1
|
Bagheri-Yarmand R, Grubbs EG, Hofmann MC. Thyroid C-Cell Biology and Oncogenic Transformation. Recent Results Cancer Res 2025; 223:51-91. [PMID: 40102254 DOI: 10.1007/978-3-031-80396-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The thyroid parafollicular cell, or commonly named "C-cell," functions in serum calcium homeostasis. Elevations in serum calcium trigger release of calcitonin from the C-cell, which in turn functions to inhibit absorption of calcium by the intestine, resorption of bone by the osteoclast, and reabsorption of calcium by renal tubular cells. Oncogenic transformation of the thyroid C-cell is thought to progress through a hyperplastic process prior to malignancy with increasing levels of serum calcitonin serving as a biomarker for tumor burden. The discovery that Multiple Endocrine Neoplasia, type 2 is caused by activating mutations of the RET gene serves to highlight the RET-RAS-MAPK signaling pathway in both initiation and progression of medullary thyroid carcinoma. Thyroid C-cells are known to express RET at high levels relative to most cell types, therefore aberrant activation of this receptor is targeted primarily to the C-cell, providing one possible cause of tissue-specific oncogenesis. The role of RET signaling in normal C-cell function is unknown though calcitonin gene transcription appears to be sensitive to RET activation. Beyond RET the modeling of oncogenesis in animals and screening of human tumors for candidate gene mutations has uncovered mutation of RAS family members and inactivation of RB1 regulatory pathway as potential mediators of C-cell transformation. More recently, the integration of multiple biological layers of omics studies has uncovered new pathways of oncogenesis. A growing understanding of how RET interacts with these pathways, both in normal C-cell function and during oncogenic transformation, will help in the development of novel molecular targeted therapies.
Collapse
Affiliation(s)
- Rozita Bagheri-Yarmand
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth G Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Huai JX, Wang F, Zhang WH, Lou Y, Wang GX, Huang LJ, Sun J, Zhou XQ. Unveiling new chapters in medullary thyroid carcinoma therapy: advances in molecular genetics and targeted treatment strategies. Front Endocrinol (Lausanne) 2024; 15:1484815. [PMID: 39439561 PMCID: PMC11493660 DOI: 10.3389/fendo.2024.1484815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Medullary Thyroid Carcinoma (MTC), a neuroendocrine malignancy that arises from the calcitonin-secreting parafollicular C-cells of the thyroid, constitutes a minor yet impactful fraction of thyroid malignancies. Distinguished by its propensity for aggressive growth and a pronounced tendency for metastasis, MTC poses formidable obstacles to the early diagnosis and therapeutic intervention. The molecular genetics of MTC, particularly the role of the RET gene and the RAS gene family, have been extensively studied, offering insights into the pathogenesis of the disease and revealing potential therapeutic targets. This comprehensive review synthesizes the latest advancements in the molecular genetics of MTC, the evolution of precision therapies, and the identification of novel biomarkers. We also discuss the implications of these findings for clinical practice and the future direction of MTC research.
Collapse
Affiliation(s)
- Jia-Xuan Huai
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Wang
- Department of Otolaryngology, Xinyang Central Hospital, Xinyang, China
| | - Wen-Hui Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Gao-Xiang Wang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Ji Huang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Sun
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi-Qiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Martins RS, Jesus TT, Cardoso L, Soares P, Vinagre J. Personalized Medicine in Medullary Thyroid Carcinoma: A Broad Review of Emerging Treatments. J Pers Med 2023; 13:1132. [PMID: 37511745 PMCID: PMC10381735 DOI: 10.3390/jpm13071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medullary thyroid carcinoma (MTC) arises from parafollicular cells in the thyroid gland, and although rare, it represents an aggressive type of thyroid cancer. MTC is recognized for its low mutational burden, with point mutations in RET or RAS genes being the most common oncogenic events. MTC can be resistant to cytotoxic chemotherapy, and multitarget kinase inhibitors (MKIs) have been considered a treatment option. They act by inhibiting the activities of specific tyrosine kinase receptors involved in tumor growth and angiogenesis. Several tyrosine kinase inhibitors are approved in the treatment of advanced MTC, including vandetanib and cabozantinib. However, due to the significant number of adverse events, debatable efficiency and resistance, there is a need for novel RET-specific TKIs. Newer RET-specific TKIs are expected to overcome previous limitations and improve patient outcomes. Herein, we aim to review MTC signaling pathways, the most recent options for treatment and the applications for personalized medicine.
Collapse
Affiliation(s)
- Rui Sousa Martins
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007 Porto, Portugal
| | - Tito Teles Jesus
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
| | - Luís Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Departamento de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Derwich A, Sykutera M, Bromińska B, Rubiś B, Ruchała M, Sawicka-Gutaj N. The Role of Activation of PI3K/AKT/mTOR and RAF/MEK/ERK Pathways in Aggressive Pituitary Adenomas-New Potential Therapeutic Approach-A Systematic Review. Int J Mol Sci 2023; 24:10952. [PMID: 37446128 PMCID: PMC10341524 DOI: 10.3390/ijms241310952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary tumors (PT) are mostly benign, although occasionally they demonstrate aggressive behavior, invasion of surrounding tissues, rapid growth, resistance to conventional treatments, and multiple recurrences. The pathogenesis of PT is still not fully understood, and the factors responsible for its invasiveness, aggressiveness, and potential for metastasis are unknown. RAF/MEK/ERK and mTOR signaling are significant pathways in the regulation of cell growth, proliferation, and survival, its importance in tumorigenesis has been highlighted. The aim of our review is to determine the role of the activation of PI3K/AKT/mTOR and RAF/MEK/ERK pathways in the pathogenesis of pituitary tumors. Additionally, we evaluate their potential in a new therapeutic approach to provide alternative therapies and improved outcomes for patients with aggressive pituitary tumors that do not respond to standard treatment. We perform a systematic literature search using the PubMed, Embase, and Scopus databases (search date was 2012-2023). Out of the 529 screened studies, 13 met the inclusion criteria, 7 related to the PI3K/AKT/mTOR pathway, and 7 to the RAF/MEK/ERK pathway (one study was used in both analyses). Understanding the specific factors involved in PT tumorigenesis provides opportunities for targeted therapies. We also review the possible new targeted therapies and the use of mTOR inhibitors and TKI in PT management. Although the RAF/MEK/ERK and PI3K/AKT/mTOR pathways play a pivotal role in the complex signaling network along with many interactions, further research is urgently needed to clarify the exact functions and the underlying mechanisms of these signaling pathways in the pathogenesis of pituitary adenomas and their role in its invasiveness and aggressive clinical outcome.
Collapse
Affiliation(s)
- Aleksandra Derwich
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Monika Sykutera
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Barbara Bromińska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| |
Collapse
|
5
|
Clinical Implications of mTOR Expression in Papillary Thyroid Cancer—A Systematic Review. Cancers (Basel) 2023; 15:cancers15061665. [PMID: 36980552 PMCID: PMC10046096 DOI: 10.3390/cancers15061665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Papillary thyroid cancer (PTC) comprises approximately 80% of all thyroid malignancies. Although several etiological factors, such as age, gender, and irradiation, are already known to be involved in the development of PTC, the genetics of cancerogenesis remain undetermined. The mTOR pathway regulates several cellular processes that are critical for tumorigenesis. Activated mTOR is involved in the development and progression of PTC. Therefore, we performed a systematic review of papers studying the expression of the mTOR gene and protein and its relationship with PTC risk and clinical outcome. A systematic literature search was performed using PubMed, Embase, and Scopus databases (the search date was 2012–2022). Studies investigating the expression of mTOR in the peripheral blood or tissue of patients with PTC were deemed eligible for inclusion. Seven of the 286 screened studies met the inclusion criteria for mTOR gene expression and four for mTOR protein expression. We also analyzed the data on mTOR protein expression in PTC. We analyzed the association of mTOR expression with papillary thyroid cancer clinicopathological features, such as the TNM stage, BRAF V600E mutation, sex distribution, lymph node and distant metastases, and survival prognosis. Understanding specific factors involved in PTC tumorigenesis provides opportunities for targeted therapies. We also reviewed the possible new targeted therapies and the use of mTOR inhibitors in PTC. This topic requires further research with novel techniques to translate the achieved results to clinical application.
Collapse
|
6
|
Li T, Yang WY, Liu TT, Li Y, Liu L, Zheng X, Zhao L, Zhang F, Hu Y. Advances in the Diagnosis and Treatment of a Driving Target: RET Rearrangements in non-Small-Cell Lung Cancer (NSCLC) Especially in China. Technol Cancer Res Treat 2023; 22:15330338221148802. [PMID: 36628459 PMCID: PMC9837270 DOI: 10.1177/15330338221148802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the era of precision medicine, with the deepening of the research on malignant tumor driving genes, clinical oncology has fully entered the era of targeted therapy. For non-small-cell lung cancer (NSCLC), the development of targeted drugs targeting driver genes, such as epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK), has successfully opened up a new model of targeted therapy. At present, proto-oncogene rearranged during transfection (RET) fusion gene is an important novel oncogenic driving target, and specific receptor tyrosine kinase inhibitors (TKIs) targeting RET fusion have been approved. This article will review the latest research about the molecular characteristics, pathogenesis, detection, and clinical treatment strategies of RET rearrangements especially in China.
Collapse
Affiliation(s)
- Tao Li
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China,Tao Li, MD, Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing 100029, China.
| | - Wen-Yu Yang
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China,School of Medicine, Nankai University, Tianjin, China
| | - Ting-Ting Liu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center of PLA General Hospital, Beijing, China,Graduate School, Medical College of Chinese PLA, Beijing, China
| | - Yao Li
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China
| | - Lu Liu
- Department of Nutriology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China
| | - Xuan Zheng
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China
| | - Lei Zhao
- Institute of Translational Medicine, PLA General Hospital, Beijing, China
| | - Fan Zhang
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China
| | - Yi Hu
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China
| |
Collapse
|
7
|
Molecular genotyping in medullary thyroid cancer. Curr Opin Oncol 2023; 35:10-14. [PMID: 36475457 DOI: 10.1097/cco.0000000000000915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW There has been a significant advance in our understanding of the molecular biology of medullary thyroid cancer (MTC) alongside progress in the development of targeted therapies including multikinase and specific rearranged during transfection inhibitors. RECENT FINDINGS This review will examine the latest data investigating the impact of the genomics of MTC on the prediction of the natural history of an individual's disease and the determination, selection and timing of treatment interventions. SUMMARY Recent advances in genotyping in MTC and the development of targeted therapies have impacted on the clinical management of both sporadic and hereditary MTC.
Collapse
|
8
|
Pishkari S, Hadavi R, Koochaki A, Razaviyan J, Paryan M, Hashemi M, Mohammadi-Yeganeh S. Assessment of AXL and mTOR genes expression in medullary thyroid carcinoma (MTC) cell line in relation with over expression of miR-144 and miR-34a. Horm Mol Biol Clin Investig 2021; 42:265-271. [PMID: 33769725 DOI: 10.1515/hmbci-2020-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/21/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The aim of the present study was to investigate the expression of AXL and mTOR genes and their targeting microRNAs (miRNAs) including miR-34a and miR-144 in Medullary Thyroid Carcinoma (MTC) cell line, TT, and determine the effect of these two miRNAs on their target genes to introduce new molecular markers or therapeutics. METHODS The expression of miR-34a, miR-144, and their targets genes including AXL and mTOR was evaluated by quantitative Real-time PCR. Luciferase assay was performed to confirm the interaction between miRNAs and their target mRNAs. The expression level of AXL and mTOR was evaluated before and after miRNAs induction in TT cell line compared with Cos7 as control cells. RESULTS The expression of AXL and mTOR were up-regulated significantly, while miR-34a and miR-144 were down-regulated in TT cell line compared to Cos7. After transduction, the overexpression of miR-34a and 144 caused down-regulation of both genes. Luciferase assay results showed that the mTOR is targeted by miR-34a and miR-144 and the intensity of luciferase decreased in the presence of miRNAs. CONCLUSIONS Based on the results of the present study and since AXL and mTOR genes play a critical role in variety of human cancers, suppression of these genes by their targeting miRNAs, especially miR-34a and miR-144, can be propose as a new strategy for MTC management. However, more studies are needed to approve the hypothesis.
Collapse
Affiliation(s)
- Shaghayegh Pishkari
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Razie Hadavi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Razaviyan
- Student Research Committee, Department of Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Barletta JA, Nosé V, Sadow PM. Genomics and Epigenomics of Medullary Thyroid Carcinoma: From Sporadic Disease to Familial Manifestations. Endocr Pathol 2021; 32:35-43. [PMID: 33492588 PMCID: PMC9353617 DOI: 10.1007/s12022-021-09664-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Our understanding of the genomics and epigenomics of medullary thyroid carcinoma (MTC) has advanced since the initial recognition of RET as a driver of MTC tumorigenesis in familial MTC. We now have insight into the frequency and prognostic significance of specific RET mutations in sporadic MTC. For example, the most common RET mutation in sporadic MTC is the RET Met918Thr mutation, the same mutation that underlies MEN2B and a poor prognosticator. This mutation is relatively infrequent in medullary thyroid microcarcinomas but is over-represented in advanced-stage disease. RAS mutations are detected in 70% of sporadic, RET wild-type MTC. Although next-generation and whole-exome sequencing studies have shown that tumors that are wild-type for RET and RAS mutations essentially lack other recurrent mutations, additional pathways and epigenetic alterations have been implicated in MTC tumorigenesis. Increased insight into the clinical course of patients with familial MTC with specific RET mutations has guided treatment recommendations for these patients. Finally, an understanding of the genomics has informed treatment for patients with advanced MTC. In this review, we will examine the genomics and epigenomics of sporadic and familial MTC, along with the prognostic significance of molecular alterations, management of patients with germline RET mutations, and treatment strategies for MTC patients.
Collapse
Affiliation(s)
- Justine A Barletta
- Departments of Pathology, Brigham and Women's Hospital, Boston, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Vânia Nosé
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, MA, USA
| | - Peter M Sadow
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Oczko-Wojciechowska M, Czarniecka A, Gawlik T, Jarzab B, Krajewska J. Current status of the prognostic molecular markers in medullary thyroid carcinoma. Endocr Connect 2020; 9:R251-R263. [PMID: 33112827 PMCID: PMC7774764 DOI: 10.1530/ec-20-0374] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Medullary thyroid cancer (MTC) is a rare thyroid malignancy, which arises from parafollicular C-cells. It occurs in the hereditary or sporadic form. Hereditary type is a consequence of activation of the RET proto-oncogene by germline mutations, whereas about 80% of sporadic MTC tumors harbor somatic, mainly RET or rarely RAS mutations. According to the current ATA guidelines, a postoperative MTC risk stratification and long-term follow-up are mainly based on histopathological data, including tumor stage, the presence of lymph node and/or distant metastases (TNM classification), and serum concentration of two biomarkers: calcitonin (Ctn) and carcinoembryonic antigen (CEA). The type of RET germline mutation also correlates with MTC clinical characteristics. The most common and the best known RET mutation in sporadic MTC, localized at codon 918, is related to a more aggressive MTC course and poorer survival. However, even if histopathological or clinical features allow to predict a long-term prognosis, they are not sufficient to select the patients showing aggressive MTC courses requiring immediate treatment or those, who are refractory to different therapeutic methods. Besides the RET gene mutations, there are currently no other reliable molecular prognostic markers. This review summarizes the present data of genomic investigation on molecular prognostic factors in medullary thyroid cancer.
Collapse
Affiliation(s)
- Malgorzata Oczko-Wojciechowska
- Department of Genetic and Molecular Diagnostics of Cancer, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Agnieszka Czarniecka
- Oncologic and Reconstructive Surgery Clinic, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Tomasz Gawlik
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Barbara Jarzab
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Jolanta Krajewska
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
11
|
Cordero-Barreal A, Caleiras E, López de Maturana E, Monteagudo M, Martínez-Montes ÁM, Letón R, Gil E, Álvarez-Escolá C, Regojo RM, Andía V, Marazuela M, Guadalix S, Calatayud M, Robles-Díaz L, Aguirre M, Cano JM, Díaz JÁ, Saavedra P, Lamas C, Azriel S, Sastre J, Aller J, Leandro-García LJ, Calsina B, Roldán-Romero JM, Santos M, Lanillos J, Cascón A, Rodríguez-Antona C, Robledo M, Montero-Conde C. CD133 Expression in Medullary Thyroid Cancer Cells Identifies Patients with Poor Prognosis. J Clin Endocrinol Metab 2020; 105:5892412. [PMID: 32791518 DOI: 10.1210/clinem/dgaa527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT The identification of markers able to determine medullary thyroid cancer (MTC) patients at high-risk of disease progression is critical to improve their clinical management and outcome. Previous studies have suggested that expression of the stem cell marker CD133 is associated with MTC aggressiveness. OBJECTIVE To evaluate CD133 impact on disease progression in MTC and explore the regulatory mechanisms leading to the upregulation of this protein in aggressive tumors. PATIENTS We compiled a series of 74 MTCs with associated clinical data and characterized them for mutations in RET and RAS proto-oncogenes, presumed to be related with disease clinical behavior. RESULTS We found that CD133 immunohistochemical expression was associated with adverse clinicopathological features and predicted a reduction in time to disease progression even when only RET-mutated cases were considered in the analysis (log-rank test P < 0.003). Univariate analysis for progression-free survival revealed CD133 expression and presence of tumor emboli in peritumoral blood vessels as the most significant prognostic covariates among others such as age, gender, and prognostic stage. Multivariate analysis identified both variables as independent factors of poor prognosis (hazard ratio = 16.6 and 2; P = 0.001 and 0.010, respectively). Finally, we defined hsa-miR-30a-5p, a miRNA downregulated in aggressive MTCs, as a CD133 expression regulator. Ectopic expression of hsa-miR-30a-5p in MZ-CRC-1 (RETM918T) cells significantly reduced CD133 mRNA expression. CONCLUSIONS Our results suggest that CD133 expression may be a useful tool to identify MTC patients with poor prognosis, who may benefit from a more extensive primary surgical management and follow-up.
Collapse
Affiliation(s)
| | | | - Evangelina López de Maturana
- Genetic & Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Basic Medical Sciences, Medical School, San Pablo-CEU University, Boadilla del Monte, Spain
- Biomedical Research Networking Centre on Oncology (CIBERONC), Madrid, Spain
| | | | | | - Rocío Letón
- Hereditary Endocrine Cancer Group, Madrid, Spain
| | - Eduardo Gil
- Hereditary Endocrine Cancer Group, Madrid, Spain
| | - Cristina Álvarez-Escolá
- Endocrinology and Nutrition Department and Pathological Anatomy Service, Hospital Universitario La Paz, Madrid, Spain
| | - Rita M Regojo
- Endocrinology and Nutrition Department and Pathological Anatomy Service, Hospital Universitario La Paz, Madrid, Spain
| | - Víctor Andía
- Endocrinology and Nutrition Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Mónica Marazuela
- Endocrinology and Nutrition Department, Hospital Universitario La Princesa, Madrid, Spain
| | | | | | - Luis Robles-Díaz
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Miguel Aguirre
- Endocrinology and Nutrition Department, Ciudad Real, Spain
| | - Juana M Cano
- Medical Oncology Department, Hospital Universitario de Ciudad Real, Ciudad Real, Spain
| | - José Ángel Díaz
- Endocrinology and Nutrition Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Pilar Saavedra
- Endocrinology and Nutrition Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | - Cristina Lamas
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Sharona Azriel
- Endocrinology and Nutrition Department, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Spain
| | - Julia Sastre
- Endocrinology and Nutrition Department, Hospital Virgen de la Salud, Toledo, Spain
| | - Javier Aller
- Endocrinology and Nutrition Department, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | | | | | - María Santos
- Hereditary Endocrine Cancer Group, Madrid, Spain
| | | | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | | |
Collapse
|
12
|
Bai Y, Niu D, Yao Q, Lin D, Kakudo K. Updates in the advances of sporadic medullary thyroid carcinoma: from the molecules to the clinic. Gland Surg 2020; 9:1847-1856. [PMID: 33224860 DOI: 10.21037/gs-2019-catp-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare neuroendocrine malignancy that originates in parafollicular cells. It is well-known that a quarter of MTC are involved in hereditary multiple endocrine neoplasia type 2 syndromes, whereas most MTC are sporadic. Unlike the commonly encountered gastrointestinal or pulmonary neuroendocrine tumors, most sporadic MTCs have distinct genetic alterations featured by somatic changes of either Rearranged during Transfection (RET) or RAS point mutation. The increasing application of next-generation sequencing, whole-exome sequencing, and other molecular detection techniques enables us to understand MTC comprehensively concerning its detailed molecular changes and their clinical correlations. This article reviews the advances in genetic alterations and their prognostic impact in sporadic MTC among different populations and discusses the associated tumor immune microenvironments and the potential role of immunotherapy targeting PD-L1/PD-1 in treating MTC. Furthermore, the current multikinase inhibitor targeting therapy for sporadic MTC has been summarized here and its efficacy and drug toxicity are discussed. Updates in advance of the role of calcitonin/procalcitonin/calcitonin-related polypeptide alpha (CALCA) gene transcripts in diagnosing and handling MTC are also mentioned. The treatment of advanced MTC is still challenging and might require a combination of several modalities.
Collapse
Affiliation(s)
- Yanhua Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dongfeng Niu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qian Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Kennichi Kakudo
- Department of Pathology and Thyroid Disease Center, Izumi City General Hospital, Izumi, Japan
| |
Collapse
|
13
|
Grzmil M, Qin Y, Schleuniger C, Frank S, Imobersteg S, Blanc A, Spillmann M, Berger P, Schibli R, Behe M. Pharmacological inhibition of mTORC1 increases CCKBR-specific tumor uptake of radiolabeled minigastrin analogue [ 177Lu]Lu-PP-F11N. Am J Cancer Res 2020; 10:10861-10873. [PMID: 33042258 PMCID: PMC7532663 DOI: 10.7150/thno.45440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: A high tumor-to-healthy-tissue uptake ratio of radiolabeled ligands is an essential prerequisite for safe and effective peptide receptor radionuclide therapy (PRRT). In the present study, we searched for novel opportunities to increase tumor-specific uptake of the radiolabeled minigastrin analogue [177Lu]Lu-DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2 ([177Lu]Lu-PP-F11N), that targets the cholecystokinin B receptor (CCKBR) in human cancers. Methods: A kinase inhibitor library screen followed by proliferation and internalization assays were employed to identify compounds which can increase uptake of [177Lu]Lu-PP-F11N in CCKBR-transfected human epidermoid carcinoma A431 cells and natural CCKBR-expressing rat pancreatic acinar AR42J cells. Western blot (WB) analysis verified the inhibition of the signaling pathways and the CCKBR level, whereas the cell-based assay analyzed arrestin recruitment. Biodistribution and SPECT imaging of the A431/CCKBR xenograft mouse model as well as histological analysis of the dissected tumors were used for in vivo validation. Results: Our screen identified the inhibitors of mammalian target of rapamycin complex 1 (mTORC1), which increased cell uptake of [177Lu]Lu-PP-F11N. Pharmacological mTORC1 inhibition by RAD001 and metformin increased internalization of [177Lu]Lu-PP-F11N in A431/CCKBR and in AR42J cells. Analysis of protein lysates from RAD001-treated cells revealed increased levels of CCKBR (2.2-fold) and inhibition of S6 phosphorylation. PP-F11N induced recruitment of β-arrestin1/2 and ERK1/2 phosphorylation. In A431/CCKBR-tumor bearing nude mice, 3 or 5 days of RAD001 pretreatment significantly enhanced tumor-specific uptake of [177Lu]Lu-PP-F11N (ratio [RAD001/Control] of 1.56 or 1.79, respectively), whereas metformin treatment did not show a significant difference. Quantification of SPECT/CT images confirmed higher uptake of [177Lu]Lu-PP-F11N in RAD001-treated tumors with ratios [RAD001/Control] of average and maximum concentration reaching 3.11 and 3.17, respectively. HE staining and IHC of RAD001-treated tumors showed a significant increase in necrosis (1.4% control vs.10.6% of necrotic area) and the reduction of proliferative (80% control vs. 61% of Ki67 positive cells) and mitotically active cells (1.08% control vs. 0.75% of mitotic figures). No significant difference in the tumor vascularization was observed after five-day RAD001 or metformin treatment. Conclusions: Our data demonstrates, that increased CCKBR protein level by RAD001 pretreatment has the potential to improve tumor uptake of [177Lu]Lu-PP-F11N and provides proof-of-concept for the development of molecular strategies aimed at enhancing the level of the targeted receptor, to increase the efficacy of PRRT and nuclear imaging.
Collapse
|
14
|
San Román Gil M, Pozas J, Molina-Cerrillo J, Gómez J, Pian H, Pozas M, Carrato A, Grande E, Alonso-Gordoa T. Current and Future Role of Tyrosine Kinases Inhibition in Thyroid Cancer: From Biology to Therapy. Int J Mol Sci 2020; 21:E4951. [PMID: 32668761 PMCID: PMC7403957 DOI: 10.3390/ijms21144951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer represents a heterogenous disease whose incidence has increased in the last decades. Although three main different subtypes have been described, molecular characterization is progressively being included in the diagnostic and therapeutic algorithm of these patients. In fact, thyroid cancer is a landmark in the oncological approach to solid tumors as it harbors key genetic alterations driving tumor progression that have been demonstrated to be potential actionable targets. Within this promising and rapid changing scenario, current efforts are directed to improve tumor characterization for an accurate guidance in the therapeutic management. In this sense, it is strongly recommended to perform tissue genotyping to patients that are going to be considered for systemic therapy in order to select the adequate treatment, according to recent clinical trials data. Overall, the aim of this article is to provide a comprehensive review on the molecular biology of thyroid cancer focusing on the key role of tyrosine kinases. Additionally, from a clinical point of view, we provide a thorough perspective, current and future, in the treatment landscape of this tumor.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/enzymology
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/therapy
- Adenoma, Oxyphilic/enzymology
- Adenoma, Oxyphilic/genetics
- Adenoma, Oxyphilic/therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinoma, Medullary/enzymology
- Carcinoma, Medullary/genetics
- Carcinoma, Medullary/therapy
- Carcinoma, Papillary/enzymology
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/therapy
- Clinical Trials as Topic
- Combined Modality Therapy
- Disease Management
- Forecasting
- Genes, Neoplasm
- Humans
- Immune Checkpoint Inhibitors/therapeutic use
- Immunoconjugates/therapeutic use
- Immunotherapy
- Iodine Radioisotopes/therapeutic use
- Molecular Targeted Therapy
- Multicenter Studies as Topic
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Randomized Controlled Trials as Topic
- Thyroid Neoplasms/enzymology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/therapy
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- María San Román Gil
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
| | - Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
| | - Joaquín Gómez
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
- General Surgery Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Héctor Pian
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miguel Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
| | - Alfredo Carrato
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
| | - Enrique Grande
- Medical Oncology Department, MD Anderson Cancer Center, 28033 Madrid, Spain;
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
| |
Collapse
|
15
|
Fussey JM, Vaidya B, Kim D, Clark J, Ellard S, Smith JA. The role of molecular genetics in the clinical management of sporadic medullary thyroid carcinoma: A systematic review. Clin Endocrinol (Oxf) 2019; 91:697-707. [PMID: 31301229 DOI: 10.1111/cen.14060] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The significant variation in the clinical behaviour of sporadic medullary thyroid carcinoma (sMTC) causes uncertainty when planning the management of these patients. Several tumour genetic and epigenetic markers have been described, but their clinical usefulness remains unclear. The aim of this review was to evaluate the evidence for the use of molecular genetic and epigenetic profiles in the risk stratification and management of sMTC. METHODS MEDLINE and Embase databases were searched using the MeSH terms "medullary carcinoma", "epigenetics", "molecular genetics", "microRNAs"; and free text terms "medullary carcinoma", "sporadic medullary thyroid cancer", "sMTC", "RET", "RAS" and "miR". Articles containing less than ten subjects, not focussing on sMTC, or not reporting clinical outcomes were excluded. Risk of bias was assessed using a modified version of the Newcastle-Ottawa Scale. RESULTS Twenty-three studies met the inclusion criteria, and key findings were summarized in themes according to the genetic and epigenetic markers studied. There is good evidence that somatic RET mutations predict higher rates of lymph node metastasis and persistent disease, and worse survival. There are also several good quality studies demonstrating associations between certain epigenetic markers such as tumour miR-183 and miR-375 expression and higher rates of lymph node and distant metastasis, and worse survival. CONCLUSIONS There is a growing body of evidence that tumour genetic and epigenetic profiles can be used to risk stratify patients with sMTC. Further research should focus on the clinical applicability of these findings by investigating the possibility of tailoring management to an individual's tumour mutation profile.
Collapse
Affiliation(s)
- Jonathan Mark Fussey
- Department of Head and Neck Surgery, Royal Devon and Exeter Hospital, Exeter, UK
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Bijay Vaidya
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
- Department of Endocrinology, Royal Devon and Exeter Hospital, Exeter, UK
| | - Dae Kim
- Department of Head and Neck Surgery, St George's University Hospital, London, UK
| | - Jonathan Clark
- Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Joel Anthony Smith
- Department of Head and Neck Surgery, Royal Devon and Exeter Hospital, Exeter, UK
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
16
|
Evaluation of miRNAs expression in medullary thyroid carcinoma tissue samples: miR-34a and miR-144 as promising overexpressed markers in MTC. Hum Pathol 2018; 79:212-221. [PMID: 29885402 DOI: 10.1016/j.humpath.2018.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/09/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare neoplasia derived from neural parafollicular C cells. MicroRNAs (miRNAs) are small regulatory RNAs with essential roles in the biology of cancers such as MTC and can be applied as diagnostic markers. According to previous studies, miR-144 and miR-34 and their two oncogenes target, mammalian target of rapamycin (mTOR) and AXL receptor tyrosine kinase (AXL), were selected for further investigations in our study. Thirty MTC samples as well as thirty adjacent normal thyroid tissues were applied in this study including 28 formalin-fixed, paraffin-embedded (FFPE) and 2 fresh-frozen MTC samples. RNA extraction and complementary DNA (cDNA) synthesis were performed for all samples. After primer pairs and probes were designed, real-time polymerase chain reaction (real-time PCR) method was used, and the results were analyzed using 2-ΔΔCt method. Receiver operating characteristic (ROC) curve analysis was applied to assess the diagnostic value of the two miRNAs. AXL protein level was measured in all clinical samples using enzyme-linked immunosorbent assay (ELISA) method. Both miRNAs were up-regulated in all clinical samples compared to the normal tissues. AXL was up-regulated in most clinical samples while mTOR was down-regulated in most samples. Furthermore, the level of AXL protein increased. ROC curve analysis demonstrated that increased expression of miR-34a and miR-144 in MTC patients had significant predictive value. The results demonstrated that high expression of miR-144 and miR-34a can be considered as biomarkers of MTC. However, there was no statistically significant correlation between the expression of these miRNAs and target genes in MTC clinical samples.
Collapse
|
17
|
Vuong HG, Odate T, Ngo HTT, Pham TQ, Tran TTK, Mochizuki K, Nakazawa T, Katoh R, Kondo T. Clinical significance of RET and RAS mutations in sporadic medullary thyroid carcinoma: a meta-analysis. Endocr Relat Cancer 2018; 25:633-641. [PMID: 29615431 DOI: 10.1530/erc-18-0056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022]
Abstract
There are ongoing debates with respect to the prognostic roles of molecular biomarkers in sporadic medullary thyroid carcinoma (MTC). In this study, we aimed at investigating the prognostic value of RET and RAS mutations - the two most common mutations in sporadic MTCs. A search was conducted in four electronic databases. Relevant data were extracted and pooled into odds ratios (OR), mean differences (MD) and corresponding 95% confidence intervals (CI) using the random-effect model. We used Egger's regression test and visual of funnel plots to assess the publication bias. From 2581 studies, we included 23 studies with 964 MTCs for meta-analysis. Overall, the presence of RET mutation was associated with an elevated risk for lymph node metastasis (OR = 3.61; 95% CI = 2.33-5.60), distant metastasis (OR = 2.85; 95% CI = 1.64-4.94), advanced tumor stage (OR = 3.25; 95% CI = 2.02-5.25), tumor recurrence (OR = 3.01; 95% CI = 1.65-5.48) and patient mortality (OR = 2.43; 95% CI = 1.06-5.57). RAS mutation had no significant prognostic value in predicting tumor aggressiveness. To summarize, our results affirmed that RET mutation is a reliable molecular biomarker to identify a group of highly aggressive sporadic MTCs. It can help clinicians better assess patient prognosis and select appropriate treatment decisions.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of PathologyUniversity of Yamanashi, Chuo, Yamanashi, Japan
| | - Toru Odate
- Department of PathologyUniversity of Yamanashi, Chuo, Yamanashi, Japan
| | - Hanh T T Ngo
- Department of PathologyUniversity of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Thong Quang Pham
- Department of PathologyCho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Thao T K Tran
- Faculty of MedicineUniversity of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Kunio Mochizuki
- Department of PathologyUniversity of Yamanashi, Chuo, Yamanashi, Japan
| | - Tadao Nakazawa
- Department of PathologyUniversity of Yamanashi, Chuo, Yamanashi, Japan
| | - Ryohei Katoh
- Department of PathologyUniversity of Yamanashi, Chuo, Yamanashi, Japan
| | - Tetsuo Kondo
- Department of PathologyUniversity of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
18
|
Cappagli V, Potes CS, Ferreira LB, Tavares C, Eloy C, Elisei R, Sobrinho-Simões M, Wookey PJ, Soares P. Calcitonin receptor expression in medullary thyroid carcinoma. PeerJ 2017; 5:e3778. [PMID: 28929017 PMCID: PMC5600720 DOI: 10.7717/peerj.3778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Background Calcitonin expression is a well-established marker for medullary thyroid carcinoma (MTC); yet the role of calcitonin receptor (CTR), its seven-transmembrane G-protein coupled receptor, remains to be established in C-cells derived thyroid tumors. The aim of this work was to investigate CTR expression in MTC and to correlate such expression with clinicopathological features in order to evaluate its possible role as a prognostic indicator of disease aggressiveness and outcome. Methods Calcitonin receptor expression was analyzed in a series of 75 MTCs by immunohistochemistry, and by qPCR mRNA quantification in specimens from four patients. Statistical tests were used to evaluate the correlation between CTR expression and the clinicopathological and molecular characteristics of patients and tumors. Results Calcitonin receptor expression was detected in 62 out of 75 samples (82.7%), whereas 13 of the 75 samples (17.3%) were completely negative. CTR expression was significantly associated with expression of cytoplasmatic phosphatase and tensin homologue deleted on chromosome 10 and osteopontin, as well as with wild type RET/RAS genes and absence of tumor stroma, suggesting that CTR expression do not associate with clinicopathological signs of worse prognosis. Discussion Calcitonin receptor expression appears to be associated in MTC with more differentiated status of the neoplastic cells.
Collapse
Affiliation(s)
- Virginia Cappagli
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Department of Clinical and Experimental Medicine, Endocrine Unit, University of Pisa, Pisa, Italy
| | - Catarina Soares Potes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.,Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luciana Bueno Ferreira
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Tavares
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Eloy
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Pisa, Pisa, Italy
| | - Manuel Sobrinho-Simões
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Hospital de S. João, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Peter J Wookey
- Department of Medicine at Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Paula Soares
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Medullary thyroid carcinoma (MTC) comprises approximately 4% of all malignant thyroid neoplasms. Although the majority of patients have a good prognosis, a subgroup of patients develops progressive disease and requires systemic therapy. Here, we focused on the current MTC therapeutic approaches and discussed the advantages and disadvantages of molecular targeted therapies. RECENT FINDINGS Targeted molecular therapies that inhibit RET and other tyrosine kinase receptors involved in angiogenesis have been shown to improve progression-free survival in patients with advanced MTC. Two drugs, vandetanib and cabozantinib, have been approved for the treatment of progressive or symptomatic MTC, and several others have exhibited variable efficacy. No tyrosine kinase inhibitor has been shown to improve survival. Although no definitive recommendation can currently be made, cumulative data indicate that knowledge of the tumor mutational profile may facilitate improvements in targeted therapy for MTC. SUMMARY Tyrosine kinase inhibitors are effective therapeutic agents for the treatment of progressive MTC. Nevertheless, it is not clear who will benefit the most from therapy, and the decision regarding when and how to initiate the treatment should be made based on the patient's medical history and tumor behavior. Hopefully, in the near future, molecular profiling of MTC can be used to determine the most effective molecular therapeutic target.
Collapse
|
20
|
Vitale G, Dicitore A, Pepe D, Gentilini D, Grassi ES, Borghi MO, Gelmini G, Cantone MC, Gaudenzi G, Misso G, Di Blasio AM, Hofland LJ, Caraglia M, Persani L. Synergistic activity of everolimus and 5-aza-2'-deoxycytidine in medullary thyroid carcinoma cell lines. Mol Oncol 2017; 11:1007-1022. [PMID: 28453190 PMCID: PMC5537710 DOI: 10.1002/1878-0261.12070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Medullary thyroid cancer (MTC) is a tumor highly resistant to chemo‐ and radiotherapy. Drug resistance can be induced by epigenetic changes such as aberrant DNA methylation. To overcome drug resistance, we explored a promising approach based on the use of 5‐aza‐2′‐deoxycytidine (AZA), a demethylating agent, in combination with the mTOR inhibitor everolimus in MTC cells (MZ‐CRC‐1 and TT). This combined treatment showed a strong synergistic antiproliferative activity through the induction of apoptosis. The effect of everolimus and/or AZA on genome‐wide expression profiling was evaluated by Illumina BeadChip in MZ‐CRC‐1 cells. An innovative bioinformatic pipeline identified four potential molecular pathways implicated in the synergy between AZA and everolimus: PI3K‐Akt signaling, the neurotrophin pathway, ECM/receptor interaction, and focal adhesion. Among these, the neurotrophin signaling pathway was most directly involved in apoptosis, through the overexpression of NGFR and Bax genes. The increased expression of genes involved in the NGFR‐MAPK10‐TP53‐Bax/Bcl2 pathway during incubation with AZA plus everolimus was validated by western blotting in MZ‐CRC‐1 cells. Interestingly, addition of a neutralizing anti‐NGFR antibody inhibited the synergistic cytotoxic activity between AZA and everolimus. These results open a new therapeutic scenario for MTC and potentially other neuroendocrine tumors, where therapy with mTOR inhibitors is currently approved.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | | | - Davide Gentilini
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Elisa S Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Maria O Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Experimental Laboratory of Immuno-rheumatologic Researches, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Giulia Gelmini
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Maria C Cantone
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - Anna M Di Blasio
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Leo J Hofland
- Section Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
21
|
NRASQ61R Mutation-specific Immunohistochemistry Also Identifies the HRASQ61R Mutation in Medullary Thyroid Cancer and May Have a Role in Triaging Genetic Testing for MEN2. Am J Surg Pathol 2017; 41:75-81. [DOI: 10.1097/pas.0000000000000740] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Cavedon E, Barollo S, Bertazza L, Pennelli G, Galuppini F, Watutantrige-Fernando S, Censi S, Iacobone M, Benna C, Vianello F, Zovato S, Nacamulli D, Mian C. Prognostic Impact of miR-224 and RAS Mutations in Medullary Thyroid Carcinoma. Int J Endocrinol 2017; 2017:4915736. [PMID: 28676824 PMCID: PMC5476902 DOI: 10.1155/2017/4915736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Little is known about the function of microRNA-224 (miR-224) in medullary thyroid cancer (MTC). This study investigated the role of miR-224 expression in MTC and correlated it with mutation status in sporadic MTCs. A consecutive series of 134 MTCs were considered. Patients had a sporadic form in 80% of cases (107/134). In this group, REarranged during transfection (RET) and rat sarcoma (RAS) mutation status were assessed by direct sequencing in the tumor tissues. Quantitative real-time polymerase chain reaction was used to quantify mature hsa-miR-224 in tumor tissue. RAS (10/107 cases, 9%) and RET (39/107 cases, 36%) mutations were mutually exclusive in sporadic cases. miR-224 expression was significantly downregulated in patients with the following: high calcitonin levels at diagnosis (p = 0.03, r = -0.3); advanced stage (p = 0.001); persistent disease (p = 0.001); progressive disease (p = 0.002); and disease-related death (p = 0.0001). We found a significant positive correlation between miR-224 expression and somatic RAS mutations (p = 0.007). Patients whose MTCs had a low miR-224 expression tended to have a shorter overall survival (log-rank test p = 0.005). On multivariate analysis, miR-224 represented an independent prognostic marker. Our data indicate that miR-224 is upregulated in RAS-mutated MTCs and in patients with a better prognosis and could represent an independent prognostic marker in MTC patients.
Collapse
Affiliation(s)
- Elisabetta Cavedon
- Familial Tumor Unit, Veneto Institute of Oncology, (IOV)-IRCCS, Padova, Italy
- *Elisabetta Cavedon:
| | - Susi Barollo
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Loris Bertazza
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Gianmaria Pennelli
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Francesca Galuppini
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Simona Censi
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Maurizio Iacobone
- Surgery Unit, Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Clara Benna
- Surgery Unit, Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Federica Vianello
- Department of Radiotherapy, Veneto Institute of Oncology (IOV)-IRCCS, Padova, Italy
| | - Stefania Zovato
- Familial Tumor Unit, Veneto Institute of Oncology, (IOV)-IRCCS, Padova, Italy
| | - Davide Nacamulli
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Caterina Mian
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
23
|
Nozhat Z, Hedayati M, Pourhassan H. Signaling pathways in medullary thyroid carcinoma: therapeutic implications. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2016. [DOI: 10.2217/ije-2016-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Medullary thyroid cancer (MTC) is the third most frequent thyroid cancer arising from thyroid parafollicular cells. Surgery is the first-line strategy in treatment of MTC but disease relapse and patient's death have been observed in approximately two out of three of MTC cases. Identification of molecular mechanisms and different signaling pathways has offered new insights for disease treatment. The development of tyrosine kinase inhibitors targeting these pathways has provided a promising landscape for prevention of progression in patients with advanced metastatic MTC. In this review article different altered molecular pathways implicated in the development of MTC and the therapeutic strategies based on targeting the identified signaling pathways have been summarized.
Collapse
Affiliation(s)
- Zahra Nozhat
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hoda Pourhassan
- Clinical Instructor Faculty, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
24
|
Tavares C, Coelho MJ, Melo M, da Rocha AG, Pestana A, Batista R, Salgado C, Eloy C, Ferreira L, Rios E, Sobrinho-Simões M, Soares P. pmTOR is a marker of aggressiveness in papillary thyroid carcinomas. Surgery 2016; 160:1582-1590. [PMID: 27574774 DOI: 10.1016/j.surg.2016.06.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Activation of the mTOR pathway has been observed in thyroid cancer, but the biologic consequences regarding tumor behavior and patient prognosis remain poorly explored. METHODS We aimed to evaluate the associations of the mTOR pathway with clinicopathologic and molecular features and prognosis through the immunocharacterization of pmTOR and pS6 expression (as readouts of the pathway) in a series of 191 papillary thyroid carcinomas. RESULTS pmTOR expression was associated with distant metastases (P = .05) and persistence of disease (P = .05). Cases with greater expression of pmTOR were submitted to more 131I treatments (r[102] = 0.2; P = .02) and a greater cumulative dose of radioactive iodine (r[100] = 0.3; P = .01). Positive pmTOR expression showed to be an independent risk factor for distant metastases (odds ratio = 18.2; 95% confidence interval 2.1-157.9; P = .01). In contrast, pS6 expression was associated with absence of extrathyroid extension (P = .001), well-defined tumor margins (P = .05), and wild-type BRAF status (P = .01). There was no correlation between the expression of pmTOR and pS6 expression (r[140] = 0.1; P = .3). CONCLUSION pmTOR expression is an indicator of aggressive, metastatic papillary thyroid carcinoma, being possibly implicated in refractoriness to therapy, while pS6 expression is associated with less aggressive pathologic features. Further studies are needed to understand better the biologic consequences of activation of the mTOR pathway in the behavior of thyroid cancer, namely the contribution of other pmTOR downstream effectors.
Collapse
Affiliation(s)
- Catarina Tavares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| | - Maria João Coelho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar of the University of Porto (ICBAS), Porto, Portugal
| | - Miguel Melo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Department of Endocrinology, Diabetes, and Metabolism, University and Hospital Center of Coimbra, Coimbra, Portugal; Medical Faculty, University of Coimbra, Coimbra, Portugal
| | - Adriana Gaspar da Rocha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; University and Hospital Center of Coimbra, Coimbra, Portugal
| | - Ana Pestana
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| | - Rui Batista
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Salgado
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal
| | - Catarina Eloy
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal
| | - Luciana Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| | - Elisabete Rios
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal; Department of Pathology, Hospital de S.João, Porto, Portugal
| | - Manuel Sobrinho-Simões
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal; Department of Pathology, Hospital de S.João, Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal.
| |
Collapse
|
25
|
Khandelwal AR, Ma X, Egan P, Kaskas NM, Moore-Medlin T, Caldito G, Abreo F, Gu X, Aubrey L, Milligan E, Nathan CAO. Biomarker and Pathologic Predictors of Cutaneous Squamous Cell Carcinoma Aggressiveness. Otolaryngol Head Neck Surg 2016; 155:281-8. [PMID: 27095050 DOI: 10.1177/0194599816641913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Aggressive cutaneous squamous cell carcinoma (cSCC) patients are at increased risk of metastasis. Currently, there are no accepted criteria or biomarkers for reliably predicting individuals at risk for recurrence and metastasis. Our objective is to determine if pS6 and pERK can predict cSCC aggressiveness and to identify primary tumor characteristics that may predict parotid metastasis. STUDY DESIGN Retrospective case series. SETTINGS Tertiary care center. SUBJECTS AND METHODS An Institutional Review Board-approved retrospective review was performed for patients with facial cSCC, with and without metastasis to the parotids. Subjects for the study were identified through the Louisiana Tumor Registry, Veterans Medical Records, and LSU Health-Shreveport pathology database. Tumor specimens from patients with cSCC and cSCC with parotid metastasis were analyzed for pERK and pS6 expression through immunohistochemistry. To identify risk factors for tumor aggressiveness, multiple logistic regression analysis was used to evaluate patients with cSCC that was metastatic to the parotid and managed surgically. RESULTS cSCC with parotid metastasis specimens exhibited significantly higher average pS6 but not pERK positivity than those from cSCC without metastasis (P < .05). Primary lesion-positive margins (P < .01), size of the skin tumor (P < .01) and degree of tumor differentiation (P < .01) were significantly associated with parotid metastasis. CONCLUSION Surgical history of cSCC, primary lesion-positive margins, degree of differentiation, and lesion size together with pS6 positivity appear to be predictors of cSCC aggressiveness and should prompt increased monitoring or elective parotidectomy.
Collapse
Affiliation(s)
- Alok R Khandelwal
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana, USA
| | - Xiaohui Ma
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana, USA
| | - Paige Egan
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana, USA Department of Surgery, Overton Brooks Veterans Medical Center, Shreveport, Louisiana, USA
| | - Nadine M Kaskas
- School of Medicine, LSU Health-Shreveport, Shreveport, Louisiana, USA
| | - Tara Moore-Medlin
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana, USA
| | - Gloria Caldito
- Department of Neurology and Biometry, LSU-Health Shreveport, Shreveport, Louisiana, USA
| | - Fleurette Abreo
- Department of Pathology, LSU-Health Shreveport, Shreveport, Louisiana, USA
| | - Xin Gu
- Department of Pathology, LSU-Health Shreveport, Shreveport, Louisiana, USA
| | - Lurie Aubrey
- Department of Surgery, Overton Brooks Veterans Medical Center, Shreveport, Louisiana, USA
| | - Edward Milligan
- Department of Surgery, Overton Brooks Veterans Medical Center, Shreveport, Louisiana, USA
| | - Cherie-Ann O Nathan
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana, USA Department of Surgery, Overton Brooks Veterans Medical Center, Shreveport, Louisiana, USA
| |
Collapse
|
26
|
Ferreira LB, Eloy C, Pestana A, Lyra J, Moura M, Prazeres H, Tavares C, Sobrinho-Simões M, Gimba E, Soares P. Osteopontin expression is correlated with differentiation and good prognosis in medullary thyroid carcinoma. Eur J Endocrinol 2016; 174:551-61. [PMID: 26811408 DOI: 10.1530/eje-15-0577] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteopontin (OPN) or secreted phosphoprotein 1 (SPP1) is a matricellular glycoprotein whose expression is elevated in various types of cancer and has been shown to be involved in tumourigenesis and metastasis in many malignancies, including follicular cell-derived thyroid carcinomas. Its role in C-cell-derived thyroid lesions and tumours remains to be established. OBJECTIVE The objective of this study is to clarify the role of OPN expression in the development of medullary thyroid carcinoma (MTC). METHODS OPN expression was analysed in a series of 116 MTCs by immunohistochemistry and by qPCR mRNA quantification of the 3 OPN isoforms (OPNa, OPNb and OPNc) in six cases from which fresh frozen tissue was available. Statistical tests were used to evaluate the relationship of OPN expression and the clinicopathological and molecular characteristics of patients and tumours. RESULTS OPN expression was detected in 91 of 116 (78.4%) of the MTC. We also observed high OPN expression in C-cell hyperplasia as well as in C-cells scattered in the thyroid parenchyma adjacent to the tumours. OPN expression was significantly associated with smaller tumour size, PTEN nuclear expression and RAS status, and suggestively associated with non-invasive tumours. OPNa isoform was expressed significantly at higher levels in tumours than in non-tumour samples. OPNb and OPNc presented similar levels of expression in all samples. Furthermore, OPNa isoform overexpression was significantly associated with reduced growth and viability in the MTC-derived cell line (TT). CONCLUSION The expression of OPN in normal C-cells and C-cell hyperplasia suggests that OPN is a differentiation marker of C-cells, rather than a marker of biological aggressiveness in this setting. At variance with other cancers, OPN expression is associated with good prognostic features in MTC.
Collapse
Affiliation(s)
- Luciana Bueno Ferreira
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e In
| | - Catarina Eloy
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil
| | - Ana Pestana
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil
| | - Joana Lyra
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil
| | - Margarida Moura
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil
| | - Hugo Prazeres
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e In
| | - Catarina Tavares
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e In
| | - Manuel Sobrinho-Simões
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e In
| | - Etel Gimba
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil
| | - Paula Soares
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e In
| |
Collapse
|
27
|
Abstract
Medullary thyroid carcinoma (MTC) is a rare malignancy originating from the calcitonin-secreting parafollicular thyroid C cells. Approximately 75% of cases are sporadic. Rearranged during transfection (RET) proto-oncogene plays a crucial role in MTC development. Besides RET, other oncogenes commonly involved in the pathogenesis of human cancers have also been investigated in MTC. The family of human RAS genes includes the highly homologous HRAS, KRAS, and NRAS genes that encode three distinct proteins. Activating mutations in specific hotspots of the RAS genes are found in about 30% of all human cancers. In thyroid neoplasias, RAS gene point mutations, mainly in NRAS, are detected in benign and malignant tumors arising from the follicular epithelium. However, recent reports have also described RAS mutations in MTC, namely in HRAS and KRAS. Overall, the prevalence of RAS mutations in sporadic MTC varies between 0-43.3%, occurring usually in tumors with WT RET and rarely in those harboring a RET mutation, suggesting that activation of these proto-oncogenes represents alternative genetic events in sporadic MTC tumorigenesis. Thus, the assessment of RAS mutation status can be useful to define therapeutic strategies in RET WT MTC. MTC patients with RAS mutations have an intermediate risk for aggressive cancer, between those with RET mutations in exons 15 and 16, which are associated with the worst prognosis, and cases with other RET mutations, which have the most indolent course of the disease. Recent results from exome sequencing indicate that, besides mutations in RET, HRAS, and KRAS, no other recurrent driver mutations are present in MTC.
Collapse
Affiliation(s)
- Margarida M Moura
- Unidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalServiço de EndocrinologiaInstituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalClínica Universitária de EndocrinologiaFaculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1150-228 Lisboa, Portugal
| | - Branca M Cavaco
- Unidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalServiço de EndocrinologiaInstituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalClínica Universitária de EndocrinologiaFaculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1150-228 Lisboa, Portugal
| | - Valeriano Leite
- Unidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalServiço de EndocrinologiaInstituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalClínica Universitária de EndocrinologiaFaculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1150-228 Lisboa, Portugal Unidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalServiço de EndocrinologiaInstituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalClínica Universitária de EndocrinologiaFaculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1150-228 Lisboa, Portugal Unidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalServiço de EndocrinologiaInstituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalClínica Universitária de EndocrinologiaFaculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1150-228 Lisboa, Portugal
| |
Collapse
|
28
|
Ferrari SM, Politti U, Spisni R, Materazzi G, Baldini E, Ulisse S, Miccoli P, Antonelli A, Fallahi P. Sorafenib in the treatment of thyroid cancer. Expert Rev Anticancer Ther 2015; 15:863-74. [PMID: 26152651 DOI: 10.1586/14737140.2015.1064770] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sorafenib has been evaluated in several Phase II and III studies in patients with locally advanced/metastatic radioactive iodine-refractory differentiated thyroid carcinomas (DTCs), reporting partial responses, stabilization of the disease and improvement of progression-free survival. Best responses were observed in lung metastases and minimal responses in bone lesions. On the basis of these studies, sorafenib was approved for the treatment of metastatic DTC in November 2013. Few studies suggested that reduction of thyroglobulin levels, or of average standardized uptake value at the fluorodeoxyglucose-PET, could be helpful for the identification of responding patients; but further studies are needed to confirm these results. Tumor genetic marker levels did not have any prognostic or predictive role in DTC patients.The most common adverse events observed included skin toxicity and gastrointestinal and constitutional symptoms. Encouraging results have also been observed in patients with medullary thyroid cancer. Many studies are ongoing to evaluate the long-term efficacy and tolerability of sorafenib in DTC patients.
Collapse
Affiliation(s)
- Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Two independent events--the identification of activating mutations of the RET proto-oncogene, a receptor tyrosine kinase, in medullary thyroid carcinoma, and the recognition that small organic molecules could bind to and inhibit phosphorylation of signaling molecules, thereby inactivating the pathway-led to the recognition that kinase inhibitors could be used to treat medullary thyroid carcinoma (MTC). The introduction of these compounds into clinical practice has transformed the treatment of metastatic MTC and provided insight into the mechanisms by which RET causes C-cell transformation. This chapter will review the progress in this field over the past 7 years.
Collapse
|