1
|
Asido M, Lamm GHU, Lienert J, La Greca M, Kaur J, Mayer A, Glaubitz C, Heberle J, Schlesinger R, Kovalev K, Wachtveitl J. A Detailed View on the (Re)isomerization Dynamics in Microbial Rhodopsins Using Complementary Near-UV and IR Readouts. Angew Chem Int Ed Engl 2025; 64:e202416742. [PMID: 39523487 PMCID: PMC11753611 DOI: 10.1002/anie.202416742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Isomerization is a key process in many (bio)chemical systems. In microbial rhodopsins, the photoinduced isomerization of the all-trans retinal to the 13-cis isomer initiates a cascade of structural changes of the protein. The interplay between these changes and the thermal relaxation of the isomerized retinal is one of the crucial determinants for rhodopsin functionality. It is therefore important to probe this dynamic interplay with chromophore specific markers that combine gapless temporal observation with spectral sensitivity. Here we utilize the near-UV and mid-IR fingerprint region in the framework of a systematic (time-resolved) spectroscopic study on H+- (HsBR, (G)PR), Na+- (KR2, ErNaR) and Cl--(NmHR) pumps. We demonstrate that the near-UV region is an excellent probe for retinal configuration and-being sensitive to the electrostatic environment of retinal-even transient ion binding, which allows us to pinpoint protein specific mechanistic nuances and chromophore-charge interactions. The combination of the near-UV and mid-IR fingerprint region hence provides a spectroscopic analysis tool that allows a detailed, precise and temporally fully resolved description of retinal configurations during all stages of the photocycle.
Collapse
Affiliation(s)
- Marvin Asido
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
- Present Adress: Department of Chemistry Massachusetts Institute of Technology77 Massachusetts Ave, 2–014CambridgeMassachusetts02139USA
| | - Gerrit H. U. Lamm
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
| | - Jonas Lienert
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
| | - Mariafrancesca La Greca
- Department of PhysicsGenetic BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Straße 960438Frankfurt (Main)Germany
| | - Anne Mayer
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Straße 960438Frankfurt (Main)Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Straße 960438Frankfurt (Main)Germany
| | - Joachim Heberle
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Ramona Schlesinger
- Department of PhysicsGenetic BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Kirill Kovalev
- European Molecular Biology Laboratory Hamburg, EMBL Hamburgc/o DESY, Notkestraße 8522607HamburgGermany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
| |
Collapse
|
2
|
Palombo R, Barneschi L, Pedraza-González L, Yang X, Olivucci M. Picosecond quantum-classical dynamics reveals that the coexistence of light-induced microbial and animal chromophore rotary motion modulates the isomerization quantum yield of heliorhodopsin. Phys Chem Chem Phys 2024; 26:10343-10356. [PMID: 38501246 DOI: 10.1039/d4cp00193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Rhodopsins are light-responsive proteins forming two vast and evolutionary distinct superfamilies whose functions are invariably triggered by the photoisomerization of a single retinal chromophore. In 2018 a third widespread superfamily of rhodopsins called heliorhodopsins was discovered using functional metagenomics. Heliorhodopsins, with their markedly different structural features with respect to the animal and microbial superfamilies, offer an opportunity to study how evolution has manipulated the chromophore photoisomerization to achieve adaptation. One question is related to the mechanism of such a reaction and how it differs from that of animal and microbial rhodopsins. To address this question, we use hundreds of quantum-classical trajectories to simulate the spectroscopically documented picosecond light-induced dynamics of a heliorhodopsin from the archaea thermoplasmatales archaeon (TaHeR). We show that, consistently with the observations, the trajectories reveal two excited state decay channels. However, inconsistently with previous hypotheses, only one channel is associated with the -C13C14- rotation of microbial rhodopsins while the second channel is characterized by the -C11C12- rotation typical of animal rhodopsins. The fact that such -C11C12- rotation is aborted upon decay and ground state relaxation, explains why illumination of TaHeR only produces the 13-cis isomer with a low quantum efficiency. We argue that the documented lack of regioselectivity in double-bond excited state twisting motion is the result of an "adaptation" that could be completely lost via specific residue substitutions modulating the steric hindrance experienced along the isomerization motion.
Collapse
Affiliation(s)
- Riccardo Palombo
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Siena, Italy.
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Siena, Italy.
| | - Laura Pedraza-González
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, I-56124 Pisa, Italy
| | - Xuchun Yang
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Siena, Italy.
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| |
Collapse
|
3
|
Bühl E, Resler T, Lam R, Asido M, Bamberg E, Schlesinger R, Bamann C, Heberle J, Wachtveitl J. Assessing the Role of R120 in the Gating of CrChR2 by Time-Resolved Spectroscopy from Femtoseconds to Seconds. J Am Chem Soc 2023; 145:21832-21840. [PMID: 37773976 DOI: 10.1021/jacs.3c05399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The light-gated ion channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) is the most frequently used optogenetic tool in neurosciences. However, the precise molecular mechanism of the channel opening and the correlation among retinal isomerization, the photocycle, and the channel activity of the protein are missing. Here, we present electrophysiological and spectroscopic investigations on the R120H variant of CrChR2. R120 is a key residue in an extended network linking the retinal chromophore to several gates of the ion channel. We show that despite the deficient channel activity, the photocycle of the variant is intact. In a comparative study for R120H and the wild type, we resolve the vibrational changes in the spectral range of the retinal and amide I bands across the time range from femtoseconds to seconds. Analysis of the amide I mode reveals a significant impairment of the ultrafast protein response after retinal excitation. We conclude that channel opening in CrChR2 is prepared immediately after retinal excitation. Additionally, chromophore isomerization is essential for both photocycle and channel activities, although both processes can occur independently.
Collapse
Affiliation(s)
- Elena Bühl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Tom Resler
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Rebecca Lam
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| |
Collapse
|
4
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
5
|
Smitienko OA, Feldman TB, Petrovskaya LE, Nekrasova OV, Yakovleva MA, Shelaev IV, Gostev FE, Cherepanov DA, Kolchugina IB, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Comparative Femtosecond Spectroscopy of Primary Photoreactions of Exiguobacterium sibiricum Rhodopsin and Halobacterium salinarum Bacteriorhodopsin. J Phys Chem B 2021; 125:995-1008. [PMID: 33475375 DOI: 10.1021/acs.jpcb.0c07763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary stages of the Exiguobacterium sibiricum rhodopsin (ESR) photocycle were investigated by femtosecond absorption laser spectroscopy in the spectral range of 400-900 nm with a time resolution of 25 fs. The dynamics of the ESR photoreaction were compared with the reactions of bacteriorhodopsin (bR) in purple membranes (bRPM) and in recombinant form (bRrec). The primary intermediates of the ESR photocycle were similar to intermediates I, J, and K in bacteriorhodopsin photoconversion. The CONTIN program was applied to analyze the characteristic times of the observed processes and to clarify the reaction scheme. A similar photoreaction pattern was observed for all studied retinal proteins, including two consecutive dynamic Stokes shift phases lasting ∼0.05 and ∼0.15 ps. The excited state decays through a femtosecond reactive pathway, leading to retinal isomerization and formation of product J, and a picosecond nonreactive pathway that leads only to the initial state. Retinal photoisomerization in ESR takes 0.69 ps, compared with 0.48 ps in bRPM and 0.74 ps in bRrec. The nonreactive excited state decay takes 5 ps in ESR and ∼3 ps in bR. We discuss the similarity of the primary reactions of ESR and other retinal proteins.
Collapse
Affiliation(s)
| | - Tatiana B Feldman
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Oksana V Nekrasova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | | | - Ivan V Shelaev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | | | - Irina B Kolchugina
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry A Dolgikh
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail P Kirpichnikov
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Chang CF, Kuramochi H, Singh M, Abe-Yoshizumi R, Tsukuda T, Kandori H, Tahara T. Acid-base equilibrium of the chromophore counterion results in distinct photoisomerization reactivity in the primary event of proteorhodopsin. Phys Chem Chem Phys 2019; 21:25728-25734. [PMID: 31720623 DOI: 10.1039/c9cp04991f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteorhodopsin (PR) is a proton-pumping rhodopsin, and it is known to exhibit a multi-phasic decay of the excited-state population in the primary process. So far, this complex excited-state decay has been attributed to the branching of the relaxation pathway on the excited-state potential energy surface. However, a recent ultrafast spectroscopic study on a sodium-pumping rhodopsin suggested that such a complex decay may originate from the heterogeneity in the ground state due to the acid-base equilibrium of the counterion of the protonated retinal Schiff base (PRSB). In this study, we studied the excited-state dynamics of PR at pH 11 and 4, in which the counterion of the PRSB, Asp97, is completely deprotonated and protonated, respectively. The obtained time-resolved absorption data revealed that the excited-state lifetime is decisively governed by the protonation state of Asp97, and the photoisomerization of the PRSB chromophore proceeds faster and more efficiently when Asp97 is deprotonated. This conclusion was further supported by high similarity of the excited-state dynamics between PR at pH 4 and the D97N mutant in which Asp97 is replaced with neutral Asn. The results of this study suggest that the protonation state of the PRSB counterion plays a decisive role in determining the excited-state dynamics and the photoisomerization reactivity of rhodopsins in general, by making a significant influence on the exited-state potential energy surface of the PRSB chromophore.
Collapse
Affiliation(s)
- Chun-Fu Chang
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Asido M, Eberhardt P, Kriebel CN, Braun M, Glaubitz C, Wachtveitl J. Time-resolved IR spectroscopy reveals mechanistic details of ion transport in the sodium pump Krokinobacter eikastus rhodopsin 2. Phys Chem Chem Phys 2019; 21:4461-4471. [PMID: 30734791 DOI: 10.1039/c8cp07418f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a comparative study on the structural dynamics of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 wild type under sodium and proton pumping conditions by means of time-resolved IR spectroscopy. The kinetics of KR2 under sodium pumping conditions exhibits a sequential character, whereas the kinetics of KR2 under proton pumping conditions involves several equilibrium states. The sodium translocation itself is characterized by major conformational changes of the protein backbone, such as distortions of the α-helices and probably of the ECL1 domain, indicated by distinct marker bands in the amide I region. Carbonyl stretch modes of specific amino acid residues helped to elucidate structural changes in the retinal Schiff base moiety, including the protonation and deprotonation of D116, which is crucial for a deeper understanding of the mechanistic features in the photocycle of KR2.
Collapse
Affiliation(s)
- Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Borin VA, Wiebeler C, Schapiro I. A QM/MM study of the initial excited state dynamics of green-absorbing proteorhodopsin. Faraday Discuss 2019; 207:137-152. [PMID: 29393940 DOI: 10.1039/c7fd00198c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The primary photochemical reaction of the green-absorbing proteorhodopsin is studied by means of a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. The simulations are based on a homology model derived from the blue-absorbing proteorhodopsin crystal structure. The geometry of retinal and the surrounding sidechains in the protein binding pocket were optimized using the QM/MM method. Starting from this geometry the isomerization was studied with a relaxed scan along the C13[double bond, length as m-dash]C14 dihedral. It revealed an "aborted bicycle pedal" mechanism of isomerization that was originally proposed by Warshel for bovine rhodopsin and bacteriorhodopsin. However, the isomerization involved the concerted rotation about C13[double bond, length as m-dash]C14 and C15[double bond, length as m-dash]N, with the latter being highly twisted but not isomerized. Further, the simulation showed an increased steric interaction between the hydrogen at the C14 of the isomerizing bond and the hydroxyl group at the neighbouring tyrosine 200. In addition, we have simulated a nonadiabatic trajectory which showed the timing of the isomerization. In the first 20 fs upon excitation the order of the conjugated double and single bonds is inverted, consecutively the C13[double bond, length as m-dash]C14 rotation is activated for 200 fs until the S1-S0 transition is detected. However, the isomerization is reverted due to the specific interaction with the tyrosine as observed along the relaxed scan calculation. Our simulations indicate that the retinal - tyrosine 200 interaction plays an important role in the outcome of the photoisomerization.
Collapse
Affiliation(s)
- Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
9
|
Otrin L, Kleineberg C, Caire da Silva L, Landfester K, Ivanov I, Wang M, Bednarz C, Sundmacher K, Vidaković-Koch T. Artificial Organelles for Energy Regeneration. ACTA ACUST UNITED AC 2019; 3:e1800323. [PMID: 32648709 DOI: 10.1002/adbi.201800323] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/11/2019] [Indexed: 01/03/2023]
Abstract
One of the critical steps in sustaining life-mimicking processes in synthetic cells is energy, i.e., adenosine triphosphate (ATP) regeneration. Previous studies have shown that the simple addition of ATP or ATP regeneration systems, which do not regenerate ATP directly from ADP and Pi , have no or only limited success due to accumulation of ATP hydrolysis products. In general, ATP regeneration can be achieved by converting light or chemical energy into ATP, which may also involve redox transformations of cofactors. The present contribution provides an overview of the existing ATP regeneration strategies and the related nicotinamide adenine dinucleotide (NAD+ ) redox cycling, with a focus on compartmentalized systems. Special attention is being paid to those approaches where so-called artificial organelles are developed. They comprise a semipermeable membrane functionalized by biological or man-made components and employ external energy in the form of light or nutrients in order to generate a transmembrane proton gradient, which is further utilized for ATP synthesis.
Collapse
Affiliation(s)
- Lado Otrin
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Christin Kleineberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ivan Ivanov
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Minhui Wang
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Claudia Bednarz
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| |
Collapse
|
10
|
Buda F, Keijer T, Ganapathy S, de Grip WJ. A Quantum-mechanical Study of the Binding Pocket of Proteorhodopsin: Absorption and Vibrational Spectra Modulated by Analogue Chromophores. Photochem Photobiol 2017; 93:1399-1406. [DOI: 10.1111/php.12800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Francesco Buda
- Leiden University; Leiden Institute of Chemistry; Leiden The Netherlands
| | - Tom Keijer
- Leiden University; Leiden Institute of Chemistry; Leiden The Netherlands
| | - Srividya Ganapathy
- Leiden University; Leiden Institute of Chemistry; Leiden The Netherlands
| | - Willem J. de Grip
- Leiden University; Leiden Institute of Chemistry; Leiden The Netherlands
- Radboud University Medical Center; Radboud Institute for Molecular Life Sciences; Nijmegen The Netherlands
| |
Collapse
|
11
|
Köhler T, Weber I, Glaubitz C, Wachtveitl J. Proteorhodopsin Photocycle Kinetics Between pH 5 and pH 9. Photochem Photobiol 2017; 93:762-771. [DOI: 10.1111/php.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Köhler
- Institute of Physical and Theoretical Chemistry; Goethe Universität Frankfurt am Main; Frankfurt Germany
| | - Ingrid Weber
- Institut für Biophysikalische Chemie; Goethe Universität Frankfurt am Main; Frankfurt Germany
| | - Clemens Glaubitz
- Institut für Biophysikalische Chemie; Goethe Universität Frankfurt am Main; Frankfurt Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry; Goethe Universität Frankfurt am Main; Frankfurt Germany
| |
Collapse
|
12
|
Thevarpadam J, Bessi I, Binas O, Gonçalves DPN, Slavov C, Jonker HRA, Richter C, Wachtveitl J, Schwalbe H, Heckel A. Photoresponsive Formation of an Intermolecular Minimal G-Quadruplex Motif. Angew Chem Int Ed Engl 2016; 55:2738-42. [PMID: 26805928 DOI: 10.1002/anie.201510269] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/11/2015] [Indexed: 01/04/2023]
Abstract
The ability of three different bifunctional azobenzene linkers to enable the photoreversible formation of a defined intermolecular two-tetrad G-quadruplex upon UV/Vis irradiation was investigated. Circular dichroism and NMR spectroscopic data showed the formation of G-quadruplexes with K(+) ions at room temperature in all three cases with the corresponding azobenzene linker in an E conformation. However, only the para-para-substituted azobenzene derivative enables photoswitching between a nonpolymorphic, stacked, tetramolecular G-quadruplex and an unstructured state after E-Z isomerization.
Collapse
Affiliation(s)
- Julie Thevarpadam
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Irene Bessi
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Diana P N Gonçalves
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Chavdar Slavov
- Institute for Physical and Theoretical Chemistry, Max-von-Laue-Strasse 7, 60438, Frankfurt, Germany
| | - Hendrik R A Jonker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Max-von-Laue-Strasse 7, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.
| | - Alexander Heckel
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.
| |
Collapse
|
13
|
Thevarpadam J, Bessi I, Binas O, Gonçalves DPN, Slavov C, Jonker HRA, Richter C, Wachtveitl J, Schwalbe H, Heckel A. Photoresponsive Formation of an Intermolecular Minimal G-Quadruplex Motif. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510269] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Julie Thevarpadam
- Goethe University Frankfurt; Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences; Max-von-Laue-Strasse 9 60438 Frankfurt Germany
| | - Irene Bessi
- Institute for Organic Chemistry and Chemical Biology; Center for Biomolecular Magnetic Resonance (BMRZ); Max-von-Laue-Strasse 9 60438 Frankfurt Germany
| | - Oliver Binas
- Institute for Organic Chemistry and Chemical Biology; Center for Biomolecular Magnetic Resonance (BMRZ); Max-von-Laue-Strasse 9 60438 Frankfurt Germany
| | - Diana P. N. Gonçalves
- Goethe University Frankfurt; Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences; Max-von-Laue-Strasse 9 60438 Frankfurt Germany
| | - Chavdar Slavov
- Institute for Physical and Theoretical Chemistry; Max-von-Laue-Strasse 7 60438 Frankfurt Germany
| | - Hendrik R. A. Jonker
- Institute for Organic Chemistry and Chemical Biology; Center for Biomolecular Magnetic Resonance (BMRZ); Max-von-Laue-Strasse 9 60438 Frankfurt Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology; Center for Biomolecular Magnetic Resonance (BMRZ); Max-von-Laue-Strasse 9 60438 Frankfurt Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry; Max-von-Laue-Strasse 7 60438 Frankfurt Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology; Center for Biomolecular Magnetic Resonance (BMRZ); Max-von-Laue-Strasse 9 60438 Frankfurt Germany
| | - Alexander Heckel
- Goethe University Frankfurt; Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences; Max-von-Laue-Strasse 9 60438 Frankfurt Germany
| |
Collapse
|
14
|
Ritter E, Puskar L, Bartl FJ, Aziz EF, Hegemann P, Schade U. Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin. Front Mol Biosci 2015. [PMID: 26217670 PMCID: PMC4493399 DOI: 10.3389/fmolb.2015.00038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma membrane from green algae, play the most important role. Properties like channel selectivity, timing parameters or color can be influenced by the exchange of selected amino acids. Although widely used, in the field of neurosciences for example, there is still little known about their photocycles and the mechanism of ion channel gating and conductance. One of the preferred methods for these studies is infrared spectroscopy since it allows observation of proteins and their function at a molecular level and in near-native environment. The absorption of a photon in channelrhodopsin leads to retinal isomerization within femtoseconds, the conductive states are reached in the microsecond time scale and the return into the fully dark-adapted state may take more than minutes. To be able to cover all these time regimes, a range of different spectroscopical approaches are necessary. This mini-review focuses on time-resolved applications of the infrared technique to study channelrhodopsins and other light triggered proteins. We will discuss the approaches with respect to their suitability to the investigation of channelrhodopsin and related proteins.
Collapse
Affiliation(s)
- Eglof Ritter
- Experimentelle Biophysik, Institut für Biologie, Humboldt-Universität zu Berlin Berlin, Germany
| | - Ljiljana Puskar
- Methods for Material Development, Helmholtz-Zentrum für Materialien und Energie GmbH Berlin, Germany
| | - Franz J Bartl
- Institut für medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Emad F Aziz
- Methods for Material Development, Helmholtz-Zentrum für Materialien und Energie GmbH Berlin, Germany ; Fachbereich Physik, Freie Universität Berlin Berlin, Germany
| | - Peter Hegemann
- Experimentelle Biophysik, Institut für Biologie, Humboldt-Universität zu Berlin Berlin, Germany
| | - Ulrich Schade
- Methods for Material Development, Helmholtz-Zentrum für Materialien und Energie GmbH Berlin, Germany
| |
Collapse
|
15
|
Patrizi B, Lapini A, Di Donato M, Marcelli A, Lima M, Righini R, Foggi P, Baiocco P, Bonamore A, Boffi A. Role of local structure and dynamics of small ligand migration in proteins: a study of a mutated truncated hemoprotein from Thermobifida fusca by time resolved MIR spectroscopy. J Phys Chem B 2014; 118:9209-17. [PMID: 25019316 DOI: 10.1021/jp504499b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carbon monoxide recombination dynamics in a mutant of the truncated hemoglobin from Thermobida fusca (3F-Tf-trHb) has been analyzed by means of ultrafast Visible-pump/MidIR-probe spectroscopy and compared with that of the wild-type protein. In 3F-Tf-trHb, three topologically relevant amino acids, responsible for the ligand stabilization through the formation of a H-bond network (TyrB10 TyrCD1 and TrpG8), have been replaced by Phe residues. X-ray diffraction data show that Phe residues in positions B10 and G8 maintain the same rotameric arrangements as Tyr and Trp in the wild-type protein, while Phe in position CD1 displays significant rotameric heterogeneity. Photodissociation of the ligand has been induced by exciting the sample with 550 nm pump pulses and the CO rebinding has been monitored in two mid-IR regions respectively corresponding to the ν(CO) stretching vibration of the iron-bound CO (1880-1980 cm(-1)) and of the dissociated free CO (2050-2200 cm(-1)). In both the mutant and wild-type protein, a significant amount of geminate CO rebinding is observed on a subnanosecond time scale. Despite the absence of the distal pocket hydrogen-bonding network, the kinetics of geminate rebinding in 3F-Tf-trHb is very similar to the wild-type, showing how the reactivity of dissociated CO toward the heme is primarily regulated by the effective volume and flexibility of the distal pocket and by caging effects exerted on the free CO on the analyzed time scale.
Collapse
Affiliation(s)
- Barbara Patrizi
- LENS (European Laboratory for Nonlinear Spectroscopy) Via N. Carrara 1, Sesto Fiorentino, Florence 50019, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. Proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:614-25. [PMID: 24060527 DOI: 10.1016/j.bbabio.2013.09.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Proteorhodopsins are the most abundant retinal based photoreceptors and their phototrophic function might be relevant in marine ecosystems. Here, we describe their remarkable molecular properties with a special focus on the green absorbing variant. Its distinct features include a high pKa value of the primary proton acceptor stabilized through an interaction with a conserved histidine, a long-range interaction between the cytoplasmic EF loop and the chromophore entailing a particular mode of color tuning and a variable proton pumping vectoriality with complex voltage-dependence. The proteorhodopsin family represents a profound example for structure-function relationships. Especially the development of a biophysical understanding of green proteorhodopsin is an excellent example for the unique opportunities offered by a combined approach of advanced spectroscopic and electrophysiological methods. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany.
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Johann Wolfgang Goethe University, Institute for Physical and Theoretical Chemistry, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Johann Wolfgang Goethe University, Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Neumann-Verhoefen MK, Neumann K, Bamann C, Radu I, Heberle J, Bamberg E, Wachtveitl J. Ultrafast Infrared Spectroscopy on Channelrhodopsin-2 Reveals Efficient Energy Transfer from the Retinal Chromophore to the Protein. J Am Chem Soc 2013; 135:6968-76. [DOI: 10.1021/ja400554y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mirka-Kristin Neumann-Verhoefen
- Institute of Physical and Theoretical
Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Karsten Neumann
- Institute of Physical and Theoretical
Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt
am Main, Germany
| | - Ionela Radu
- Department
of Physics, Molecular
Biospectroscopy, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Experimental
Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt
am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical
Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Wand A, Loevsky B, Friedman N, Sheves M, Ruhman S. Probing Ultrafast Photochemistry of Retinal Proteins in the Near-IR: Bacteriorhodopsin and Anabaena Sensory Rhodopsin vs Retinal Protonated Schiff Base in Solution. J Phys Chem B 2012; 117:4670-9. [DOI: 10.1021/jp309189y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Boris Loevsky
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
19
|
Kohl-Landgraf J, Braun M, Özçoban C, Gonçalves DPN, Heckel A, Wachtveitl J. Ultrafast Dynamics of a Spiropyran in Water. J Am Chem Soc 2012; 134:14070-7. [DOI: 10.1021/ja304395k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jörg Kohl-Landgraf
- Institute for Physical und Theoretical
Chemistry, Goethe University Frankfurt,
Max-von-Laue-Straße 7, Frankfurt/Main, Germany
| | - Markus Braun
- Institute for Physical und Theoretical
Chemistry, Goethe University Frankfurt,
Max-von-Laue-Straße 7, Frankfurt/Main, Germany
| | - Cem Özçoban
- Institute for Organic Chemistry
and Chemical Biology, Buchmann Institute for Molecular Life Sciences,
Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt/Main,
Germany
| | - Diana P. N. Gonçalves
- Institute for Organic Chemistry
and Chemical Biology, Buchmann Institute for Molecular Life Sciences,
Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt/Main,
Germany
| | - Alexander Heckel
- Institute for Organic Chemistry
and Chemical Biology, Buchmann Institute for Molecular Life Sciences,
Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt/Main,
Germany
| | - Josef Wachtveitl
- Institute for Physical und Theoretical
Chemistry, Goethe University Frankfurt,
Max-von-Laue-Straße 7, Frankfurt/Main, Germany
| |
Collapse
|
20
|
Lapini A, Di Donato M, Patrizi B, Marcelli A, Lima M, Righini R, Foggi P, Sciamanna N, Boffi A. Carbon monoxide recombination dynamics in truncated hemoglobins studied with visible-pump midIR-probe spectroscopy. J Phys Chem B 2012; 116:8753-61. [PMID: 22759230 DOI: 10.1021/jp3019149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbon monoxide recombination dynamics upon photodissociation with visible light has been characterized by means of ultrafast visible-pump/MidIR probe spectroscopy for the truncated hemoglobins from Thermobifida fusca and Bacillus subtilis. Photodissociation has been induced by exciting the sample at two different wavelengths: 400 nm, corresponding to the heme absorption in the B-band, and 550 nm, in the Q-bands. The bleached iron-CO coordination band located at 1850-1950 cm(-1) and the free CO absorption band in the region 2050-2200 cm(-1) have been observed by probe pulses tuned in the appropriate infrared region. The kinetic traces measured at 1850-1950 cm(-1) reveal multiexponential subnanosecond dynamics that have been interpreted as arising from fast geminate recombination of the photolyzed CO. A compared analysis of the crystal structure of the two proteins reveals a similar structure of their distal heme pocket, which contains conserved polar and aromatic amino acid residues closely interacting with the iron ligand. Although fast geminate recombination is observed in both proteins, several kinetic differences can be evidenced, which can be interpreted in terms of a different structural flexibility of the corresponding heme distal pockets. The analysis of the free CO band-shape and of its dynamic evolution brings out novel features about the nature of the docking site inside the protein cavity.
Collapse
Affiliation(s)
- Andrea Lapini
- LENS (European Laboratory for Nonlinear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Herz J, Verhoefen MK, Weber I, Bamann C, Glaubitz C, Wachtveitl J. Critical role of Asp227 in the photocycle of proteorhodopsin. Biochemistry 2012; 51:5589-600. [PMID: 22738119 DOI: 10.1021/bi3003764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photocycle of the proton acceptor complex mutant D227N of the bacterial retinal protein proteorhodopsin is investigated employing steady state pH-titration experiments in the UV-visible range as well as femtosecond-pump-probe spectroscopy and flash photolysis in the visible spectral range. The evaluation of the pH-dependent spectra showed that the neutralization of the charge at position 227 has a remarkable influence on the ground state properties of the protein. Both the pK(a) values of the primary proton acceptor and of the Schiff base are considerably decreased. Femtosecond-time-resolved measurements demonstrate that the general S(1) deactivation pathway; that is, the K-state formation is preserved in the D227N mutant. However, the pH-dependence of the reaction rate is lost by the substitution of Asp227 with an asparagine. Also no significant kinetic differences are observed upon deuteration. This is explained by the lack of a strongly hydrogen-bonded water in the vicinity of Asp97, Asp227, and the Schiff base or a change in the hydrogen bonding of it (Ikeda et al. (2007) Biochemistry 46, 5365-5373). The flash photolysis measurements prove a considerably elongated photocycle with pronounced pH-dependence. Interestingly, at pH 9 the M-state is visible until the end of the reaction cycle, leading to the conclusion that the mutation does not only lower the pK(a) of the Schiff base in the unphotolyzed ground state but also prevents an efficient reprotonation reaction.
Collapse
Affiliation(s)
- Julia Herz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Patricia TT, Sandra MV, Manuela L, Andrea L, Paolo F, Andrea D, Roberto R. Transient infrared spectroscopy: a new approach to investigate valence tautomerism. Phys Chem Chem Phys 2012; 14:1038-47. [DOI: 10.1039/c1cp22557j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Wand A, Rozin R, Eliash T, Jung KH, Sheves M, Ruhman S. Asymmetric Toggling of a Natural Photoswitch: Ultrafast Spectroscopy of Anabaena Sensory Rhodopsin. J Am Chem Soc 2011; 133:20922-32. [DOI: 10.1021/ja208371g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rinat Rozin
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Eliash
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, South Korea
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
24
|
Low temperature FTIR spectroscopy provides new insights in the pH-dependent proton pathway of proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1583-90. [DOI: 10.1016/j.bbabio.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/25/2011] [Accepted: 09/05/2011] [Indexed: 11/15/2022]
|
25
|
Yan S, Seidel MT, Tan HS. Perturbed free induction decay in ultrafast mid-IR pump–probe spectroscopy. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Nguyen PH, Staudt H, Wachtveitl J, Stock G. Real Time Observation of Ultrafast Peptide Conformational Dynamics: Molecular Dynamics Simulation vs Infrared Experiment. J Phys Chem B 2011; 115:13084-92. [DOI: 10.1021/jp207945p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Phuong H. Nguyen
- Laboratoire de Biochimie Theorique - UPR 9080, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, F-75005 Paris, France
| | - Heike Staudt
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Mewes JM, Neumann K, Verhoefen MK, Wille G, Wachtveitl J, Dreuw A. Molecular Mechanism of Uncaging CO2 from Nitrophenylacetate Provides General Guidelines for Improved ortho-Nitrobenzyl Cages. Chemphyschem 2011; 12:2077-80. [DOI: 10.1002/cphc.201100322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Indexed: 11/09/2022]
|
28
|
Hempelmann F, Hölper S, Verhoefen MK, Woerner AC, Köhler T, Fiedler SA, Pfleger N, Wachtveitl J, Glaubitz C. His75−Asp97 Cluster in Green Proteorhodopsin. J Am Chem Soc 2011; 133:4645-54. [DOI: 10.1021/ja111116a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Franziska Hempelmann
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Soraya Hölper
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mirka-Kristin Verhoefen
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas C. Woerner
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Thomas Köhler
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Sarah-Anna Fiedler
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nicole Pfleger
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Josef Wachtveitl
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
29
|
Loevsky B, Wand A, Bismuth O, Friedman N, Sheves M, Ruhman S. A New Spectral Window on Retinal Protein Photochemistry. J Am Chem Soc 2011; 133:1626-9. [DOI: 10.1021/ja1087387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boris Loevsky
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University, Jerusalem 91904, Israel
| | - Amir Wand
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University, Jerusalem 91904, Israel
| | - Oshrat Bismuth
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
30
|
Verhoefen MK, Bamann C, Blöcher R, Förster U, Bamberg E, Wachtveitl J. The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps. Chemphyschem 2011; 11:3113-22. [PMID: 20730849 DOI: 10.1002/cphc.201000181] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The photocycle of channelrhodopsin-2 is investigated in a comprehensive study by ultrafast absorption and fluorescence spectroscopy as well as flash photolysis in the visible spectral range. The ultrafast techniques reveal an excited-state decay mechanism analogous to that of the archaeal bacteriorhodopsin and sensory rhodopsin II from Natronomonas pharaonis. After a fast vibrational relaxation of the excited-state population with 150 fs its decay with mainly 400 fs is observed. Hereby, both the initial all-trans retinal ground state and the 13-cis-retinal K photoproduct are populated. The reaction proceeds with a 2.7 ps component assigned to cooling processes. Small spectral shifts are observed on a 200 ps timescale. They are attributed to conformational rearrangements in the retinal binding pocket. The subsequent dynamics progresses with the formation of an M-like intermediate (7 and 120 μs), which decays into red-shifted states within 3 ms. Ground-state recovery including channel closing and reisomerization of the retinal chromophore occurs in a triexponential manner (6 ms, 33 ms, 3.4 s). To learn more about the energy barriers between the different photocycle intermediates, temperature-dependent flash photolysis measurements are performed between 10 and 30°C. The first five time constants decrease with increasing temperature. The calculated thermodynamic parameters indicate that the closing mechanism is controlled by large negative entropy changes. The last time constant is temperature independent, which demonstrates that the photocycle is most likely completed by a series of individual steps recovering the initial structure.
Collapse
Affiliation(s)
- Mirka-Kristin Verhoefen
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University Frankfurt, Max von Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Neumann K, Verhoefen MK, Mewes JM, Dreuw A, Wachtveitl J. Investigating the CO2 uncaging mechanism of nitrophenylacetates by means of fs-IR spectroscopy and quantum chemical calculations. Phys Chem Chem Phys 2011; 13:17367-77. [DOI: 10.1039/c1cp21721f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Matylitsky VV, Dworak L, Wachtveitl J. Donor/Acceptor adsorbates on the surface of metal oxide nanoporous films: a spectroscopic probe for different electron transfer pathways. Chemphyschem 2010; 11:2027-35. [PMID: 20486146 DOI: 10.1002/cphc.200900991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A composite model system which consists of a molecular donor/acceptor pair coupled to the surface of metal oxide nanoporous films is proposed to study the contribution of the surface trap states and their influence on the interfacial ET as well as charge trapping and spatial diffusion processes in films. The photophysics of this donor/acceptor system is investigated by time-resolved transient absorbance spectroscopy in the UV/Vis (347-675 nm) spectral region. Variation of the band gap allows one to disentangle the ET pathways. Adsorption of the donor/acceptor pair on the nonreactive Al(2)O(3) surface shows that coupling to the surface assists electron transfer between adsorbed donor and acceptor molecules, resulting in ultrafast intermolecular electron transfer of approximately 100 fs. On the other hand, a competition between interfacial and intermolecular electron transfer is observed for the donor/acceptor pair coupled to a reactive TiO(2) surface. The subsequent transfer of the conduction band electron to the electron acceptor is examined by monitoring the free charge carrier absorption in the mid-IR (approximately 5 microm) spectral region.
Collapse
Affiliation(s)
- Victor V Matylitsky
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
33
|
Gross R, Wolf MMN, Schumann C, Friedman N, Sheves M, Li L, Engelhard M, Trentmann O, Neuhaus HE, Diller R. Primary photoinduced protein response in bacteriorhodopsin and sensory rhodopsin II. J Am Chem Soc 2010; 131:14868-78. [PMID: 19778046 DOI: 10.1021/ja904218n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Essential for the biological function of the light-driven proton pump, bacteriorhodopsin (BR), and the light sensor, sensory rhodopsin II (SRII), is the coupling of the activated retinal chromophore to the hosting protein moiety. In order to explore the dynamics of this process we have performed ultrafast transient mid-infrared spectroscopy on isotopically labeled BR and SRII samples. These include SRII in D(2)O buffer, BR in H(2)(18)O medium, SRII with (15)N-labeled protein, and BR with (13)C(14)(13)C(15)-labeled retinal chromophore. Via observed shifts of infrared difference bands after photoexcitation and their kinetics we provide evidence for nonchromophore bands in the amide I and the amide II region of BR and SRII. A band around 1550 cm(-1) is very likely due to an amide II vibration. In the amide I region, contributions of modes involving exchangeable protons and modes not involving exchangeable protons can be discerned. Observed bands in the amide I region of BR are not due to bending vibrations of protein-bound water molecules. The observed protein bands appear in the amide I region within the system response of ca. 0.3 ps and in the amide II region within 3 ps, and decay partially in both regions on a slower time scale of 9-18 ps. Similar observations have been presented earlier for BR5.12, containing a nonisomerizable chromophore (R. Gross et al. J. Phys. Chem. B 2009, 113, 7851-7860). Thus, the results suggest a common mechanism for ultrafast protein response in the artificial and the native system besides isomerization, which could be induced by initial chromophore polarization.
Collapse
Affiliation(s)
- Ruth Gross
- University of Kaiserslautern, Department of Physics, Erwin-Schrodinger-Strasse, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nuernberger P, Lee KF, Bonvalet A, Polack T, Vos MH, Alexandrou A, Joffre M. Suppression of perturbed free-induction decay and noise in experimental ultrafast pump-probe data. OPTICS LETTERS 2009; 34:3226-3228. [PMID: 19838281 DOI: 10.1364/ol.34.003226] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We apply a Fourier filtering technique for the global removal of coherent contributions, like perturbed free-induction decay, and noise, to experimental pump-probe spectra. A further filtering scheme gains access to spectra otherwise only recordable by scanning the probe's center frequency with adjustable spectral resolution. These methods cleanse pump-probe data and allow improved visualization and simpler analysis of the contained dynamics. We demonstrate these filters using visible pump/mid-infrared probe spectroscopy of ligand dissociation in carboxyhemoglobin.
Collapse
|
35
|
Lörinczi É, Verhoefen MK, Wachtveitl J, Woerner AC, Glaubitz C, Engelhard M, Bamberg E, Friedrich T. Voltage- and pH-Dependent Changes in Vectoriality of Photocurrents Mediated by Wild-type and Mutant Proteorhodopsins upon Expression in Xenopus Oocytes. J Mol Biol 2009; 393:320-41. [DOI: 10.1016/j.jmb.2009.07.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/15/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
|
36
|
Verhoefen MK, Lenz MO, Amarie S, Klare JP, Tittor J, Oesterhelt D, Engelhard M, Wachtveitl J. Primary Reaction of Sensory Rhodopsin II Mutant D75N and the Influence of Azide. Biochemistry 2009; 48:9677-83. [DOI: 10.1021/bi901197c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mirka-Kristin Verhoefen
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Martin O. Lenz
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Sergiu Amarie
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Johann P. Klare
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44139 Dortmund, Germany
| | - Jörg Tittor
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Dieter Oesterhelt
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Martin Engelhard
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44139 Dortmund, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
37
|
Solid-state NMR and functional studies on proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:697-705. [DOI: 10.1016/j.bbabio.2009.02.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/19/2022]
|
38
|
Gross R, Schumann C, Wolf MMN, Herbst J, Diller R, Friedman N, Sheves M. Ultrafast Protein Conformational Alterations in Bacteriorhodopsin and Its Locked Analogue BR5.12. J Phys Chem B 2009; 113:7851-60. [PMID: 19422251 DOI: 10.1021/jp810042f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruth Gross
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Christian Schumann
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias M. N. Wolf
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes Herbst
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rolf Diller
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Friedman
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mordechai Sheves
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
39
|
Verhoefen MK, Neumann K, Weber I, Glaubitz C, Wachtveitl J. Primary Reaction Dynamics of Proteorhodopsin Mutant D97N Observed by Femtosecond Infrared and Visible Spectroscopy. Photochem Photobiol 2009; 85:540-6. [DOI: 10.1111/j.1751-1097.2008.00513.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Schäfer G, Shastri S, Verhoefen MK, Vogel V, Glaubitz C, Wachtveitl J, Mäntele W. Characterizing the Structure and Photocycle of PR 2D Crystals with CD and FTIR Spectroscopy. Photochem Photobiol 2009; 85:529-34. [DOI: 10.1111/j.1751-1097.2008.00491.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Dworak L, Matylitsky VV, Wachtveitl J. Ultrafast Photoinduced Processes in Alizarin-Sensitized Metal Oxide Mesoporous Films. Chemphyschem 2009; 10:384-91. [DOI: 10.1002/cphc.200800533] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|