1
|
Nie M, Liu Q, Yan C. Skeletal Muscle Transcriptomic Comparison Between Men and Women in Response to Acute Sprint Exercise. Front Genet 2022; 13:860815. [PMID: 35903364 PMCID: PMC9315096 DOI: 10.3389/fgene.2022.860815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acute sprint exercise is a time-efficient physical activity that improves cardiorespiratory fitness in younger and middle-aged adults. Growing evidence has demonstrated that acute sprint exercise provides equal to or superior health benefits compared with moderate-intensity continuous training, which will dramatically increase aerobic capacity, insulin sensitivity, and muscle capillarization. Although the beneficial effects of acute sprint exercise are well documented, the mechanisms behind how acute sprint exercise prevents disease and benefits health are less understood. Method: We obtained differentially expressed genes in muscle (vastus lateralis) from men and women before and after an acute sprint exercise. Then, we identified hub genes from the protein–protein interaction (PPI) network of differentially expressed genes (DEGs) and key transcription factors in men and women related to acute sprint exercise. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses are performed on DEGs and sex-biased genes, respectively. Results: First, we identified 127 sexually dimorphic genes in men (90 upregulated and 37 downregulated) and 75 genes in women (90 upregulated and 37 downregulated) in response to acute sprint exercise. Second, CEBPB, SMAD3, and CDKN1A are identified as the top three hub genes related to men-biased genes. Accordingly, the top three hub genes related to women-biased genes are JUN, ACTB, and SMAD7. In addition, CLOCK, ZNF217, and KDM2B are the top three enriched transcriptional factors in men-biased genes, while XLR, SOX2, JUND, and KLF4 are transcription factors enriched most in women-biased genes. Furthermore, based on GO and KEGG enrichment analyses, we identified potential key pathways in regulating the exercise-related response in men and women, respectively. Conclusion: In this study, we found the difference in gene expression and enrichment pathways in muscle in men and women in response to acute sprint exercise. These results will shed new light on the mechanism underlying sex-based differences in skeletal muscle remodeling and metabolism related to acute sprint exercise, which may illustrate the mechanisms behind how acute sprint exercise prevents disease and benefits health.
Collapse
Affiliation(s)
- Mingkun Nie
- School of Physical Education, Xinxiang University, Xinxiang, China
| | - Qingling Liu
- School of Pharmacy, Xinxiang University, Xinxiang, China
| | - Cheng Yan
- School of Pharmacy, Xinxiang University, Xinxiang, China
- Key Laboratory of Nano-carbon Modified Film Technology of Henan Province, Xinxiang University, Xinxiang, China
- Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
- *Correspondence: Cheng Yan,
| |
Collapse
|
2
|
Hjelholt A, Høgild M, Bak AM, Arlien-Søborg MC, Bæk A, Jessen N, Richelsen B, Pedersen SB, Møller N, Lunde Jørgensen JO. Growth Hormone and Obesity. Endocrinol Metab Clin North Am 2020; 49:239-250. [PMID: 32418587 DOI: 10.1016/j.ecl.2020.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growth hormone (GH) exerts IGF-I dependent protein anabolic and direct lipolytic effects. Obesity reversibly suppresses GH secretion driven by elevated FFA levels, whereas serum IGF-I levels remain normal or elevated due to elevated portal insulin levels. Fasting in lean individuals suppresses hepatic IGF-I production and increases pituitary GH release, but this pattern is less pronounced in obesity. Fasting in obesity is associated with increased sensitivity to the insulin-antagonistic effects of GH. GH treatment in obesity induces a moderate reduction in fat mass and an increase in lean body mass but the therapeutic potential is uncertain.
Collapse
Affiliation(s)
- Astrid Hjelholt
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Morten Høgild
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Ann Mosegaard Bak
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Mai Christiansen Arlien-Søborg
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Amanda Bæk
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bjørn Richelsen
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Steen Bønløkke Pedersen
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Niels Møller
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Jens Otto Lunde Jørgensen
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark.
| |
Collapse
|
3
|
Abstract
Growth hormone (GH) plays a pivotal role in many physiological processes in humans, and in other mammalian and non-mammalian vertebrate species, through actions on somatic growth, tissue development and repair, and intermediary metabolism. This review will focus on mechanisms of GH actions on gene expression, primarily from the perspective of the genes that encode proteins stimulated by GH to regulate somatic growth, especially insulin-like growth factor 1 (IGF-I), but also others that are induced or repressed by GH. Topics to be discussed will include a brief overview of GH-mediated signal transduction pathways and how these cascades alter the functions of responsive transcription factors, with a specific focus on STAT5B, a key member of the signal transducers and activators of transcription family, characterization of essential GH-regulated genes, and elucidation of mechanisms of their regulation from biochemical, genetic, and genomic perspectives.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, TX, 79905, USA.
| |
Collapse
|
4
|
Høyer KL, Høgild ML, List EO, Lee KY, Kissinger E, Sharma R, Erik Magnusson N, Puri V, Kopchick JJ, Jørgensen JOL, Jessen N. The acute effects of growth hormone in adipose tissue is associated with suppression of antilipolytic signals. Physiol Rep 2020; 8:e14373. [PMID: 32073221 PMCID: PMC7029434 DOI: 10.14814/phy2.14373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
AIM Since GH stimulates lipolysis in vivo after a 2-hr lag phase, we studied whether this involves GH signaling and gene expression in adipose tissue (AT). METHODS Human subjects (n = 9) each underwent intravenous exposure to GH versus saline with measurement of serum FFA, and GH signaling, gene array, and protein in AT biopsies after 30-120 min. Human data were corroborated in adipose-specific GH receptor knockout (FaGHRKO) mice versus wild-type mice. Expression of candidate genes identified in the array were investigated in 3T3-L1 adipocytes. RESULTS GH increased serum FFA and AT phosphorylation of STAT5b in human subjects. This was replicated in wild-type mice, but not in FaGHRKO mice. The array identified 53 GH-regulated genes, and Ingenuity Pathway analysis showed downregulation of PDE3b, an insulin-dependent antilipolytic signal, upregulation of PTEN that inhibits insulin-dependent antilipolysis, and downregulation of G0S2 and RASD1, both encoding antilipolytic proteins. This was confirmed in 3T3-L1 adipocytes, except for PDE3B, including reciprocal effects of GH and insulin on mRNA expression of PTEN, RASD1, and G0S2. CONCLUSION (a) GH directly stimulates AT lipolysis in a GHR-dependent manner, (b) this involves suppression of antilipolytic signals at the level of gene expression, (c) the underlying GH signaling pathways remain to be defined.
Collapse
Affiliation(s)
- Katrine L. Høyer
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Morten L. Høgild
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Edward O. List
- The Edison Biotechnology InstituteAthensOHUSA
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Kevin Y. Lee
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Emily Kissinger
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Rita Sharma
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Nils Erik Magnusson
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Vishwajeet Puri
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - John J. Kopchick
- The Edison Biotechnology InstituteAthensOHUSA
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Jens O. L. Jørgensen
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Niels Jessen
- Department of Clinical PharmacologyUniversity of AarhusAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| |
Collapse
|
5
|
Hjelholt AJ, Lee KY, Arlien-Søborg MC, Pedersen SB, Kopchick JJ, Puri V, Jessen N, Jørgensen JOL. Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial. Mol Metab 2019; 29:65-75. [PMID: 31668393 PMCID: PMC6731350 DOI: 10.1016/j.molmet.2019.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
Objective Growth hormone (GH) stimulates lipolysis, but the underlying mechanisms remain incompletely understood. We examined the effect of GH on the expression of lipolytic regulators in adipose tissue (AT). Methods In a randomized, placebo-controlled, cross-over study, nine men were examined after injection of 1) a GH bolus and 2) a GH-receptor antagonist (pegvisomant) followed by four AT biopsies. In a second study, eight men were examined in a 2 × 2 factorial design including GH infusion and 36-h fasting with AT biopsies obtained during a basal period and a hyperinsulinemic-euglycemic clamp. Expression of GH-signaling intermediates and lipolytic regulators were studied by PCR and western blotting. In addition, mechanistic experiments in mouse models and 3T3-L1 adipocytes were performed. Results The GH bolus increased circulating free fatty acids (p < 0.0001) together with phosphorylation of signal transducer and activator of transcription 5 (STAT5) (p < 0.0001) and mRNA expression of the STAT5-dependent genes cytokine-inducible SH2-containing protein (CISH) and IGF-1 in AT. This was accompanied by suppressed mRNA expression of G0/G1 switch gene 2 (G0S2) (p = 0.007) and fat specific protein 27 (FSP27) (p = 0.002) and upregulation of phosphatase and tensin homolog (PTEN) mRNA expression (p = 0.03). Suppression of G0S2 was also observed in humans after GH infusion and fasting, as well as in GH transgene mice, and in vitro studies suggested MEK-PPARγ signaling to be involved. Conclusions GH-induced lipolysis in human subjects in vivo is linked to downregulation of G0S2 and FSP27 and upregulation of PTEN in AT. Mechanistically, in vitro data suggest that GH acts via MEK to suppress PPARγ-dependent transcription of G0S2. ClinicalTrials.govNCT02782221 and NCT01209429. Acute GH exposure in human subjects in vivo stimulates lipolysis and release of FFA together with GH signaling in adipose tissue. GH-induced lipolysis is associated with suppression of G0S2 and FSP27 and upregulation of PTEN in human subjects in vivo. Inhibition of MEK and activation of PPARγ abrogate GH-induced suppression of G0S2 mRNA expression in vitro.
Collapse
Affiliation(s)
- Astrid Johannesson Hjelholt
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark.
| | - Kevin Y Lee
- Heritage College of Osteopathic Medicine, Ohio University, 204 Grosvenor Hall, Athens, OH 45701, USA; The Diabetes Institute, Ohio University, Konneker Research Center 108, Athens, OH 45701, USA
| | - Mai Christiansen Arlien-Søborg
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark
| | - Steen Bønløkke Pedersen
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 2., 8200 Aarhus N, Denmark
| | - John J Kopchick
- Heritage College of Osteopathic Medicine, Ohio University, 204 Grosvenor Hall, Athens, OH 45701, USA; The Edison Biotechnology Institute, Ohio University, Konneker Research Center, 172 Water Tower Dr., Athens, OH 45701, USA
| | - Vishwajeet Puri
- Heritage College of Osteopathic Medicine, Ohio University, 204 Grosvenor Hall, Athens, OH 45701, USA; The Diabetes Institute, Ohio University, Konneker Research Center 108, Athens, OH 45701, USA
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 2., 8200 Aarhus N, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Wilh. Meyers Allé 4, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, Vennelyst Boulevard 4, 8000 Aarhus C, Denmark
| | - Jens Otto L Jørgensen
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark
| |
Collapse
|
6
|
Rucker K, de Sá LBPC, Arbex AK. Growth Hormone Replacement Therapy in Patients without Adult Growth Hormone Deficiency: What Answers Do We Have So Far? Health (London) 2017. [DOI: 10.4236/health.2017.95057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|