). These PUFs, which are accessed by stochastic fluctuations of the N state, have altered surface area exposure relative to the N state. One of these PUFs resembles a conformation previously implicated to be an initial intermediate in the conversion of monomeric protein into misfolded oligomer at pH 4.
Collapse
Affiliation(s)
- Roumita Moulick
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Ranabir Das
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
28
|
Singh J, Udgaonkar JB. Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry 2015; 54:4431-42. [PMID: 26171558 DOI: 10.1021/acs.biochem.5b00605] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, make up a group of fatal neurodegenerative disorders linked with the misfolding and aggregation of the prion protein (PrP). Although it is not yet understood how the misfolding of PrP induces neurodegeneration, it is widely accepted that the formation of misfolded prion protein (termed PrP(Sc)) is both the triggering event in the disease and the main component of the infectious agent responsible for disease transmission. Despite the clear involvement of PrP(Sc) in prion diseases, the exact composition of PrP(Sc) is not yet well-known. Recent studies show that misfolded oligomers of PrP could, however, be responsible for neurotoxicity and/or infectivity in the prion diseases. Hence, understanding the molecular mechanism of formation of the misfolded oligomers of PrP is critical for developing an understanding about the prion diseases and for developing anti-prion therapeutics. This review discusses recent advances in understanding the molecular mechanism of misfolded oligomer formation by PrP and its implications for the development of anti-prion therapeutics.
Collapse
Affiliation(s)
- Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
29
|
Singh J, Udgaonkar JB. Structural Effects of Multiple Pathogenic Mutations Suggest a Model for the Initiation of Misfolding of the Prion Protein. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Singh J, Udgaonkar JB. Structural Effects of Multiple Pathogenic Mutations Suggest a Model for the Initiation of Misfolding of the Prion Protein. Angew Chem Int Ed Engl 2015; 54:7529-33. [DOI: 10.1002/anie.201501011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/17/2015] [Indexed: 12/17/2022]
|
31
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 499] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
32
|
Cheng CJ, Daggett V. Different misfolding mechanisms converge on common conformational changes: human prion protein pathogenic mutants Y218N and E196K. Prion 2015; 8:125-35. [PMID: 24509603 DOI: 10.4161/pri.27807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prion diseases are caused by misfolding and aggregation of the prion protein (PrP). Pathogenic mutations such as Y218N and E196K are known to cause Gerstmann-Sträussler-Scheinker syndrome and Creutzfeldt-Jakob disease, respectively. Here we describe molecular dynamics simulations of these mutant proteins to better characterize the detailed conformational effects of these sequence substitutions. Our results indicate that the mutations disrupt the wild-type native PrP(C) structure and cause misfolding. Y218N reduced hydrophobic packing around the X-loop (residues 165-171), and E196K abolished an important wild-type salt bridge. While differences in the mutation site led PrP mutants to misfold along different pathways, we observed multiple traits of misfolding that were common to both mutants. Common traits of misfolding included: 1) detachment of the short helix (HA) from the PrP core; 2) exposure of side chain F198; and 3) formation of a nonnative strand at the N-terminus. The effect of the E196K mutation directly abolished the wild-type salt bridge E196-R156, which further destabilized the F198 hydrophobic pocket and HA. The Y218N mutation propagated its effect by increasing the HB-HC interhelical angle, which in turn disrupted the packing around F198. Furthermore, a nonnative contact formed between E221 and S132 on the S1-HA loop, which offered a direct mechanism for disrupting the hydrophobic packing between the S1-HA loop and HC. While there were common misfolding features shared between Y218N and E196K, the differences in the orientation of HB and HC and the X-loop conformation might provide a structural basis for identifying different prion strains.
Collapse
|
33
|
Yamamoto N. Hot Spot of Structural Ambivalence in Prion Protein Revealed by Secondary Structure Principal Component Analysis. J Phys Chem B 2014; 118:9826-33. [DOI: 10.1021/jp5034245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Norifumi Yamamoto
- Department of Life and Environmental
Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Japan
| |
Collapse
|
34
|
Silva JL, Oliveira AC, Vieira TCRG, de Oliveira GAP, Suarez MC, Foguel D. High-Pressure Chemical Biology and Biotechnology. Chem Rev 2014; 114:7239-67. [DOI: 10.1021/cr400204z] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Andrea C. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tuane C. R. G. Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Marisa C. Suarez
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
35
|
Baillod P, Garrec J, Tavernelli I, Rothlisberger U. Prion versus Doppel Protein Misfolding: New Insights from Replica-Exchange Molecular Dynamics Simulations. Biochemistry 2013; 52:8518-26. [DOI: 10.1021/bi400884e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pascal Baillod
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Julian Garrec
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- CNRS,
UMR 7565 Structure et Réactivité des Systèmes
Moléculaires Complexes, Nancy Université, Nancy, France
| | - Ivano Tavernelli
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Lu X, Zeng J, Gao Y, Zhang JZH, Zhang D, Mei Y. The intrinsic helical propensities of the helical fragments in prion protein under neutral and low pH conditions: a replica exchange molecular dynamics study. J Mol Model 2013; 19:4897-908. [DOI: 10.1007/s00894-013-1985-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/22/2013] [Indexed: 11/29/2022]
|
37
|
Xu W, Zhang C, Morozova-Roche L, Zhang JZH, Mu Y. pH-dependent conformational ensemble and polymorphism of amyloid-β core fragment. J Phys Chem B 2013; 117:8392-9. [PMID: 23786168 DOI: 10.1021/jp404034x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Characterization of amyloid oligomeric species is important due to its possible responsibility for the toxicity of amyloid proteins, whereas it is difficult to detect by current spectroscopic techniques. The pH-dependent tetramerization and fibrillation of the central hydrophobic segment of Alzheimer amyloid β-peptide (Aβ(12-24)) were respectively explored by all-atom replica exchange molecular dynamics simulations and by fluorescence and atomic force microscopy measurements. Our combined study shows that more β-sheet structures in the early event of tetramerization is linked directly to the high propensity to form amyloid fibrils in the consequent fibrillation. Both tetramerization and fibrillation are strongly regulated by pH. At pH 5.0, Aβ(12-24) has two opposite terminal charges. The electrostatic attraction between the side-chains of His13/His14 and Glu22/Asp23 thus acts as a "pattern keeper", resulting in high propensity of amyloid formation. These results suggest that pH effects most likely by affecting the ionization properties of the Aβ(12-24) peptide. Specifically, the pH-dependent equilibrium conformational distribution of different aggregate species are well-investigated in detail. Our findings also give hints to other experimental findings that the kinetics and morphologies of Aβ fibril formation are strongly pH-dependent.
Collapse
Affiliation(s)
- Weixin Xu
- State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
| | | | | | | | | |
Collapse
|
38
|
De Simone A, Stanzione F, Marasco D, Vitagliano L, Esposito L. The intrinsic stability of the human prion β-sheet region investigated by molecular dynamics. J Biomol Struct Dyn 2013; 31:441-52. [DOI: 10.1080/07391102.2012.703070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Chakroun N, Fornili A, Prigent S, Kleinjung J, Dreiss CA, Rezaei H, Fraternali F. Decrypting Prion Protein Conversion into a β-Rich Conformer by Molecular Dynamics. J Chem Theory Comput 2013; 9:2455-2465. [PMID: 23700393 PMCID: PMC3656828 DOI: 10.1021/ct301118j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Indexed: 01/08/2023]
Abstract
Prion diseases are fatal neurodegenerative diseases characterized by the formation of β-rich oligomers and the accumulation of amyloid fibrillar deposits in the central nervous system. Understanding the conversion of the cellular prion protein into its β-rich polymeric conformers is fundamental to tackling the early stages of the development of prion diseases. In this paper, we have identified unfolding and refolding steps critical to the conversion into a β-rich conformer for different constructs of the ovine prion protein by molecular dynamics simulations. By combining our results with in vitro experiments, we show that the folded C-terminus of the ovine prion protein is able to recurrently undergo a drastic conformational change by displacement of the H1 helix, uncovering of the H2H3 domain, and formation of persistent β-sheets between H2 and H3 residues. The observed β-sheets refold toward the C-terminus exposing what we call a "bending region" comprising residues 204-214. This is strikingly coincident with the region harboring mutations determining the fate of the prion oligomerization process. The β-rich intermediate is used here for the construction of a putative model for the assembly into an oligomeric aggregate. The results presented here confirm the importance of the H2H3 domain for prion oligomer formation and therefore its potential use as molecular target in the design of novel prion inhibitors.
Collapse
Affiliation(s)
- Nesrine Chakroun
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom ; Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Ribeiro AAST, de Alencastro RB. Mixed Monte Carlo/Molecular Dynamics simulations of the prion protein. J Mol Graph Model 2013; 42:1-6. [PMID: 23501158 DOI: 10.1016/j.jmgm.2013.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
In this paper we present the results of mixed Monte Carlo/Molecular Dynamics (MC/MD) simulations of the D178N mutant of the human prion protein. We have used the MC moves for polypeptide sampling known as Concerted Rotations with Angles (CRA) to selectively sample the region of the prion protein comprising the β-sheet and one of the α-helices. The results indicate that the MC/MD simulations sample the phase space substantially faster than regular Molecular Dynamics simulations starting with the same initial conditions. This work further indicates the MC/MD technique as a potentially powerful simulation tool, allowing the selective sampling of a region of a physical system that is deemed important.
Collapse
Affiliation(s)
- Andre A S T Ribeiro
- Instituto de Quimica, Universidade Federal do Rio de Janeiro sala 609, bloco A, Centro de Tecnologia, Cidade Universitaria, Ilha do Fundao, Rio de Janeiro, RJ 21941-909, Brazil.
| | | |
Collapse
|
41
|
Abstract
The structural conversion of the prion protein PrP into a transmissible, misfolded form is the central element of prion disease, yet there is little consensus as to how it occurs. Key aspects of conversion into the diseased state remain unsettled, from details about the earliest stages of misfolding such as the involvement of partially- or fully-unfolded intermediates to the structure of the infectious state. Part of the difficulty in understanding the structural conversion arises from the complexity of the underlying energy landscapes. Single molecule methods provide a powerful tool for probing complex folding pathways as in prion misfolding, because they allow rare and transient events to be observed directly. We discuss recent work applying single-molecule probes to study misfolding in prion proteins, and what it has revealed about the folding dynamics of PrP that may underlie its unique behavior. We also discuss single-molecule studies probing the interactions that stabilize non-native structures within aggregates, pointing the way to future work that may help identify the microscopic events triggering pathogenic conversion. Although single-molecule approaches to misfolding are relatively young, they have a promising future in prion science.
Collapse
Affiliation(s)
- Hao Yu
- Department of Physics, University of Alberta, Edmonton, AB Canada
| | | | | |
Collapse
|
42
|
Binding of methylene blue to a surface cleft inhibits the oligomerization and fibrillization of prion protein. Biochim Biophys Acta Mol Basis Dis 2013; 1832:20-8. [DOI: 10.1016/j.bbadis.2012.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 01/08/2023]
|
43
|
Chen J, Thirumalai D. Helices 2 and 3 are the initiation sites in the PrP(C) → PrP(SC) transition. Biochemistry 2012; 52:310-9. [PMID: 23256626 DOI: 10.1021/bi3005472] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is established that prion protein is the sole causative agent in a number of diseases in humans and animals. However, the nature of conformational changes that the normal cellular form, PrP(C), undergoes in its conversion to a self-replicating state is still not fully understood. The ordered C-terminus of PrP(C) proteins has three helices (H1-H3). Here, we use statistical coupling analysis (SCA) to infer covariations at various locations using a family of evolutionarily related sequences and the response of mouse and human PrP(C)s to mechanical force to decipher the initiation sites for the transition from PrP(C) to an aggregation-prone PrP* state. Sequence-based SCA predicts that the clustered residues in nonmammals are localized in the stable core (near H1) of PrP(C), whereas in mammalian PrP(C), they are localized in frustrated helices H2 and H3 where most of the pathogenic mutations are found. Force-extension curves and free energy profiles as a function of extension of mouse and human PrP(C) in the absence of a disulfide (SS) bond between residues Cys179 and Cys214, generated by applying mechanical force to the ends of the molecule, show a sequence of unfolding events starting first with rupture of H2 and H3. This is followed by disruption of structure in two strands. Helix H1, stabilized by three salt bridges, resists substantial force before unfolding. Force extension profiles and the dynamics of rupture of tertiary contacts also show that even in the presence of an SS bond the instabilities in most of H3 and parts of H2 still determine the propensity to form the PrP* state. In mouse PrP(C) with an SS bond, there are ∼10 residues that retain their order even at high forces. Both SCA and single-molecule force simulations show that in the conversion from PrP(C) to PrP(SC) major conformational changes occur (at least initially) in H2 and H3, which because of their sequence compositions are frustrated in the helical state. Implications of our findings for the structural model for the scrapie form of PrP(C) are discussed.
Collapse
Affiliation(s)
- Jie Chen
- Biophysics Program, Institute for Physical Science and Technology, and ‡Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, USA
| | | |
Collapse
|
44
|
Baillod P, Garrec J, Colombo MC, Tavernelli I, Rothlisberger U. Enhanced Sampling Molecular Dynamics Identifies PrPSc Structures Harboring a C-Terminal β-Core. Biochemistry 2012; 51:9891-9. [DOI: 10.1021/bi301091x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pascal Baillod
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julian Garrec
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maria-Carola Colombo
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ivano Tavernelli
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Gallion SL. Modeling amyloid-beta as homogeneous dodecamers and in complex with cellular prion protein. PLoS One 2012; 7:e49375. [PMID: 23145167 PMCID: PMC3493521 DOI: 10.1371/journal.pone.0049375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/11/2012] [Indexed: 12/16/2022] Open
Abstract
Soluble amyloid beta (Aβ) peptide has been linked to the pathology of Alzheimer's disease. A variety of soluble oligomers have been observed to be toxic, ranging from dimers to protofibrils. No tertiary structure has been identified as a single biologically relevant form, though many models are comprised of highly ordered β-sheets. Evidence exists for much less ordered toxic oligomers. The mechanism of toxicity remains highly debated and probably involves multiple pathways. Interaction of Aβ oligomers with the N-terminus of the cellular form of the prion protein (PrP(c)) has recently been proposed. The intrinsically disordered nature of this protein and the highly polymorphic nature of Aβ oligomers make structural resolution of the complex exceptionally challenging. In this study, molecular dynamics simulations are performed for dodecameric assemblies of Aβ comprised of monomers having a single, short antiparallel β-hairpin at the C-terminus. The resulting models, devoid of any intermolecular hydrogen bonds, are shown to correlate well with experimental data and are found to be quite stable within the hydrophobic core, whereas the α-helical N-termini transform to a random coil state. This indicates that highly ordered assemblies are not required for stability and less ordered oligomers are a viable component in the population of soluble oligomers. In addition, a tentative model is proposed for the association of Aβ dimers with a double deletion mutant of the intrinsically disordered N-terminus of PrP(c). This may be useful as a conceptual working model for the binding of higher order oligomers and in the design of further experiments.
Collapse
|
46
|
Peoc'h K, Levavasseur E, Delmont E, De Simone A, Laffont-Proust I, Privat N, Chebaro Y, Chapuis C, Bedoucha P, Brandel JP, Laquerriere A, Kemeny JL, Hauw JJ, Borg M, Rezaei H, Derreumaux P, Laplanche JL, Haïk S. Substitutions at residue 211 in the prion protein drive a switch between CJD and GSS syndrome, a new mechanism governing inherited neurodegenerative disorders. Hum Mol Genet 2012; 21:5417-28. [DOI: 10.1093/hmg/dds377] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
47
|
Chebaro Y, Pasquali S, Derreumaux P. The Coarse-Grained OPEP Force Field for Non-Amyloid and Amyloid Proteins. J Phys Chem B 2012; 116:8741-52. [DOI: 10.1021/jp301665f] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yassmine Chebaro
- Laboratoire de Biochimie Théorique,
CNRS UPR 9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique,
13 rue Pierre et Marie Curie, 75005 Paris
| | - Samuela Pasquali
- Laboratoire de Biochimie Théorique,
CNRS UPR 9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique,
13 rue Pierre et Marie Curie, 75005 Paris
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique,
CNRS UPR 9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique,
13 rue Pierre et Marie Curie, 75005 Paris
- Institut Universitaire de France, 103 Bvd Saint-Michel, Paris 75005, France
| |
Collapse
|
48
|
Issack BB, Berjanskii M, Wishart DS, Stepanova M. Exploring the essential collective dynamics of interacting proteins: application to prion protein dimers. Proteins 2012; 80:1847-65. [PMID: 22488640 DOI: 10.1002/prot.24082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 03/07/2012] [Accepted: 03/18/2012] [Indexed: 11/11/2022]
Abstract
Essential collective dynamics is a promising and robust approach for analysing the slow motions of macromolecules from short molecular dynamics trajectories. In this study, an extension of the method to treat a collection of interacting protein molecules is presented. The extension is applied to investigate the effects of dimerization on the collective dynamics of ovine prion protein molecules in two different arrangements. Examination of the structural plasticity shows that aggregation has a restricting effect on the local mobility of the prion protein molecules in the interfacial regions. Domain motions of the two dimeric ovine prion protein conformations are distinctly different and can be related to interatomic correlations at the interface. Correlated motions are among the slow collective modes extensively analysed by considering both main-chain and side-chain atoms. Correlation maps reveal the existence of a vast network of dynamically correlated side groups, which extends beyond individual subunits via interfacial interconnections. The network is formed by a core of hydrophobic side chains surrounded by hydrophilic groups at the periphery. The relevance of these findings are discussed in the context of mutations associated with prion diseases. The binding free energy of the dimeric conformations is evaluated to probe their thermodynamic stability. The descriptions afforded by the analysis of the essential collective dynamics of the prion dimers are consistent with their binding free energies. The agreement validates the extension of the methodology and provides a means of interpreting the collective dynamics in terms of the thermodynamic stability of ovine prion proteins.
Collapse
Affiliation(s)
- Bilkiss B Issack
- National Institute for Nanotechnology, National research Council, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
49
|
Direct observation of multiple misfolding pathways in a single prion protein molecule. Proc Natl Acad Sci U S A 2012; 109:5283-8. [PMID: 22421432 DOI: 10.1073/pnas.1107736109] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein misfolding is a ubiquitous phenomenon associated with a wide range of diseases. Single-molecule approaches offer a powerful tool for deciphering the mechanisms of misfolding by measuring the conformational fluctuations of a protein with high sensitivity. We applied single-molecule force spectroscopy to observe directly the misfolding of the prion protein PrP, a protein notable for having an infectious misfolded state that is able to propagate by recruiting natively folded PrP. By measuring folding trajectories of single PrP molecules held under tension in a high-resolution optical trap, we found that the native folding pathway involves only two states, without evidence for partially folded intermediates that have been proposed to mediate misfolding. Instead, frequent but fleeting transitions were observed into off-pathway intermediates. Three different misfolding pathways were detected, all starting from the unfolded state. Remarkably, the misfolding rate was even higher than the rate for native folding. A mutant PrP with higher aggregation propensity showed increased occupancy of some of the misfolded states, suggesting these states may act as intermediates during aggregation. These measurements of individual misfolding trajectories demonstrate the power of single-molecule approaches for characterizing misfolding directly by mapping out nonnative folding pathways.
Collapse
|
50
|
Tang JL, Wu PJ, Wang SC, Lee CI. Insights into Structural Properties of Denatured Human Prion 121-230 at Melting Temperature Studied by Replica Exchange Molecular Dynamics. J Phys Chem B 2012; 116:3305-12. [DOI: 10.1021/jp208433w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jaw-Luen Tang
- Department
of Physics, ‡Department of Life Science, National Chung Cheng University, Ming-Hsiung Chia-Yi, Taiwan 62102,
ROC
| | - Po-Jen Wu
- Department
of Physics, ‡Department of Life Science, National Chung Cheng University, Ming-Hsiung Chia-Yi, Taiwan 62102,
ROC
| | - Shing-Chuen Wang
- Department
of Physics, ‡Department of Life Science, National Chung Cheng University, Ming-Hsiung Chia-Yi, Taiwan 62102,
ROC
| | - Cheng-I Lee
- Department
of Physics, ‡Department of Life Science, National Chung Cheng University, Ming-Hsiung Chia-Yi, Taiwan 62102,
ROC
| |
Collapse
|