1
|
Rusková R, Račko D. Knot Formation on DNA Pushed Inside Chiral Nanochannels. Polymers (Basel) 2023; 15:4185. [PMID: 37896430 PMCID: PMC10611388 DOI: 10.3390/polym15204185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
We performed coarse-grained molecular dynamics simulations of DNA polymers pushed inside infinite open chiral and achiral channels. We investigated the behavior of the polymer metrics in terms of span, monomer distributions and changes of topological state of the polymer in the channels. We also compared the regime of pushing a polymer inside the infinite channel to the case of polymer compression in finite channels of knot factories investigated in earlier works. We observed that the compression in the open channels affects the polymer metrics to different extents in chiral and achiral channels. We also observed that the chiral channels give rise to the formation of equichiral knots with the same handedness as the handedness of the chiral channels.
Collapse
Affiliation(s)
- Renáta Rusková
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Dušan Račko
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
2
|
Si DQ, Liu XY, Wu JB, Hu GH. Modulation of DNA conformation in electrolytic nanodroplets. Phys Chem Chem Phys 2022; 24:6002-6010. [PMID: 35199810 DOI: 10.1039/d1cp05329a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The behavior of deoxyribonucleic acid (DNA) molecules in confinement is of profound importance in various bioengineering and medical applications. In the present study, all-atom molecular dynamics simulation is utilized to investigate the transition of the double-strand DNA (dsDNA) conformation in the electrolytic nanodroplet. Three typical conformations, i.e., C-shaped, folded S-shaped, and double C-shaped, are observed for different droplet sizes and ionic concentrations. To reveal the physics underlying this phenomenon, the characteristics of the dsDNA molecules, such as the overcharging intensity, the end-to-end distance, the radius of gyration, etc. are analyzed in detail based on the numerical results. It is found that the transition can be ascribed to the buckling of the polymer molecules under the compression due to the confinement of the nanodroplet, and it can be modulated by the ionic concentration in the electrolyte. Generally, nanoscale confinement dominates dsDNA behavior over the electrostatic effects in smaller nanodroplets, while the latter becomes more important for larger nanodroplets. This competition results in the persistence length increasing with the nanodroplet radii. Based on these discussions, a non-dimensional elasto-capillary number μ is proposed to classify the dsDNA conformations into three regions.
Collapse
Affiliation(s)
- Dong-Qing Si
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China.
| | - Xin-Yue Liu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China.
| | - Jin-Bo Wu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Guo-Hui Hu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China.
| |
Collapse
|
3
|
Roca J, Dyson S, Segura J, Valdés A, Martínez-García B. Keeping intracellular DNA untangled: A new role for condensin? Bioessays 2021; 44:e2100187. [PMID: 34761394 DOI: 10.1002/bies.202100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022]
Abstract
The DNA-passage activity of topoisomerase II accidentally produces DNA knots and interlinks within and between chromatin fibers. Fortunately, these unwanted DNA entanglements are actively removed by some mechanism. Here we present an outline on DNA knot formation and discuss recent studies that have investigated how intracellular DNA knots are removed. First, although topoisomerase II is able to minimize DNA entanglements in vitro to below equilibrium values, it is unclear whether such capacity performs equally in vivo in chromatinized DNA. Second, DNA supercoiling could bias topoisomerase II to untangle the DNA. However, experimental evidence indicates that transcriptional supercoiling of intracellular DNA boosts knot formation. Last, cohesin and condensin could tighten DNA entanglements via DNA loop extrusion (LE) and force their dissolution by topoisomerase II. Recent observations indicate that condensin activity promotes the removal of DNA knots during interphase and mitosis. This activity might facilitate the spatial organization and dynamics of chromatin.
Collapse
Affiliation(s)
- Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Silvia Dyson
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Antonio Valdés
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Belén Martínez-García
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
4
|
Park CB, Sung BJ. Effects of Packaging History on the Ejection of a Polymer Chain from a Small Confinement. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Chung Bin Park
- Department of Chemistry and Research Institute for Basic Science, Sogang University, Seoul 04107, Republic of Korea
| | - Bong June Sung
- Department of Chemistry and Research Institute for Basic Science, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
5
|
Dyson S, Segura J, Martínez‐García B, Valdés A, Roca J. Condensin minimizes topoisomerase II-mediated entanglements of DNA in vivo. EMBO J 2021; 40:e105393. [PMID: 33155682 PMCID: PMC7780148 DOI: 10.15252/embj.2020105393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/10/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022] Open
Abstract
The juxtaposition of intracellular DNA segments, together with the DNA-passage activity of topoisomerase II, leads to the formation of DNA knots and interlinks, which jeopardize chromatin structure and gene expression. Recent studies in budding yeast have shown that some mechanism minimizes the knotting probability of intracellular DNA. Here, we tested whether this is achieved via the intrinsic capacity of topoisomerase II for simplifying the equilibrium topology of DNA; or whether it is mediated by SMC (structural maintenance of chromosomes) protein complexes like condensin or cohesin, whose capacity to extrude DNA loops could enforce dissolution of DNA knots by topoisomerase II. We show that the low knotting probability of DNA does not depend on the simplification capacity of topoisomerase II nor on the activities of cohesin or Smc5/6 complexes. However, inactivation of condensin increases the occurrence of DNA knots throughout the cell cycle. These results suggest an in vivo role for the DNA loop extrusion activity of condensin and may explain why condensin disruption produces a variety of alterations in interphase chromatin, in addition to persistent sister chromatid interlinks in mitotic chromatin.
Collapse
Grants
- BFU2015-67007-P Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- PID2019-109482GB-I00 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- BES-2016-077806 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- BES-2012-061167 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- BES-2015-071597 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
Collapse
Affiliation(s)
- Sílvia Dyson
- Molecular Biology Institute of Barcelona (IBMB)Spanish National Research Council (CSIC)BarcelonaSpain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB)Spanish National Research Council (CSIC)BarcelonaSpain
| | - Belén Martínez‐García
- Molecular Biology Institute of Barcelona (IBMB)Spanish National Research Council (CSIC)BarcelonaSpain
| | - Antonio Valdés
- Molecular Biology Institute of Barcelona (IBMB)Spanish National Research Council (CSIC)BarcelonaSpain
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB)Spanish National Research Council (CSIC)BarcelonaSpain
| |
Collapse
|
6
|
Valdés A, Coronel L, Martínez-García B, Segura J, Dyson S, Díaz-Ingelmo O, Micheletti C, Roca J. Transcriptional supercoiling boosts topoisomerase II-mediated knotting of intracellular DNA. Nucleic Acids Res 2020; 47:6946-6955. [PMID: 31165864 PMCID: PMC6649788 DOI: 10.1093/nar/gkz491] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/04/2022] Open
Abstract
Recent studies have revealed that the DNA cross-inversion mechanism of topoisomerase II (topo II) not only removes DNA supercoils and DNA replication intertwines, but also produces small amounts of DNA knots within the clusters of nucleosomes that conform to eukaryotic chromatin. Here, we examine how transcriptional supercoiling of intracellular DNA affects the occurrence of these knots. We show that although (−) supercoiling does not change the basal DNA knotting probability, (+) supercoiling of DNA generated in front of the transcribing complexes increases DNA knot formation over 25-fold. The increase of topo II-mediated DNA knotting occurs both upon accumulation of (+) supercoiling in topoisomerase-deficient cells and during normal transcriptional supercoiling of DNA in TOP1 TOP2 cells. We also show that the high knotting probability (Pkn ≥ 0.5) of (+) supercoiled DNA reflects a 5-fold volume compaction of the nucleosomal fibers in vivo. Our findings indicate that topo II-mediated DNA knotting could be inherent to transcriptional supercoiling of DNA and other chromatin condensation processes and establish, therefore, a new crucial role of topoisomerase II in resetting the knotting–unknotting homeostasis of DNA during chromatin dynamics.
Collapse
Affiliation(s)
- Antonio Valdés
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Lucia Coronel
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Belén Martínez-García
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Sílvia Dyson
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Ofelia Díaz-Ingelmo
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| |
Collapse
|
7
|
Chromatin Is Frequently Unknotted at the Megabase Scale. Biophys J 2019; 118:2268-2279. [PMID: 31818464 PMCID: PMC7202934 DOI: 10.1016/j.bpj.2019.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
Knots in the human genome would greatly impact diverse cellular processes ranging from transcription to gene regulation. To date, it has not been possible to directly examine the genome in vivo for the presence of knots. Recently, methods for serial fluorescent in situ hybridization have made it possible to measure the three-dimensional position of dozens of consecutive genomic loci in vivo. However, the determination of whether genomic trajectories are knotted remains challenging because small errors in the localization of a single locus can transform an unknotted trajectory into a highly knotted trajectory and vice versa. Here, we use stochastic closure analysis to determine if a genomic trajectory is knotted in the setting of experimental noise. We analyze 4727 deposited genomic trajectories of a 2-Mb-long chromatin interval from human chromosome 21. For 243 of these trajectories, their knottedness could be reliably determined despite the possibility of localization errors. Strikingly, in each of these 243 cases, the trajectory was unknotted. We note a potential source of bias insofar as knotted contours may be more difficult to reliably resolve. Nevertheless, our data are consistent with a model in which, at the scales probed, the human genome is often free of knots.
Collapse
|
8
|
Affiliation(s)
- Liang Dai
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Beatrice W. Soh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Valdés A, Segura J, Dyson S, Martínez-García B, Roca J. DNA knots occur in intracellular chromatin. Nucleic Acids Res 2019; 46:650-660. [PMID: 29149297 PMCID: PMC5778459 DOI: 10.1093/nar/gkx1137] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/28/2017] [Indexed: 01/12/2023] Open
Abstract
In vivo DNA molecules are narrowly folded within chromatin fibers and self-interacting chromatin domains. Therefore, intra-molecular DNA entanglements (knots) might occur via DNA strand passage activity of topoisomerase II. Here, we assessed the presence of such DNA knots in a variety of yeast circular minichromosomes. We found that small steady state fractions of DNA knots are common in intracellular chromatin. These knots occur irrespective of DNA replication and cell proliferation, though their abundance is reduced during DNA transcription. We found also that in vivo DNA knotting probability does not scale proportionately with chromatin length: it reaches a value of ∼0.025 in domains of ∼20 nucleosomes but tends to level off in longer chromatin fibers. These figures suggest that, while high flexibility of nucleosomal fibers and clustering of nearby nucleosomes facilitate DNA knotting locally, some mechanism minimizes the scaling of DNA knot formation throughout intracellular chromatin. We postulate that regulation of topoisomerase II activity and the fractal architecture of chromatin might be crucial to prevent a potentially massive and harmful self-entanglement of DNA molecules in vivo.
Collapse
Affiliation(s)
- Antonio Valdés
- Molecular Biology Institute of Barcelona (IBMB); Spanish National Research Council (CSIC); Barcelona 08028; Spain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB); Spanish National Research Council (CSIC); Barcelona 08028; Spain
| | - Sílvia Dyson
- Molecular Biology Institute of Barcelona (IBMB); Spanish National Research Council (CSIC); Barcelona 08028; Spain
| | - Belén Martínez-García
- Molecular Biology Institute of Barcelona (IBMB); Spanish National Research Council (CSIC); Barcelona 08028; Spain
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB); Spanish National Research Council (CSIC); Barcelona 08028; Spain
| |
Collapse
|
10
|
The Rabl configuration limits topological entanglement of chromosomes in budding yeast. Sci Rep 2019; 9:6795. [PMID: 31043625 PMCID: PMC6494875 DOI: 10.1038/s41598-019-42967-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
The three dimensional organization of genomes remains mostly unknown due to their high degree of condensation. Biophysical studies predict that condensation promotes the topological entanglement of chromatin fibers and the inhibition of function. How organisms balance between functionally active genomes and a high degree of condensation remains to be determined. Here we hypothesize that the Rabl configuration, characterized by the attachment of centromeres and telomeres to the nuclear envelope, helps to reduce the topological entanglement of chromosomes. To test this hypothesis we developed a novel method to quantify chromosome entanglement complexity in 3D reconstructions obtained from Chromosome Conformation Capture (CCC) data. Applying this method to published data of the yeast genome, we show that computational models implementing the attachment of telomeres or centromeres alone are not sufficient to obtain the reduced entanglement complexity observed in 3D reconstructions. It is only when the centromeres and telomeres are attached to the nuclear envelope (i.e. the Rabl configuration) that the complexity of entanglement of the genome is comparable to that of the 3D reconstructions. We therefore suggest that the Rabl configuration is an essential player in the simplification of the entanglement of chromatin fibers.
Collapse
|
11
|
Najafi S. Topological entanglement of interlocked knotted-unknotted polymer rings. SOFT MATTER 2019; 15:1916-1921. [PMID: 30734820 DOI: 10.1039/c8sm02530d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Topological entanglements in biopolymers could drive them to certain internal statics and dynamics with important implications for biological functions. In this study, by means of molecular dynamics simulations, we demonstrate that the minimal crossing pattern of a braid plays a major role in its structural and dynamical properties; the braid consists of a knotted ring and an interlocked entwined unknotted polymer ring. In particular, we show that depending on the bending rigidity of the chains, the conformational energy of the braid can be either lower or higher than the unlocked polymer rings. Additionally, we find that a non-identical crossing pattern in the braid could distinctly enforce concerted internal conformational fluctuations between the interlocked rings.
Collapse
Affiliation(s)
- Saeed Najafi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Bimodality in the knotting probability of semiflexible rings suggested by mapping with self-avoiding polygons. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Affiliation(s)
- Liang Dai
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre, Singapore 117543
| | - Patrick S. Doyle
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre, Singapore 117543
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Liebetreu M, Ripoll M, Likos CN. Trefoil Knot Hydrodynamic Delocalization on Sheared Ring Polymers. ACS Macro Lett 2018; 7:447-452. [PMID: 35619341 DOI: 10.1021/acsmacrolett.8b00059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The behavior of unknotted and trefoil-knotted ring polymers under shear flow is here examined by means of mesoscopic simulations. In contrast to most polymers, ring polymers in a hydrodynamic solvent at high shear rates do not get shortened in the vorticity direction. This is a consequence of the backflow produced by the interaction of the sheared solvent with the end-free polymer topology. The extended structures of the ring in the vorticity-flow plane, when they are aligned in a constant velocity plane, favor ring contour fluctuations. This variety of conformations largely suppresses the tank-treading type of rotation with extended conformations in favor of the tumbling type of rotations, where stretched and collapsed conformations alternate. The extension of trefoil knots is also enhanced, so that the knots become delocalized. We anticipate that these effects, which disappear in the absence of hydrodynamic interactions, will have a crucial impact on the rheological properties of concentrated ring solutions, and will also influence the behavior of more complicated systems such as mixtures of polymers with different topologies.
Collapse
Affiliation(s)
- Maximilian Liebetreu
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Marisol Ripoll
- Forschungszentrum Jülich, Institute of Complex Systems, Theoretical Soft Matter and Biophysics, 52425 Jülich, Germany
| | - Christos N. Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
15
|
Zhao Y, Dabrowski-Tumanski P, Niewieczerzal S, Sulkowska JI. The exclusive effects of chaperonin on the behavior of proteins with 52 knot. PLoS Comput Biol 2018; 14:e1005970. [PMID: 29547629 PMCID: PMC5874080 DOI: 10.1371/journal.pcbi.1005970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/28/2018] [Accepted: 01/12/2018] [Indexed: 02/05/2023] Open
Abstract
The folding of proteins with a complex knot is still an unresolved question. Based on representative members of Ubiquitin C-terminal Hydrolases (UCHs) that contain the 52 knot in the native state, we explain how UCHs are able to unfold and refold in vitro reversibly within the structure-based model. In particular, we identify two, topologically different folding/unfolding pathways and corroborate our results with experiment, recreating the chevron plot. We show that confinement effect of chaperonin or weak crowding greatly facilitates folding, simultaneously slowing down the unfolding process of UCHs, compared with bulk conditions. Finally, we analyze the existence of knots in the denaturated state of UCHs. The results of the work show that the crowded environment of the cell should have a positive effect on the kinetics of complex knotted proteins, especially when proteins with deeper knots are found in this family. Self-tying of knotted proteins remains a challenge both for theoreticians and experimentalist. In this work, we study the proteins with complex, the 52 knot, in a bulk and confined within a chaperonin box. We show that in our model we recreate the experimental results, identify two topologically distinct folding pathways and explain the beneficial role of confinement for complex knotted proteins. Encapsulation provides a possibility to fold via alternative pathway—folding via trefoil intermediate knot (N-terminal pathway) from entropic reason while folding via the C-terminal (direct tying) appears with the same probability. The results of this work show, how crowded environment in the real cell may enhance self-tying of proteins. The results are also the first step to the identification of possible oligomerization-prone forms of UCHs, which may cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Yani Zhao
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dabrowski-Tumanski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | - Joanna I. Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
16
|
Soh BW, Narsimhan V, Klotz AR, Doyle PS. Knots modify the coil-stretch transition in linear DNA polymers. SOFT MATTER 2018; 14:1689-1698. [PMID: 29423476 DOI: 10.1039/c7sm02195j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We perform single-molecule DNA experiments to investigate the relaxation dynamics of knotted polymers and examine the steady-state behavior of knotted polymers in elongational fields. The occurrence of a knot reduces the relaxation time of a molecule and leads to a shift in the molecule's coil-stretch transition to larger strain rates. We measure chain extension and extension fluctuations as a function of strain rate for unknotted and knotted molecules. The curves for knotted molecules can be collapsed onto the unknotted curves by defining an effective Weissenberg number based on the measured knotted relaxation time in the low extension regime, or a relaxation time based on Rouse/Zimm scaling theories in the high extension regime. Because a knot reduces a molecule's relaxation time, we observe that knot untying near the coil-stretch transition can result in dramatic changes in the molecule's conformation. For example, a knotted molecule at a given strain rate can experience a stretch-coil transition, followed by a coil-stretch transition, after the knot partially or fully unties.
Collapse
Affiliation(s)
- Beatrice W Soh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Vivek Narsimhan
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Alexander R Klotz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
17
|
Soler MA, Rey A, Faísca PFN. Steric confinement and enhanced local flexibility assist knotting in simple models of protein folding. Phys Chem Chem Phys 2018; 18:26391-26403. [PMID: 27722468 DOI: 10.1039/c6cp05086g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The chaperonin complex GroEL-GroES is able to accelerate the folding process of knotted proteins considerably. However, the folding mechanism inside the chaperonin cage is elusive. Here we use a combination of lattice and off-lattice Monte Carlo simulations of simple Gō models to study the effect of physical confinement and local flexibility on the folding process of protein model systems embedding a trefoil knot in their native structure. This study predicts that steric confinement plays a specific role in the folding of knotted proteins by increasing the knotting probability for very high degrees of confinement. This effect is observed for protein MJ0366 even above the melting temperature for confinement sizes compatible with the size of the GroEL/GroES chaperonin cage. An enhanced local flexibility produces the same qualitative effects on the folding process. In particular, we observe that knotting probability increases up to 40% in the transition state of protein MJ0366 when flexibility is enhanced. This is underlined by a structural change in the transition state, which becomes devoid of helical content. No relation between the knotting mechanism and flexibility was found in the context of the off-lattice model adopted in this work.
Collapse
Affiliation(s)
- Miguel A Soler
- Dipartimento di Scienze Mediche e Biologiche, Universita' di Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Antonio Rey
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| | - Patrícia F N Faísca
- Departamento de Física and BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
18
|
|
19
|
Siebert JT, Kivel AN, Atkinson LP, Stevens TJ, Laue ED, Virnau P. Are There Knots in Chromosomes? Polymers (Basel) 2017; 9:polym9080317. [PMID: 30971010 PMCID: PMC6418659 DOI: 10.3390/polym9080317] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/02/2023] Open
Abstract
Recent developments have for the first time allowed the determination of three-dimensional structures of individual chromosomes and genomes in nuclei of single haploid mouse embryonic stem (ES) cells based on Hi⁻C chromosome conformation contact data. Although these first structures have a relatively low resolution, they provide the first experimental data that can be used to study chromosome and intact genome folding. Here we further analyze these structures and provide the first evidence that G1 phase chromosomes are knotted, consistent with the fact that plots of contact probability vs sequence separation show a power law dependence that is intermediate between that of a fractal globule and an equilibrium structure.
Collapse
Affiliation(s)
- Jonathan T Siebert
- Department of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
| | - Alexey N Kivel
- Department of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
| | - Liam P Atkinson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Peter Virnau
- Department of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
| |
Collapse
|
20
|
Abstract
We use an accurate coarse-grained model for DNA and stochastic molecular dynamics simulations to study the pore translocation of 10-kbp-long DNA rings that are knotted. By monitoring various topological and physical observables we find that there is not one, as previously assumed, but rather two qualitatively different modes of knot translocation. For both modes the pore obstruction caused by knot passage has a brief duration and typically occurs at a late translocation stage. Both effects are well in agreement with experiments and can be rationalized with a transparent model based on the concurrent tensioning and sliding of the translocating knotted chains. We also observed that the duration of the pore obstruction event is more controlled by the knot translocation velocity than the knot size. These features should advance the interpretation and design of future experiments aimed at probing the spontaneous knotting of biopolymers.
Collapse
Affiliation(s)
- Antonio Suma
- Molecular and Statistical Biophysics, International School for Advanced Studies (SISSA), I-34136 Trieste, Italy
| | - Cristian Micheletti
- Molecular and Statistical Biophysics, International School for Advanced Studies (SISSA), I-34136 Trieste, Italy
| |
Collapse
|
21
|
Jain A, Dorfman KD. Simulations of knotting of DNA during genome mapping. BIOMICROFLUIDICS 2017; 11:024117. [PMID: 28798853 PMCID: PMC5533507 DOI: 10.1063/1.4979605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/21/2017] [Indexed: 05/28/2023]
Abstract
Genome mapping involves the confinement of long DNA molecules, in excess of 150 kilobase pairs, in nanochannels near the circa 50 nm persistence length of DNA. The fidelity of the map relies on the assumption that the DNA is linearized by channel confinement, which assumes the absence of knots. We have computed the probability of forming different knot types and the size of these knots for long chains (approximately 164 kilobase pairs) via pruned-enriched Rosenbluth method simulations of a discrete wormlike chain model of DNA in channel sizes ranging from 35 nm to 60 nm. Compared to prior simulations of short DNA in similar confinement, these long molecules exhibit both complex knots, with up to seven crossings, and multiple knots per chain. The knotting probability is a very strong function of channel size, ranging from 0.3% to 60%, and rationalized in the context of Odijk's theory for confined semiflexible chains. Overall, the knotting probability and knot size obtained from these equilibrium measurements are not consistent with experimental measurements of the properties of anomalously bright regions along the DNA backbone during genome mapping experiments. This result suggests that these events in experiments are either knots formed during the processing of the DNA prior to injection into the nanochannel or regions of locally high DNA concentration without a topological constraint. If so, knots during genome mapping are not an intrinsic problem for genome mapping technology.
Collapse
Affiliation(s)
- Aashish Jain
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
22
|
D'Adamo G, Dietler G, Micheletti C. Tuning knot abundance in semiflexible chains with crowders of different sizes: a Monte Carlo study of DNA chains. SOFT MATTER 2016; 12:6708-6715. [PMID: 27443238 DOI: 10.1039/c6sm01327a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We use stochastic simulation techniques to sample the conformational space of linear semiflexible polymers in a crowded medium and study how the knotting properties depend on the crowder size and concentration. The abundance of physical knots in the chains, which for definiteness we model on 10 kb long DNA filaments, is shown to have a non-monotonic, unimodal dependence on the colloid diameter, dc. The maximum incidence of knots occurs when dc is about equal to half of the gyration radius of the isolated chain. The degree of enhancement of knots grows rapidly with the solution density and can be very conspicuous relative to the case of isolated chains with no crowders. For instance, at 30% volume fraction the relative increase is more than fourfold. This dramatic enhancement is shown to originate from the depletion-induced chain compaction over multiple and concurring length scales. The same effect accounts for the variations of the knot length that accompany the changes in knotting probability. The findings suggest that crowded media could be viably used as a passive physical means for controlling and modulating the incidence and length of knots in DNA and other types of semiflexible polymers.
Collapse
Affiliation(s)
- Giuseppe D'Adamo
- SISSA, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy.
| | - Giovanni Dietler
- Institut de Physique des Systèmes Biologiques, Ecole Polytechnique Fédérale de Lausanne, BSP, CH-1015 Lausanne, Switzerland
| | - Cristian Micheletti
- SISSA, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy.
| |
Collapse
|
23
|
Dai L, Renner CB, Doyle PS. The polymer physics of single DNA confined in nanochannels. Adv Colloid Interface Sci 2016; 232:80-100. [PMID: 26782150 DOI: 10.1016/j.cis.2015.12.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022]
Abstract
In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given.
Collapse
Affiliation(s)
- Liang Dai
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Singapore
| | - C Benjamin Renner
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, United States
| | - Patrick S Doyle
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, United States.
| |
Collapse
|
24
|
Lim NCH, Jackson SE. Molecular knots in biology and chemistry. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354101. [PMID: 26291690 DOI: 10.1088/0953-8984/27/35/354101] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules.
Collapse
Affiliation(s)
- Nicole C H Lim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. Faculty of Sciences, Universiti Brunei Darussalam, Gadong BE 1410, Brunei Darussalam
| | | |
Collapse
|
25
|
Affiliation(s)
- Giuseppe D’Adamo
- SISSA, International School for Advanced
Studies, via Bonomea 265, I-34136 Trieste, Italy
| | - Cristian Micheletti
- SISSA, International School for Advanced
Studies, via Bonomea 265, I-34136 Trieste, Italy
| |
Collapse
|
26
|
Najafi S, Potestio R. Two Adhesive Sites Can Enhance the Knotting Probability of DNA. PLoS One 2015; 10:e0132132. [PMID: 26136125 PMCID: PMC4489926 DOI: 10.1371/journal.pone.0132132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023] Open
Abstract
Self-entanglement, or knotting, is entropically favored in long polymers. Relatively short polymers such as proteins can knot as well, but in this case the entanglement is mainly driven by fine-tuned, sequence-specific interactions. The relation between the sequence of a long polymer and its topological state is here investigated by means of a coarse-grained model of DNA. We demonstrate that the introduction of two adhesive regions along the sequence of a self-avoiding chain substantially increases the probability of forming a knot.
Collapse
Affiliation(s)
- Saeed Najafi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Raffaello Potestio
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
27
|
Self-assembling knots of controlled topology by designing the geometry of patchy templates. Nat Commun 2015; 6:6423. [DOI: 10.1038/ncomms7423] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/27/2015] [Indexed: 01/04/2023] Open
|
28
|
Abstract
The ongoing effort to detect and characterize physical entanglement in biopolymers has so far established that knots are present in many globular proteins and also, abound in viral DNA packaged inside bacteriophages. RNA molecules, however, have not yet been systematically screened for the occurrence of physical knots. We have accordingly undertaken the systematic profiling of the several thousand RNA structures present in the Protein Data Bank (PDB). The search identified no more than three deeply knotted RNA molecules. These entries are rRNAs of about 3,000 nt solved by cryo-EM. Their genuine knotted state is, however, doubtful based on the detailed structural comparison with homologs of higher resolution, which are all unknotted. Compared with the case of proteins and viral DNA, the observed incidence of knots in available RNA structures is, therefore, practically negligible. This fact suggests that either evolutionary selection or thermodynamic and kinetic folding mechanisms act toward minimizing the entanglement of RNA to an extent that is unparalleled by other types of biomolecules. A possible general strategy for designing synthetic RNA sequences capable of self-tying in a twist-knot fold is finally proposed.
Collapse
|
29
|
Abstract
The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | | |
Collapse
|
30
|
Micheletti C, Orlandini E. Knotting and Unknotting Dynamics of DNA Strands in Nanochannels. ACS Macro Lett 2014; 3:876-880. [PMID: 35596352 DOI: 10.1021/mz500402s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The self-knotting dynamics of DNA strands confined in nanochannels is studied with Brownian simulations. The model DNA chains are several microns long and placed inside channels that are 50-300 nm wide. This width range covers the transition between different metric scaling regimes and the concomitant drop of DNA knotting probability for channel widths below ∼75 nm. We find that knots typically originate from deep looping and backfoldings of the chain ends. Upon lowering the channel width, backfoldings become shallower and rarer and the lifetime of knots decreases while that of unknots increases. This lifetimes interplay causes the dramatic reduction of knots incidence for increasing confinement. The results can aid the design of nanochannels capable of harnessing the self-knotting dynamics to quench or relax the DNA topological state as desired.
Collapse
Affiliation(s)
- Cristian Micheletti
- SISSA, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy
| | - Enzo Orlandini
- Dipartimento
di Fisica, Sezione CNISM, and Università di Padova, via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|
31
|
Pugno NM. The "Egg of Columbus" for making the world's toughest fibres. PLoS One 2014; 9:e93079. [PMID: 24695084 PMCID: PMC3973575 DOI: 10.1371/journal.pone.0093079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/03/2014] [Indexed: 11/19/2022] Open
Abstract
In this letter we present the "Egg of Columbus" for making fibres with unprecedented toughness: a slider, in the simplest form just a knot, is introduced as frictional element to dissipate additional energy and thus demonstrating the existence of a previously "hidden" toughness. The proof of concept is experimentally realized making the world's toughest fibre, increasing the toughness modulus of a commercial Endumax macroscopic fibre from 44 J/g up to 1070 J/g (and of a zylon microfiber from 20 J/g up to 1400 J/g). The ideal upperbound toughness is expected for graphene, with a theoretical value of ∼10(5) J/g. This new concept, able of maximizing (one fold increment) the structural robustness, could explain the mysterious abundance of knot formations, in spite of their incremental energy cost and topological difficulty, in biological evolved structures, such as DNA strands and proteins.
Collapse
Affiliation(s)
- Nicola M. Pugno
- Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, Università di Trento, Trento, Italy
- Center for Materials and Microsystems, Fondazione Bruno Kessler, Povo (Trento), Italy
- School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Abstract
Bacteriophages initiate infection by releasing their double-stranded DNA into the cytosol of their bacterial host. However, what controls and sets the timescales of DNA ejection? Here we provide evidence from stochastic simulations which shows that the topology and organization of DNA packed inside the capsid plays a key role in determining these properties. Even with similar osmotic pressure pushing out the DNA, we find that spatially ordered DNA spools have a much lower effective friction than disordered entangled states. Such spools are only found when the tendency of nearby DNA strands to align locally is accounted for. This topological or conformational friction also depends on DNA knot type in the packing geometry and slows down or arrests the ejection of twist knots and very complex knots. We also find that the family of (2, 2k+1) torus knots unravel gradually by simplifying their topology in a stepwise fashion. Finally, an analysis of DNA trajectories inside the capsid shows that the knots formed throughout the ejection process mirror those found in gel electrophoresis experiments for viral DNA molecules extracted from the capsids.
Collapse
|
33
|
Abstract
In the present article, we investigate and review the influence of chain stiffness on self-entanglements and knots in a single polymer chain with Monte Carlo simulations spanning good solvent, theta and globular phases. The last-named are of particular importance as a model system for DNA in viral capsids. Intriguingly, the dependence of knot occurrence and complexity with increasing stiffness is non-trivial, but can be understood with a few simple concepts outlined in the present article.
Collapse
|
34
|
Orlandini E, Micheletti C. Knotting of linear DNA in nano-slits and nano-channels: a numerical study. J Biol Phys 2013; 39:267-75. [PMID: 23860873 PMCID: PMC3662413 DOI: 10.1007/s10867-013-9305-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 12/23/2022] Open
Abstract
The amount and type of self-entanglement of DNA filaments is significantly affected by spatial confinement, which is ubiquitous in biological systems. Motivated by recent advancements in single DNA molecule experiments based on nanofluidic devices and by the introduction of algorithms capable of detecting knots in open chains, we investigate numerically the entanglement of linear, open DNA chains confined inside nano-slits. The results regard the abundance, type, and length of occurring knots and are compared with recent findings for DNA inside nano-channels. In both cases, the width of the confining region, D, spans the 30 nm-1 μm range and the confined DNA chains are 1-4 μm long. It is found that the knotting probability is maximum for slit widths in the 70-100 nm range. However, over the considered DNA contour lengths, the maximum incidence of knots remains below 20%, while for channel confinement it tops 50%. Further differences of the entanglement are seen for the average contour length of the knotted region, which drops significantly below D ~100 nm for channel-confinement, while it stays approximately constant for slit-like confinement. These properties ought to reverberate in different kinetic properties of linear DNA depending on confinement and could be detectable experimentally or exploitable in nano-technological applications.
Collapse
Affiliation(s)
- Enzo Orlandini
- />Dipartimento di Fisica e Astronomia and Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Cristian Micheletti
- />SISSA - Scuola Internazionale Superiore di Studi Avanzati and CNR-IOM Democritos, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
35
|
Dai L, van der Maarel JRC, Doyle PS. Effect of Nanoslit Confinement on the Knotting Probability of Circular DNA. ACS Macro Lett 2012; 1:732-736. [PMID: 35607094 DOI: 10.1021/mz3001622] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monte Carlo simulations are used to study the knotting probability of circular DNA confined in a slit. We systematically vary the slit height, the width, and the contour length of the DNA molecule. We find that the trend in knotting probability with respect to slit height can be monotonic or nonmonotonic, depending on the width and contour length. The nonmonotonic trend is caused by two competing factors: the increase of the effective persistence length and the increase of segment density by slit confinement. These factors are antagonistic, in the sense that the increase in effective persistence length disfavors knot formation, whereas the increase in segment density favors the knotting probability. Our simulation results bring to light the importance of both chain length and width for slit-confined circular DNA and can be used to guide future experiments which aim to produce populations of knotted DNA through cyclization or catalyzed double-strand passage reactions in confinement.
Collapse
Affiliation(s)
- Liang Dai
- BioSystems and Micromechanics
(BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 3 Science Drive 2, Republic
of Singapore 117543
| | - Johan R. C. van der Maarel
- BioSystems and Micromechanics
(BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 3 Science Drive 2, Republic
of Singapore 117543
- Department
of Physics, National University of Singapore, 2 Science Drive 3,
Republic of Singapore 117551
| | - Patrick S. Doyle
- BioSystems and Micromechanics
(BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 3 Science Drive 2, Republic
of Singapore 117543
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge,
Massachusetts 02139, United States
| |
Collapse
|
36
|
Bosco A, Bano F, Parisse P, Casalis L, DeSimone A, Micheletti C. Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment. NANOSCALE 2012; 4:1734-1741. [PMID: 22301788 DOI: 10.1039/c2nr11662f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanografted monolayers (NAMs) of DNA show novel physico-chemical properties that make them ideally suited for advanced biosensing applications. In comparison with alternative solid-phase techniques for diagnostic DNA detection, NAMs have the advantage of combining a small size with a high homogeneity of the DNA surface coverage. These two properties favour the extreme miniaturization and ultrasensitivity in high-throughput biosensing devices. The systematic use of NAMs for quantitative DNA (and protein) detection has so far suffered from the lack of a control on key fabrication parameters, such as the ss- or ds-DNA surface coverage. Here we report on a combined experimental-computational study that allows us to estimate the surface density of the grafted DNA by analyzing the sample mechanical response, that is the DNA patch height vs. applied tip load curves. It is shown that the same analysis scheme can be used to detect the occurrence of hybridization with complementary strands in solution and estimate its efficiency. Thanks to these quantitative relationships it is possible to use a single AFM-based setup to: (i) fabricate a DNA NAM, (ii) control the DNA surface coverage, and (iii) characterize its level of hybridization helping the design of NAMs with pre-determined fabrication parameters.
Collapse
Affiliation(s)
- Alessandro Bosco
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Swetnam A, Brett C, Allen MP. Phase diagrams of knotted and unknotted ring polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031804. [PMID: 22587116 DOI: 10.1103/physreve.85.031804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Indexed: 05/31/2023]
Abstract
The phase diagram for a lattice ring polymer under applied force, with variable solvent quality, for different topological knot states, is determined for the first time. In addition to eliminating pseudophases where the polymer is flattened into a single layer, it is found that nontrivial knots result in additional pseudophases under tensile force conditions.
Collapse
Affiliation(s)
- Adam Swetnam
- Department of Physics, University of Warwick, Coventry, United Kingdom
| | | | | |
Collapse
|
38
|
Reith D, Cifra P, Stasiak A, Virnau P. Effective stiffening of DNA due to nematic ordering causes DNA molecules packed in phage capsids to preferentially form torus knots. Nucleic Acids Res 2012; 40:5129-37. [PMID: 22362732 PMCID: PMC3367193 DOI: 10.1093/nar/gks157] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Observation that DNA molecules in bacteriophage capsids preferentially form torus type of knots provided a sensitive gauge to evaluate various models of DNA arrangement in phage heads. Only models resulting in a preponderance of torus knots could be considered as close to reality. Recent studies revealed that experimentally observed enrichment of torus knots can be qualitatively reproduced in numerical simulations that include a potential inducing nematic arrangement of tightly packed DNA molecules within phage capsids. Here, we investigate what aspects of the nematic arrangement are crucial for inducing formation of torus knots. Our results indicate that the effective stiffening of DNA by the nematic arrangement not only promotes knotting in general but is also the decisive factor in promoting formation of DNA torus knots in phage capsids.
Collapse
Affiliation(s)
- Daniel Reith
- Institut für Physik, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
39
|
Micheletti C, Orlandini E. Numerical Study of Linear and Circular Model DNA Chains Confined in a Slit: Metric and Topological Properties. Macromolecules 2012. [DOI: 10.1021/ma202503k] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Cristian Micheletti
- SISSA—Scuola Internazionale Superiore di Studi Avanzati and CNR-IOM Democritos, Via Bonomea 265, 34136 Trieste, Italy
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| |
Collapse
|
40
|
Role of DNA-DNA interactions on the structure and thermodynamics of bacteriophages Lambda and P4. J Struct Biol 2010; 174:137-46. [PMID: 21074621 DOI: 10.1016/j.jsb.2010.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/26/2010] [Accepted: 11/04/2010] [Indexed: 11/21/2022]
Abstract
Electrostatic interactions play an important role in both packaging of DNA inside bacteriophages and its release into bacterial cells. While at physiological conditions DNA strands repel each other, the presence of polyvalent cations such as spermine and spermidine in solutions leads to the formation of DNA condensates. In this study, we discuss packaging of DNA into bacteriophages P4 and Lambda under repulsive and attractive conditions using a coarse-grained model of DNA and capsids. Packaging under repulsive conditions leads to the appearance of the coaxial spooling conformations; DNA occupies all available space inside the capsid. Under the attractive potential both packed systems reveal toroidal conformations, leaving the central part of the capsids empty. We also present a detailed thermodynamic analysis of packaging and show that the forces required to pack the genomes in the presence of polyamines are significantly lower than those observed under repulsive conditions. The analysis reveals that in both the repulsive and attractive regimes the entropic penalty of DNA confinement has a significant non-negligible contribution into the total energy of packaging. Additionally we report the results of simulations of DNA condensation inside partially packed Lambda. We found that at low densities DNA behaves as free unconfined polymer and condenses into the toroidal structures; at higher densities rearrangement of the genome into toroids becomes hindered, and condensation results in the formation of non-equilibrium structures. In all cases packaging in a specific conformation occurs as a result of interplay between bending stresses experienced by the confined polymer and interactions between the strands.
Collapse
|
41
|
Baiesi M, Orlandini E, Whittington SG. Interplay between writhe and knotting for swollen and compact polymers. J Chem Phys 2010; 131:154902. [PMID: 20568879 DOI: 10.1063/1.3244643] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of the topology and its relation with the geometry of biopolymers under different physical conditions is a nontrivial and interesting problem. Aiming at understanding this issue for a related simpler system, we use Monte Carlo methods to investigate the interplay between writhe and knotting of ring polymers in good and poor solvents. The model that we consider is interacting self-avoiding polygons on the simple cubic lattice. For polygons with fixed knot type, we find a writhe distribution whose average depends on the knot type but is insensitive to the length N of the polygon and to solvent conditions. This "topological contribution" to the writhe distribution has a value that is consistent with that of ideal knots. The standard deviation of the writhe increases approximately as square root(N) in both regimes, and this constitutes a geometrical contribution to the writhe. If the sum over all knot types is considered, the scaling of the standard deviation changes, for compact polygons, to approximately N(0.6). We argue that this difference between the two regimes can be ascribed to the topological contribution to the writhe that, for compact chains, overwhelms the geometrical one, thanks to the presence of a large population of complex knots at relatively small values of N. For polygons with fixed writhe, we find that the knot distribution depends on the chosen writhe, with the occurrence of achiral knots being considerably suppressed for large writhe. In general, the occurrence of a given knot thus depends on a nontrivial interplay between writhe, chain length, and solvent conditions.
Collapse
Affiliation(s)
- Marco Baiesi
- Instituut voor Theoretische Fysica, K. U. Leuven, Celestijnenlaan 200D 3001, Belgium
| | | | | |
Collapse
|
42
|
Liu Z, Zechiedrich L, Chan HS. Action at hooked or twisted-hooked DNA juxtapositions rationalizes unlinking preference of type-2 topoisomerases. J Mol Biol 2010; 400:963-82. [PMID: 20460130 PMCID: PMC6794154 DOI: 10.1016/j.jmb.2010.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/03/2010] [Indexed: 01/30/2023]
Abstract
The mathematical basis of the hypothesis that type-2 topoisomerases recognize and act at specific DNA juxtapositions has been investigated by coarse-grained lattice polymer models, showing that selective segment passages at hooked juxtapositions can result in dramatic reductions in catenane and knot populations. The lattice modeling approach is here extended to account for the narrowing of variance of linking number (Lk) of DNA circles by type-2 topoisomerases. In general, the steady-state variance of Lk resulting from selective segment passages at a specific juxtaposition geometry j is inversely proportional to the average linking number, Lk(j), of circles with the given juxtaposition. Based on this formulation, we demonstrate that selective segment passages at hooked juxtapositions reduce the variance of Lk. The dependence of this effect on model DNA circle size is remarkably similar to that observed experimentally for type-2 topoisomerases, which appear to be less capable in narrowing Lk variance for small DNA circles than for larger DNA circles. This behavior is rationalized by a substantial cancellation of writhe in small circles with hook-like juxtapositions. During our simulations, we uncovered a twisted variation of the hooked juxtaposition that has an even more dramatic effect on Lk variance narrowing than the hooked juxtaposition. For an extended set of juxtapositions, we detected a significant correlation between the Lk narrowing potential and the logarithmic decatenating and unknotting potentials for a given juxtaposition, a trend reminiscent of scaling relations observed with experimental measurements on type-2 topoisomerases from a variety of organisms. The consistent agreement between theory and experiment argues for type-2 topoisomerase action at hooked or twisted-hooked DNA juxtapositions.
Collapse
Affiliation(s)
- Zhirong Liu
- College of Chemistry and Molecular Engineering, Center for Theoretical Biology, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Departments of Biochemistry and of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hue Sun Chan
- Departments of Biochemistry and of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
| |
Collapse
|
43
|
Potestio R, Micheletti C, Orland H. Knotted vs. unknotted proteins: evidence of knot-promoting loops. PLoS Comput Biol 2010; 6:e1000864. [PMID: 20686683 PMCID: PMC2912335 DOI: 10.1371/journal.pcbi.1000864] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/22/2010] [Indexed: 11/29/2022] Open
Abstract
Knotted proteins, because of their ability to fold reversibly in the same topologically entangled conformation, are the object of an increasing number of experimental and theoretical studies. The aim of the present investigation is to assess, on the basis of presently available structural data, the extent to which knotted proteins are isolated instances in sequence or structure space, and to use comparative schemes to understand whether specific protein segments can be associated to the occurrence of a knot in the native state. A significant sequence homology is found among a sizeable group of knotted and unknotted proteins. In this family, knotted members occupy a primary sub-branch of the phylogenetic tree and differ from unknotted ones only by additional loop segments. These “knot-promoting” loops, whose virtual bridging eliminates the knot, are found in various types of knotted proteins. Valuable insight into how knots form, or are encoded, in proteins could be obtained by targeting these regions in future computational studies or excision experiments. Out of the tens of thousands of known protein structures, only a few hundred are knotted. The latter epitomize, better than unknotted proteins, the degree of coordinated motion of the backbone required to fold reversibly in a specific native conformation, which indeed must contain a precise knot in a specific protein region. In the present work we search for salient features associated to protein “knottedness” through a systematic sequence and structure comparison of knotted and unknotted protein chains. A significant sequence relatedness is found within a sizeable group of knotted and unknotted proteins. Their tree of sequence relatedness suggests that the knotted entries all diverged from a specific evolutionary event. The systematic structural comparison further indicates that the knottedness of several different types of proteins is likely ascribable to the presence of short “knot-promoting” loops. These segments, whose bridging eliminates the knot, are natural candidates for future experimental/computational studies aimed at clarifying whether the global knotted state of a protein is influenced by specific regions of the primary sequence.
Collapse
Affiliation(s)
- Raffaello Potestio
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Cristian Micheletti
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
- DEMOCRITOS CNR-IOM, Trieste, Italy
- Italian Institute of Technology (SISSA unit), Trieste, Italy
- * E-mail:
| | - Henri Orland
- Institut de Physique Théorique, CEA, Gif-sur-Yvette, France
| |
Collapse
|
44
|
Marenduzzo D, Micheletti C, Orlandini E. Biopolymer organization upon confinement. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:283102. [PMID: 21399272 DOI: 10.1088/0953-8984/22/28/283102] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered.
Collapse
Affiliation(s)
- D Marenduzzo
- SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK
| | | | | |
Collapse
|
45
|
Abstract
Knots appear in a wide variety of biophysical systems, ranging from biopolymers, such as DNA and proteins, to macroscopic objects, such as umbilical cords and catheters. Although significant advancements have been made in the mathematical theory of knots and some progress has been made in the statistical mechanics of knots in idealized chains, the mechanisms and dynamics of knotting in biophysical systems remain far from fully understood. We report on recent progress in the biophysics of knotting-the formation, characterization, and dynamics of knots in various biophysical contexts.
Collapse
Affiliation(s)
- Dario Meluzzi
- Department of Nanoengineering, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
46
|
Ostermeir K, Alim K, Frey E. Buckling of stiff polymer rings in weak spherical confinement. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:061802. [PMID: 20866431 DOI: 10.1103/physreve.81.061802] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Indexed: 05/29/2023]
Abstract
Confinement is a versatile and well-established tool to study the properties of polymers either to understand biological processes or to develop new nanobiomaterials. We investigate the conformations of a semiflexible polymer ring in weak spherical confinement imposed by an impenetrable shell. We develop an analytic argument for the dominating polymer trajectory depending on polymer flexibility considering elastic and entropic contributions. Monte Carlo simulations are performed to assess polymer ring conformations in probability densities and by the shape measures asphericity and nature of asphericity. Comparison of the analytic argument with the mean asphericity and the mean nature of asphericity confirm our reasoning to explain polymer ring conformations in the stiff regime, where elastic response prevails.
Collapse
Affiliation(s)
- Katja Ostermeir
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | | | | |
Collapse
|
47
|
Tightly-wound miniknot vectors for gene therapy: A potential improvement over supercoiled minicircle DNA. Med Hypotheses 2010; 74:702-4. [DOI: 10.1016/j.mehy.2009.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 10/18/2009] [Indexed: 11/24/2022]
|
48
|
Liu Z, Zechiedrich L, Chan HS. Local site preference rationalizes disentangling by DNA topoisomerases. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031902. [PMID: 20365765 PMCID: PMC3645352 DOI: 10.1103/physreve.81.031902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/02/2009] [Indexed: 05/29/2023]
Abstract
To rationalize the disentangling action of type II topoisomerases, an improved wormlike DNA model was used to delineate the degree of unknotting and decatenating achievable by selective segment passage at specific juxtaposition geometries and to determine how these activities were affected by DNA circle size and solution ionic strength. We found that segment passage at hooked geometries can reduce knot populations as dramatically as seen in experiments. Selective segment passage also provided theoretical underpinning for an intriguing empirical scaling relation between unknotting and decatenating potentials.
Collapse
Affiliation(s)
- Zhirong Liu
- College of Chemistry and Molecular Engineering, Center for Theoretical Biology, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
49
|
DNA-DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting. Proc Natl Acad Sci U S A 2009; 106:22269-74. [PMID: 20018693 DOI: 10.1073/pnas.0907524106] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent experiments showed that the linear double-stranded DNA in bacteriophage capsids is both highly knotted and neatly structured. What is the physical basis of this organization? Here we show evidence from stochastic simulation techniques that suggests that a key element is the tendency of contacting DNA strands to order, as in cholesteric liquid crystals. This interaction favors their preferential juxtaposition at a small twist angle, thus promoting an approximately nematic (and apolar) local order. The ordering effect dramatically impacts the geometry and topology of DNA inside phages. Accounting for this local potential allows us to reproduce the main experimental data on DNA organization in phages, including the cryo-EM observations and detailed features of the spectrum of DNA knots formed inside viral capsids. The DNA knots we observe are strongly delocalized and, intriguingly, this is shown not to interfere with genome ejection out of the phage.
Collapse
|