1
|
Saxu R, Yang Y, Gu HF. Asymmetries of Left and Right Adrenal Glands in Neural Innervation and Glucocorticoids Production. Int J Mol Sci 2023; 24:17456. [PMID: 38139285 PMCID: PMC10743655 DOI: 10.3390/ijms242417456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The adrenal gland is paired peripheral end organs of the neuroendocrine system and is responsible for producing crucial stress hormones from its two functional compartments, the adrenal cortex, and the adrenal medulla under stimuli. Left-right asymmetry in vertebrates exists from the central nervous system to peripheral paired endocrine glands. The sided difference in the cerebral cortex is extensively investigated, while the knowledge of asymmetry of paired endocrine glands is still poor. The present study aims to investigate the asymmetries of bilateral adrenal glands, which play important roles in stress adaptation and energy homeostasis via steroid hormones produced from the distinct functional zones. Left and right adrenal glands from male C57BL/6J mice were initially histologically analyzed, and high-throughput RNA sequencing was then used to detect the gene transcriptional difference between left and right adrenal glands. Subsequently, the enrichment of functional pathways and ceRNA regulatory work was validated. The results demonstrated that the left adrenal gland had higher tissue mass and levels of energy expenditure, whereas the right adrenal gland appeared to be more potent in glucocorticoid secretion. Further analysis of adrenal stem/progenitor cell markers predicted that Shh signaling might play an important role in the left-right asymmetry of adrenal glands. Of the hub miRNAs, miRNA-466i-5p was identified in the left-right differential innervation of the adrenal glands. Therefore, the present study provides evidence that there are asymmetries between the left and right adrenal glands in glucocorticoid production and neural innervation, in which Shh signaling and miRNA-466i-5p play an important role.
Collapse
Affiliation(s)
- Rengui Saxu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Harvest F. Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
2
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
3
|
DHCR24, a Key Enzyme of Cholesterol Synthesis, Serves as a Marker Gene of the Mouse Adrenal Gland Inner Cortex. Int J Mol Sci 2023; 24:ijms24020933. [PMID: 36674444 PMCID: PMC9867314 DOI: 10.3390/ijms24020933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Steroid hormones are synthesized through enzymatic reactions using cholesterol as the substrate. In steroidogenic cells, the required cholesterol for steroidogenesis can be obtained from blood circulation or synthesized de novo from acetate. One of the key enzymes that control cholesterol synthesis is 24-dehydrocholesterol reductase (encoded by DHCR24). In humans and rats, DHCR24 is highly expressed in the adrenal gland, especially in the zona fasciculata. We recently reported that DHCR24 was expressed in the mouse adrenal gland's inner cortex and also found that thyroid hormone treatment significantly upregulated the expression of Dhcr24 in the mouse adrenal gland. In the present study, we showed the cellular expression of DHCR24 in mouse adrenal glands in early postnatal stages. We found that the expression pattern of DHCR24 was similar to the X-zone marker gene 20αHSD in most developmental stages. This finding indicates that most steroidogenic adrenocortical cells in the mouse adrenal gland do not synthesize cholesterol locally. Unlike the 20αHSD-positive X-zone regresses during pregnancy, some DHCR24-positive cells remain present in parous females. Conditional knockout mice showed that the removal of Dhcr24 in steroidogenic cells did not affect the overall development of the adrenal gland or the secretion of corticosterone under acute stress. Whether DHCR24 plays a role in conditions where a continuous high amount of corticosterone production is needed requires further investigation.
Collapse
|
4
|
Lopez AG, Duparc C, Wils J, Naccache A, Castanet M, Lefebvre H, Louiset E. Steroidogenic cell microenvironment and adrenal function in physiological and pathophysiological conditions. Mol Cell Endocrinol 2021; 535:111377. [PMID: 34216641 DOI: 10.1016/j.mce.2021.111377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
The human adrenal cortex is a complex organ which is composed of various cell types including not only steroidogenic cells but also mesenchymal cells, immunocompetent cells and neurons. Intermingling of these diverse cell populations favors cell-to-cell communication processes involving local release of numerous bioactive signals such as biogenic amines, cytokines and neuropeptides. The resulting paracrine interactions play an important role in the regulation of adrenocortical cell functions both in physiological and pathophysiological conditions. Especially, recent evidence indicates that adrenocortical cell microenvironment is involved in the pathogenesis of adrenal disorders associated with corticosteroid excess. The paracrine factors involved in these intraadrenal regulatory mechanisms may thus represent valuable targets for future pharmacological treatments of adrenal diseases.
Collapse
Affiliation(s)
- Antoine-Guy Lopez
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France; Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| | - Céline Duparc
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
| | - Julien Wils
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France; Rouen University Hospital, Department of Pharmacology, Rouen, France
| | - Alexandre Naccache
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France; Rouen University Hospital, Department of Pediatrics, Rouen, France
| | - Mireille Castanet
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France; Rouen University Hospital, Department of Pediatrics, Rouen, France
| | - Hervé Lefebvre
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France; Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France.
| | - Estelle Louiset
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
| |
Collapse
|
5
|
Vohra T, Kemter E, Sun N, Dobenecker B, Hinrichs A, Burrello J, Gomez-Sanchez EP, Gomez-Sanchez CE, Wang J, Kinker IS, Teupser D, Fischer K, Schnieke A, Peitzsch M, Eisenhofer G, Walch A, Reincke M, Wolf E, Williams TA. Effect of Dietary Sodium Modulation on Pig Adrenal Steroidogenesis and Transcriptome Profiles. Hypertension 2020; 76:1769-1777. [PMID: 33070662 DOI: 10.1161/hypertensionaha.120.15998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary aldosteronism is a frequent form of endocrine hypertension caused by aldosterone overproduction from the adrenal cortex. Regulation of aldosterone biosynthesis has been studied in rodents despite differences in adrenal physiology with humans. We, therefore, investigated pig adrenal steroidogenesis, morphology, and transcriptome profiles of the zona glomerulosa (zG) and zona fasciculata in response to activation of the renin-angiotensin-aldosterone system by dietary sodium restriction. Six-week-old pigs were fed a low- or high-sodium diet for 14 days (3 pigs per group, 0.4 g sodium/kg feed versus 6.8 g sodium/kg). Plasma aldosterone concentrations displayed a 43-fold increase (P=0.011) after 14 days of sodium restriction (day 14 versus day 0). Low dietary sodium caused a 2-fold increase in thickness of the zG (P<0.001) and an almost 3-fold upregulation of CYP11B (P<0.05) compared with high dietary sodium. Strong immunostaining of the KCNJ5 (G protein-activated inward rectifier potassium channel 4), which is frequently mutated in primary aldosteronism, was demonstrated in the zG. mRNA sequencing transcriptome analysis identified significantly altered expression of genes modulated by the renin-angiotensin-aldosterone system in the zG (n=1172) and zona fasciculata (n=280). These genes included many with a known role in the regulation of aldosterone synthesis and adrenal function. The most highly enriched biological pathways in the zG were related to cholesterol biosynthesis, steroid metabolism, cell cycle, and potassium channels. This study provides mechanistic insights into the physiology and pathophysiology of aldosterone production in a species closely related to humans and shows the suitability of pigs as a translational animal model for human adrenal steroidogenesis.
Collapse
Affiliation(s)
- Twinkle Vohra
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (T.V., I.-S.K., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences (E.K., A.H., E.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (N.S., J.W., A.W.)
| | - Britta Dobenecker
- Chair of Animal Nutrition and Dietetics, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany (B.D.)
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences (E.K., A.H., E.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacopo Burrello
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.)
| | - Elise P Gomez-Sanchez
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson (E.P.G.-S.)
| | - Celso E Gomez-Sanchez
- Endocrine Division, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S.).,Department of Pharmacology and Toxicology and Medicine, University of Mississippi Medical Center, Jackson (C.E.G.-S.)
| | - Jun Wang
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (N.S., J.W., A.W.)
| | - Isabella-Sabrina Kinker
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (T.V., I.-S.K., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital (D.T.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Konrad Fischer
- School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany (K.F., A.S.)
| | - Angelika Schnieke
- School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany (K.F., A.S.)
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine (M.P., G.E.), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine (M.P., G.E.), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Department of Medicine III (G.E.), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (N.S., J.W., A.W.)
| | - Martin Reincke
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (T.V., I.-S.K., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences (E.K., A.H., E.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tracy Ann Williams
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (T.V., I.-S.K., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Munich, Germany.,Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.)
| |
Collapse
|
6
|
Ivy JR, Evans LC, Moorhouse R, Richardson RV, Al-Dujaili EAS, Flatman PW, Kenyon CJ, Chapman KE, Bailey MA. Renal and Blood Pressure Response to a High-Salt Diet in Mice With Reduced Global Expression of the Glucocorticoid Receptor. Front Physiol 2018; 9:848. [PMID: 30038578 PMCID: PMC6046455 DOI: 10.3389/fphys.2018.00848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/14/2018] [Indexed: 01/02/2023] Open
Abstract
Salt-sensitive hypertension is common in glucocorticoid excess. Glucocorticoid resistance also presents with hypercortisolemia and hypertension but the relationship between salt intake and blood pressure (BP) is not well defined. GRβgeo/+ mice have global glucocorticoid receptor (GR) haploinsufficiency and increased BP. Here we examined the effect of high salt diet on BP, salt excretion and renal blood flow in GRβgeo/+mice. Basal BP was ∼10 mmHg higher in male GRβgeo/+ mice than in GR+/+ littermates. This modest increase was amplified by ∼10 mmHg following a high-salt diet in GRβgeo/+ mice. High salt reduced urinary aldosterone excretion but increased renal mineralocorticoid receptor expression in both genotypes. Corticosterone, and to a lesser extent deoxycorticosterone, excretion was increased in GRβgeo/+ mice following a high-salt challenge, consistent with enhanced 24 h production. GR+/+ mice increased fractional sodium excretion and reduced renal vascular resistance during the high salt challenge, retaining neutral sodium balance. In contrast, sodium excretion and renal vascular resistance did not adapt to high salt in GRβgeo/+ mice, resulting in transient sodium retention and sustained hypertension. With high-salt diet, Slc12a3 and Scnn1a mRNAs were higher in GRβgeo/+ than controls, and this was reflected in an exaggerated natriuretic response to thiazide and benzamil, inhibitors of NCC and ENaC, respectively. Reduction in GR expression causes salt-sensitivity and an adaptive failure of the renal vasculature and tubule, most likely reflecting sustained mineralocorticoid receptor activation. This provides a mechanistic basis to understand the hypertension associated with loss-of-function polymorphisms in GR in the context of habitually high salt intake.
Collapse
Affiliation(s)
- Jessica R Ivy
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Louise C Evans
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Moorhouse
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel V Richardson
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Emad A S Al-Dujaili
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Peter W Flatman
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher J Kenyon
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Karen E Chapman
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Abstract
The metabolic syndrome describes a clustering of risk factors—visceral obesity, dyslipidaemia, insulin resistance, and salt-sensitive hypertension—that increases mortality related to cardiovascular disease, type 2 diabetes, cancer, and non-alcoholic fatty liver disease. The prevalence of these concurrent comorbidities is ~ 25–30% worldwide, and metabolic syndrome therefore presents a significant global public health burden. Evidence from clinical and preclinical studies indicates that glucocorticoid excess is a key causal feature of metabolic syndrome. This is not increased systemic in circulating cortisol, rather increased bioavailability of active glucocorticoids within tissues. This review examines the role of covert glucocorticoid excess on the hypertension of the metabolic syndrome. Here, the role of the 11β-hydroxysteroid dehydrogenase enzymes, which exert intracrine and paracrine control over glucocorticoid signalling, is examined. 11βHSD1 amplifies glucocorticoid action in cells and contributes to hypertension through direct and indirect effects on the kidney and vasculature. The deactivation of glucocorticoid by 11βHSD2 controls ligand access to glucocorticoid and mineralocorticoid receptors: loss of function promotes salt retention and hypertension. As for hypertension in general, high blood pressure in the metabolic syndrome reflects a complex interaction between multiple systems. The clear association between high dietary salt, glucocorticoid production, and metabolic disorders has major relevance for human health and warrants systematic evaluation.
Collapse
Affiliation(s)
- Matthew A Bailey
- The British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|