1
|
Lee HS, Schwarz SW, Schubert EK, Chen DL, Doot RK, Makvandi M, Lin LL, McDonald ES, Mankoff DA, Mach RH. The Development of 18F Fluorthanatrace: A PET Radiotracer for Imaging Poly (ADP-Ribose) Polymerase-1. Radiol Imaging Cancer 2022; 4:e210070. [PMID: 35089089 PMCID: PMC8830434 DOI: 10.1148/rycan.210070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorine 18 (18F) fluorthanatrace (18F-FTT) is a PET radiotracer for imaging poly (adenosine diphosphate-ribose) polymerase-1 (PARP-1), an important target for a class of drugs known as PARP inhibitors, or PARPi. This article describes the stepwise development of this radiotracer from its design and preclinical evaluation to the first-in-human imaging studies and the initial validation of 18F-FTT as an imaging-based biomarker for measuring PARP-1 expression levels in patients with breast and ovarian cancer. A detailed discussion on the preparation and submission of an exploratory investigational new drug application to the Food and Drug Administration is also provided. Additionally, this review highlights the need and future plans for identifying a commercialization strategy to overcome the major financial barriers that exist when conducting the multicenter clinical trials needed for approval in the new drug application process. The goal of this article is to provide a road map that scientists and clinicians can follow for the successful clinical translation of a PET radiotracer developed in an academic setting. Keywords: Molecular Imaging-Cancer, PET, Breast, Genital/Reproductive, Chemistry, Radiotracer Development, PARPi, 18F-FTT, Investigational New Drug © RSNA, 2022.
Collapse
|
2
|
Park S, Kim YJ, Huh HJ, Chung HS, Lee M, Park YM, Mun YC, Seong CM, Huh J. Comprehensive DNA repair gene expression analysis and its prognostic significance in acute myeloid leukemia. Hematology 2021; 26:904-913. [PMID: 34789078 DOI: 10.1080/16078454.2021.1997196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Deficiency in DNA damage response (DDR) pathway and accumulation of DNA damage increases mutation rates resulting in genomic instability and eventually increases the risk of cancer. The aim of our study was to investigate expressions of DNA repair genes as new prognostic biomarkers in acute myeloid leukemia (AML). METHODS We utilized The Cancer Genome Atlas AML project (TCGA-LAML cohort, 15 acute promyelocytic leukemia (APL) and 155 non-APL AML) for the expression data of DNA repair genes. For validation, clinical samples (Ewha study group, 9 APL and 72 non-APL AML patients) were analyzed for the expression of 22 DNA repair genes using a custom RT2 Profiler PCR Array. RESULTS APL patients presented significantly lower expression of DNA repair genes than non-APL AML patients in both study groups. Among non-APL AML patients, high expression levels of PARP1, XRCC1, and RAD51 were associated with poor overall survival (OS) probability in both study groups. Furthermore, Cox regression analysis showed that increased expression levels of PARP1, XRCC1, RAD51, BRCA1 and MRE11A could be independent risk factors for OS in the Ewha study group. Among non-APL patients of the Ewha study group, the OS probability of DDR-overexpressed group with at least one gene or more showing Z score greater than 1.5 was poorer than that of DDR non-overexpressed group. CONCLUSION In the current study, the DNA repair gene expression profile of APL patients was different from that of non-APL AML patients. Overexpression of DNA repair genes could be a poor prognostic biomarker in non-APL AML.
Collapse
Affiliation(s)
- Sholhui Park
- Department of Laboratory Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yi-Jun Kim
- Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Hee Jin Huh
- Department of Laboratory Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Hae-Sun Chung
- Department of Laboratory Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Miae Lee
- Department of Laboratory Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Young Mi Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yeung Chul Mun
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Chu-Myong Seong
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jungwon Huh
- Department of Laboratory Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Tazzite A, Jouhadi H, Benider A, Nadifi S. BRCA Mutational Status is a Promising Predictive Biomarker for Platinum- based Chemotherapy in Triple-Negative Breast Cancer. Curr Drug Targets 2021; 21:962-973. [PMID: 32013831 DOI: 10.2174/1389450121666200203162541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/21/2019] [Accepted: 12/18/2019] [Indexed: 01/18/2023]
Abstract
Triple-negative breast cancer (TNBC) can be distinguished from other breast malignancies by the lack of expression of estrogen receptors (ER), progesterone receptors (PR) as well as human epidermal growth factor receptor 2 (HER2). TNBC is associated with adverse clinical outcomes and high risk of metastasis. Currently, several clinical and translational reports are focusing on developing targeted therapies for this aggressive cancer. In addition to approved targeted drugs such as poly(ADP-ribose) polymerase inhibitors (PARPi) and immune-checkpoint inhibitors, platinum-based chemotherapy is still a cornerstone therapeutic option in TNBC. However, despite the observed improved outcomes with platinum- based chemotherapy in TNBC, there is still a large proportion of patients who do not respond to this treatment, hence, the need for predictive biomarkers to stratify TNBC patients and therefore, avoiding unwanted toxicities of these agents. With the emergence of genetic testing, several recent studies suggested mutations in breast cancer susceptibility gene (BRCA) in TNBC patients as important predictors of outcomes. These mutations alter the homologous recombination repair (HRR) mechanisms leading to genomic instability. Consequently, sensitivity to platinum-based treatments in this subpopulation of TNBC patients may be explained by cell death enhanced by deoxyribonucleic acid (DNA) damage induced by these potent anticancer drugs. Through this paper, we review several recent studies on this topic to better understand the mechanisms and discuss the potential of BRCA mutational status as a predictive biomarker of platinum-based chemotherapy in TNBC.
Collapse
Affiliation(s)
- Amal Tazzite
- Genetics and Molecular Pathology Laboratory, Medical school of Casablanca, Hassan II University, Casablanca, Morocco
| | - Hassan Jouhadi
- Mohammed VI Center for Cancer Treatment, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Abdellatif Benider
- Mohammed VI Center for Cancer Treatment, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Sellama Nadifi
- Genetics and Molecular Pathology Laboratory, Medical school of Casablanca, Hassan II University, Casablanca, Morocco
| |
Collapse
|
4
|
Colas C, De Pauw A, Golmard L. Universal Genetic Testing to Identify Pathogenic Germline Variants in Patients With Cancer. JAMA Oncol 2021; 7:1071. [PMID: 34014284 DOI: 10.1001/jamaoncol.2021.1005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chrystelle Colas
- Département de Génétique, Institut Curie, Université de Recherche Paris Sciences et Lettres, Paris, France
| | - Antoine De Pauw
- Département de Génétique, Institut Curie, Université de Recherche Paris Sciences et Lettres, Paris, France
| | - Lisa Golmard
- Département de Génétique, Institut Curie, Université de Recherche Paris Sciences et Lettres, Paris, France
| |
Collapse
|
5
|
Arakelyan A, Melkonyan A, Hakobyan S, Boyarskih U, Simonyan A, Nersisyan L, Nikoghosyan M, Filipenko M, Binder H. Transcriptome Patterns of BRCA1- and BRCA2- Mutated Breast and Ovarian Cancers. Int J Mol Sci 2021; 22:1266. [PMID: 33525353 PMCID: PMC7865215 DOI: 10.3390/ijms22031266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the BRCA1 and BRCA2 genes are known risk factors and drivers of breast and ovarian cancers. So far, few studies have been focused on understanding the differences in transcriptome and functional landscapes associated with the disease (breast vs. ovarian cancers), gene (BRCA1 vs. BRCA2), and mutation type (germline vs. somatic). In this study, we were aimed at systemic evaluation of the association of BRCA1 and BRCA2 germline and somatic mutations with gene expression, disease clinical features, outcome, and treatment. We performed BRCA1/2 mutation centered RNA-seq data analysis of breast and ovarian cancers from the TCGA repository using transcriptome and phenotype "portrayal" with multi-layer self-organizing maps and functional annotation. The results revealed considerable differences in BRCA1- and BRCA2-dependent transcriptome landscapes in the studied cancers. Furthermore, our data indicated that somatic and germline mutations for both genes are characterized by deregulation of different biological functions and differential associations with phenotype characteristics and poly(ADP-ribose) polymerase (PARP)-inhibitor gene signatures. Overall, this study demonstrates considerable variation in transcriptomic landscapes of breast and ovarian cancers associated with the affected gene (BRCA1 vs. BRCA2), as well as the mutation type (somatic vs. germline). These results warrant further investigations with larger groups of mutation carriers aimed at refining the understanding of molecular mechanisms of breast and ovarian cancers.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Ani Melkonyan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia;
| | - Siras Hakobyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Uljana Boyarskih
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Arman Simonyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Lilit Nersisyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Maria Nikoghosyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
6
|
Sheta R, Bachvarova M, Plante M, Renaud MC, Sebastianelli A, Gregoire J, Navarro JM, Perez RB, Masson JY, Bachvarov D. Development of a 3D functional assay and identification of biomarkers, predictive for response of high-grade serous ovarian cancer (HGSOC) patients to poly-ADP ribose polymerase inhibitors (PARPis): targeted therapy. J Transl Med 2020; 18:439. [PMID: 33213473 PMCID: PMC7678187 DOI: 10.1186/s12967-020-02613-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Background Poly(ADP-ribose) polymerase inhibitors (PARPis) specifically target homologous recombination deficiency (HRD) cells and display good therapeutic effect in women with advanced-stage BRCA1/2-mutated breast and epithelial ovarian cancer (EOC). However, about 50% of high grade serous ovarian cancers (HGSOC) present with HRD due to epigenetic BRCA1 inactivation, as well as genetic/epigenetic inactivation(s) of other HR genes, a feature known as “BRCAness”. Therefore, there is a potential for extending the use of PARPis to these patients if HR status can be identified. Methods We have developed a 3D (spheroid) functional assay to assess the sensitivity of two PARPis (niraparib and olaparib) in ascites-derived primary cell cultures (AsPCs) from HGSOC patients. A method for AsPCs preparation was established based on a matrix (agarose), allowing for easy isolation and successive propagation of monolayer and 3D AsPCs. Based on this method, we performed cytotoxicity assays on 42 AsPCs grown both as monolayers and spheroids. Results The response to PARPis treatment in monolayer AsPCs, was significantly higher, compared to 3D AsPCs, as 88% and 52% of the monolayer AsPCs displayed sensitivity to niraparib and olaparib respectively, while 66% of the 3D AsPCs were sensitive to niraparib and 38% to olaparib, the latter being more consistent with previous estimates of HRD (40%–60%) in EOC. Moreover, niraparib displayed a significantly stronger cytotoxic effect in both in 3D and monolayer AsPCs, which was confirmed by consecutive analyses of the HR pathway activity (γH2AX foci formation) in PARPis-sensitive and resistant AsPCs. Global gene expression comparison of 6 PARPi-resistant and 6 PARPi-sensitive 3D AsPCs was indicative for the predominant downregulation of numerous genes and networks with previously demonstrated roles in EOC chemoresistance, suggesting that the PARPis-sensitive AsPCs could display enhanced sensitivity to other chemotherapeutic drugs, commonly applied in cancer management. Microarray data validation identified 24 potential gene biomarkers associated with PARPis sensitivity. The differential expression of 7 selected biomarkers was consecutively confirmed by immunohistochemistry in matched EOC tumor samples. Conclusion The application of this assay and the potential biomarkers with possible predictive significance to PARPis therapy of EOC patients now need testing in the setting of a clinical trial.
Collapse
Affiliation(s)
- Razan Sheta
- Department of Molecular Medicine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jamilet Miranda Navarro
- Bioinformatics Department, Center for Genetic Engineering and Biotechnology, 10600, Havana, CP, Cuba
| | - Ricardo Bringas Perez
- Bioinformatics Department, Center for Genetic Engineering and Biotechnology, 10600, Havana, CP, Cuba
| | - Jean-Yves Masson
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, G1V 0A6, Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Université Laval, Québec, QC, G1V 0A6, Canada. .,Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.
| |
Collapse
|
7
|
Zhao Y, Zhang LX, Jiang T, Long J, Ma ZY, Lu AP, Cheng Y, Cao DS. The ups and downs of Poly(ADP-ribose) Polymerase-1 inhibitors in cancer therapy–Current progress and future direction. Eur J Med Chem 2020; 203:112570. [DOI: 10.1016/j.ejmech.2020.112570] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
|
8
|
Zebrafish Xenografts Unveil Sensitivity to Olaparib beyond BRCA Status. Cancers (Basel) 2020; 12:cancers12071769. [PMID: 32630796 PMCID: PMC7408583 DOI: 10.3390/cancers12071769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibition in BRCA-mutated cells results in an incapacity to repair DNA damage, leading to cell death caused by synthetic lethality. Within the treatment options for advanced triple negative breast cancer, the PARP inhibitor olaparib is only given to patients with BRCA1/2 mutations. However, these patients may show resistance to this drug and BRCA1/2 wild-type tumors can show a striking sensitivity, making BRCA status a poor biomarker for treatment choice. Aiming to investigate if the zebrafish model can discriminate sensitivities to olaparib, we developed zebrafish xenografts with different BRCA status and measured tumor response to treatment, as well as its impact on angiogenesis and metastasis. When challenged with olaparib, xenografts revealed sensitivity phenotypes independent of BRCA. Moreover, its combination with ionizing radiation increased the cytotoxic effects, showing potential as a combinatorial regimen. In conclusion, we show that the zebrafish xenograft model may be used as a sensitivity profiling platform for olaparib in monotherapy or in combinatorial regimens. Hence, this model presents as a promising option for the future establishment of patient-derived xenografts for personalized medicine approaches beyond BRCA status.
Collapse
|
9
|
High-throughput functional evaluation of BRCA2 variants of unknown significance. Nat Commun 2020; 11:2573. [PMID: 32444794 PMCID: PMC7244490 DOI: 10.1038/s41467-020-16141-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous nontruncating missense variants of the BRCA2 gene have been identified, but there is a lack of convincing evidence, such as familial data, demonstrating their clinical relevance and they thus remain unactionable. To assess the pathogenicity of variants of unknown significance (VUSs) within BRCA2, here we develop a method, the MANO-B method, for high-throughput functional evaluation utilizing BRCA2-deficient cells and poly (ADP-ribose) polymerase (PARP) inhibitors. The estimated sensitivity and specificity of this assay compared to those of the International Agency for Research on Cancer classification system is 95% and 95% (95% confidence intervals: 77–100% and 82–99%), respectively. We classify the functional impact of 186 BRCA2 VUSs with our computational pipeline, resulting in the classification of 126 variants as normal/likely normal, 23 as intermediate, and 37 as abnormal/likely abnormal. We further describe a simplified, on-demand annotation system that could be used as a companion diagnostic for PARP inhibitors in patients with unknown BRCA2 VUSs. Many germline variants are found in the BRCA2 gene, some of which pre-dispose women to breast and ovarian cancer. Here, the authors develop a method to determine the functional significance of BRCA2 variants and show that it is comparable to the IARC system of classifying variants.
Collapse
|
10
|
Lheureux S, Oaknin A, Garg S, Bruce JP, Madariaga A, Dhani NC, Bowering V, White J, Accardi S, Tan Q, Braunstein M, Karakasis K, Cirlan I, Pedersen S, Li T, Fariñas-Madrid L, Lee YC, Liu Z(A, Pugh TJ, Oza AM. EVOLVE: A Multicenter Open-Label Single-Arm Clinical and Translational Phase II Trial of Cediranib Plus Olaparib for Ovarian Cancer after PARP Inhibition Progression. Clin Cancer Res 2020; 26:4206-4215. [DOI: 10.1158/1078-0432.ccr-19-4121] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/02/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
|
11
|
Zhang W, Shi J, Li R, Han Z, Li L, Li G, Yang B, Yin Q, Wang Y, Ke Y, Li Q. Effectiveness of Olaparib Treatment in a Patient with Gallbladder Cancer with an ATM-Inactivating Mutation. Oncologist 2020; 25:375-379. [PMID: 32045060 DOI: 10.1634/theoncologist.2019-0498] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Here, we report a case of postoperative recurrence of gallbladder carcinoma (GBC) in a patient who declined systemic chemotherapy. ATM S1905Ifs*25 and STK11 K262Sfs*25 mutations were detected by next-generation sequencing. Oral administration of olaparib was initiated. One month later, the patient experienced relief of clinical symptoms, a decrease in CA19-9 level, and a reduction in abnormal signal in the subcapsular region. The tumor response remained stable for approximately 13 months. This is the first case to demonstrate the clinical benefits of olaparib treatment in a patient with GBC harboring an ATM-inactivating mutation. This observation helps to better inform treatment options to enhance the care of patients with advanced GBC. KEY POINTS: A patient with gallbladder carcinoma harboring an ATM-inactivating mutation responded to olaparib with a progression-free survival of 13 months. This is the first report that demonstrates the clinical benefits of olaparib treatment in a patient with gallbladder carcinoma with an ATM-inactivating mutation. It also highlights the importance of next-generation sequencing, which can provide valuable information for planning effective targeted therapies for gallbladder carcinoma. Evidence-based decisions help determine the best choice of treatment for individualized patient care.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary Cancer and Neuro-Oncology Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Junping Shi
- OrigiMed, Shanghai, People's Republic of China
| | - Rentao Li
- Department of Hepatobiliary Cancer and Neuro-Oncology Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Zhiqiang Han
- Department of Hepatobiliary Cancer and Neuro-Oncology Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Ling Li
- OrigiMed, Shanghai, People's Republic of China
| | - Guanghao Li
- Department of Hepatobiliary Cancer and Neuro-Oncology Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Bo Yang
- Department of Pathology and Neuro-Oncology Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Qiang Yin
- Department of Neurosurgery and Neuro-Oncology Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yingying Wang
- Department of Hepatobiliary Cancer and Neuro-Oncology Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yan Ke
- Department of Pathology and Neuro-Oncology Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Qiang Li
- Department of Hepatobiliary Cancer and Neuro-Oncology Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| |
Collapse
|
12
|
Chandran EA, Kennedy I. Significant Tumor Response to the Poly (ADP-ribose) Polymerase Inhibitor Olaparib in Heavily Pretreated Patient With Ovarian Carcinosarcoma Harboring a Germline RAD51D Mutation. JCO Precis Oncol 2018; 2:1-4. [DOI: 10.1200/po.18.00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Ian Kennedy
- All authors: Waikato District Health Board, Hamilton, New Zealand
| |
Collapse
|
13
|
Velázquez C, Esteban-Cardeñosa EM, Lastra E, Abella LE, de la Cruz V, Lobatón CD, Durán M, Infante M. Unraveling the molecular effect of a rare missense mutation in BRIP1 associated with inherited breast cancer. Mol Carcinog 2018; 58:156-160. [PMID: 30230034 DOI: 10.1002/mc.22910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
Abstract
BRIP1 is a component of the Fanconi Anemia/BRCA pathway responsible for DNA reparation via helicase activity. Some heterozygous variants in BRIP1 could contribute to Hereditary Breast Cancer through a defective DNA repair. The clinical utility of BRIP1 mutations in a familial cancer context is compromised by the conflicting interpretation of "variants of uncertain significance" (VUS). Defining the clinical significance of variants identified in genetic tests is a major challenge; therefore, studies that evaluate the biological effect of these variants are definitely necessary. To contribute to this purpose, we have characterized the variant c.550G>T of BRIP1, a missense mutation with little evidence about its pathogenicity. Since Human Splicing FinderTM predicts the creation of a new exonic splicing enhancer site we decided to perform cDNA analysis revealing that the c.550G>T mutation located in exon 6 led to an aberrant transcript causing exon 5 skipping. Our results demonstrate that the c.550G>T BRIP1 variant disrupts normal splicing, causing exon 5 skipping. Considering that the exon 5 encodes the helicase domain of BRIP1, it is expected an alteration of the function. This finding enhances the interpretation of this VUS, suggesting a potential pathogenic effect.
Collapse
Affiliation(s)
- Carolina Velázquez
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Valladolid, Spain
| | - Eva M Esteban-Cardeñosa
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Valladolid, Spain
| | - Enrique Lastra
- Unit of Genetic Counseling in Cancer, Complejo Hospitalario de Burgos, Burgos, Spain
| | - Luis E Abella
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Virginia de la Cruz
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Carmen D Lobatón
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Valladolid, Spain
| | - Mercedes Durán
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Valladolid, Spain
| | - Mar Infante
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Valladolid, Spain
| |
Collapse
|
14
|
BRCA1/2 testing: therapeutic implications for breast cancer management. Br J Cancer 2018; 119:141-152. [PMID: 29867226 PMCID: PMC6048046 DOI: 10.1038/s41416-018-0127-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/10/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
Testing for germline BRCA1/2 mutations has an established predictive role in breast cancer risk assessment. More recently, studies have also identified BRCA1/2 status as clinically relevant in the selection of therapy for patients already diagnosed with breast cancer. Emerging breast and ovarian cancer research indicate that BRCA status predicts responsiveness to platinum-based chemotherapy, as well as to inhibitors of poly(ADP-ribose) polymerase (PARP), owing to the ability of these interventions to inhibit DNA repair pathways. BRCA1/2 mutation testing thus has important and expanding roles in treatment planning for subsets of patients with breast cancer. Recent studies have demonstrated different activity of platinum salts in BRCA-mutated compared with non-BRCA-mutated breast cancer. Furthermore, phase II/III studies of single-agent PARP inhibitors (PARPi) have shown encouraging progression-free survival results in patients with BRCA1/2-mutated breast cancer, which led to the recent approval of olaparib, the first PARPi to be approved in breast cancer. Determining BRCA1/2 mutation status in this breast cancer subgroup could potentially expand treatment options beyond the current standard of taxane and anthracycline-based chemotherapy. Although attempts have been made to develop scoring systems that measure defects in homologous recombination repair pathways to predict response to platinum or PARPi, none have yet made it into clinical use. In this review, we summarise the recent and ongoing preclinical and clinical studies on the treatment of BRCA-associated breast cancer, and discuss efforts to identify other breast cancer patients who may be responsive to therapies effective in BRCA mutation carriers, including platinum-containing chemotherapy and PARPi.
Collapse
|
15
|
Allison Stewart C, Tong P, Cardnell RJ, Sen T, Li L, Gay CM, Masrorpour F, Fan Y, Bara RO, Feng Y, Ru Y, Fujimoto J, Kundu ST, Post LE, Yu K, Shen Y, Glisson BS, Wistuba I, Heymach JV, Gibbons DL, Wang J, Byers LA. Dynamic variations in epithelial-to-mesenchymal transition (EMT), ATM, and SLFN11 govern response to PARP inhibitors and cisplatin in small cell lung cancer. Oncotarget 2018; 8:28575-28587. [PMID: 28212573 PMCID: PMC5438673 DOI: 10.18632/oncotarget.15338] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/19/2017] [Indexed: 12/16/2022] Open
Abstract
Small cell lung cancer (SCLC) is one of the most aggressive forms of cancer, with a 5-year survival <7%. A major barrier to progress is the absence of predictive biomarkers for chemotherapy and novel targeted agents such as PARP inhibitors. Using a high-throughput, integrated proteomic, transcriptomic, and genomic analysis of SCLC patient-derived xenografts (PDXs) and profiled cell lines, we identified biomarkers of drug sensitivity and determined their prevalence in patient tumors. In contrast to breast and ovarian cancer, PARP inhibitor response was not associated with mutations in homologous recombination (HR) genes (e.g., BRCA1/2) or HRD scores. Instead, we found several proteomic markers that predicted PDX response, including high levels of SLFN11 and E-cadherin and low ATM. SLFN11 and E-cadherin were also significantly associated with in vitro sensitivity to cisplatin and topoisomerase1/2 inhibitors (all commonly used in SCLC). Treatment with cisplatin or PARP inhibitors downregulated SLFN11 and E-cadherin, possibly explaining the rapid development of therapeutic resistance in SCLC. Supporting their functional role, silencing SLFN11 reduced in vitro sensitivity and drug-induced DNA damage; whereas ATM knockdown or pharmacologic inhibition enhanced sensitivity. Notably, SCLC with mesenchymal phenotypes (i.e., loss of E-cadherin and high epithelial-to-mesenchymal transition (EMT) signature scores) displayed striking alterations in expression of miR200 family and key SCLC genes (e.g., NEUROD1, ASCL1, ALDH1A1, MYCL1). Thus, SLFN11, EMT, and ATM mediate therapeutic response in SCLC and warrant further clinical investigation as predictive biomarkers.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert J Cardnell
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Triparna Sen
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M Gay
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fatemah Masrorpour
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - You Fan
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rasha O Bara
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ying Feng
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Yuanbin Ru
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samrat T Kundu
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Karen Yu
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Yuqiao Shen
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Bonnie S Glisson
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V Heymach
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren Averett Byers
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Lee SY, Choi BS, Yoon CH, Kang C, Kim K, Kim KC. Selection of biomarkers for HIV-1 latency by integrated analysis. Genomics 2018; 111:327-333. [PMID: 29454027 DOI: 10.1016/j.ygeno.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 01/10/2023]
Abstract
A major obstacle in the treatment of human immunodeficiency virus type 1 (HIV-1) is its ability to establish latent infection. To find novel biomarkers associated with the mechanism of HIV-1 latent infection, we identified 70 candidate genes in HIV-1 latently infected cells through the integrated analysis in a previous study. It is important to select more effective biomarkers among 70 candidates and to verify the possibility of selected biomarkers for HIV-1 latency. We identified the 24 and 25 genes from 70 candidate genes in significantly enriched categories selected by Database for Annotation, Visualization and Integrated Discovery (DAVID) software and Gene Set Enrichment Analysis (GSEA) software, respectively. Also, we investigated genes regulated in both HIV-1 latently infected cell lines and PBMCs from HIV-1 infected patients and found the genes with a common pattern of expression levels in both cell lines and PBMCs. Consequently, we identified nine genes, APBB2, GMPR, IGF2BP3, LRP1, MAD2L2, MX1, OXR1, PTK2B, and TNFSF13B, via integrated analysis. Especially, APBB2 and MAD2L2 were identified in both DAVID and GSEA software. Our findings suggest that nine genes were identified via integrated analysis as potential biomarkers and in particular, APBB2 and MAD2L2 may be considered as more significant biomarkers for HIV-1 latency.
Collapse
Affiliation(s)
- Sun Young Lee
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Byeong-Sun Choi
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Chun Kang
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Kisoon Kim
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Kyung-Chang Kim
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea.
| |
Collapse
|
17
|
Chew W, Moorakonda RB, Courtney E, Soh H, Li ST, Chen Y, Shaw T, Allen JC, Evans DGR, Ngeow J. Evaluation of the relative effectiveness of the 2017 updated Manchester scoring system for predicting BRCA1/2 mutations in a Southeast Asian country. J Med Genet 2017; 55:344-350. [PMID: 29275357 DOI: 10.1136/jmedgenet-2017-105073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/23/2017] [Accepted: 12/02/2017] [Indexed: 11/03/2022]
Abstract
BACKGROUND Germline mutations in the BRCA1 and BRCA2 genes have significant clinical implications for both risk-reducing and early surveillance management. The third and most recent revision of the Manchester scoring system (MSS3) used to distinguish patients indicated for germline BRCA1/2 testing included further adjustments for triple negative breast cancer, high-grade serous ovarian cancer and human epidermal growth factor 2 (HER2) receptor status. This study aims to evaluate the relative effectiveness of MSS3 in a Southeast Asian population. METHODS All patients in our centre were tested using next-generation sequencing (NGS) panels that included full gene sequencing as well as coverage for large deletions/duplications in BRCA1/2. We calculated MSS1-3 scores for index patients between 2014 and 2017 who had undergone BRCA1/2 genetic testing and recorded their genetic test results. MSS1-3 outcomes were compared using receiver operating characteristic analysis, while associations with predictors were investigated using Fisher's exact test and logistics regression. Calculations were performed using Medcalc17. RESULTS Of the 330 included patients, 47 (14.2%) were found to have a germline mutation in BRCA1 or BRCA2. A positive HER2 receptor was associated with a lower likelihood of a BRCA1/2mutation (OR=0.125, 95% CI 0.016 to 0.955; P=0.007), while high-grade serous ovarian cancer was conversely associated with an increased likelihood of a BRCA1/2 mutation (OR=5.128, 95% CI 1.431 to 18.370; P=0.012). At the 10% threshold, 43.0% (142/330) of patients were indicated for testing under MSS3, compared with 35.8% (118/330) for MSS1% and 36.4% (120/330) for MSS2. At the 10% threshold, MSS3 sensitivity was 91.5% and specificity 65.0%, significantly better than the previous MSS1 (P=0.037) and MSS2 (P=0.032) models. CONCLUSION Our results indicate that the updated MSS3 outperforms previous iterations and relative to the Manchester population, is just as effective in identifying patients with BRCA1/2 mutations in a Southeast Asian population.
Collapse
Affiliation(s)
- Winston Chew
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore, Singapore
| | - Rajesh Babu Moorakonda
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore.,Singapore Clinical Research Institute, Singapore, Singapore
| | - Eliza Courtney
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore, Singapore
| | - Hazel Soh
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore, Singapore
| | - Shao Tzu Li
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore, Singapore
| | - Yanni Chen
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore, Singapore
| | - Tarryn Shaw
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore, Singapore
| | - John Carson Allen
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Dafydd Gareth R Evans
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Central Manchester University Hospitals NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Joanne Ngeow
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*Star), Singapore, Singapore
| |
Collapse
|
18
|
Metabolomics reveals novel blood plasma biomarkers associated to the BRCA1-mutated phenotype of human breast cancer. Sci Rep 2017; 7:17831. [PMID: 29259228 PMCID: PMC5736621 DOI: 10.1038/s41598-017-17897-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
Hereditary breast and ovarian cancer syndrome (HBOC) is partly due to the presence of mutations in the BRCA genes. Triple-negative (TN) breast cancer (BC) shares histological characteristics with germline BRCA1 mutation-associated tumours. We have investigated the metabolic profiles of human breast cancer (BC) cell lines carrying BRCA1 pathogenic mutations by non-targeted liquid chromatography coupled to mass spectrometry technology. Based on our in vitro results, we performed a targeted metabolomic analysis of plasma samples from TN HBOC patients taking into account their BRCA1 genotype. BRCA1 promoter hypermethylation and the BRCAness phenotype of BC cell lines were also studied. The purpose of this study was to determine the metabolic signature of HBOC syndrome and TNBC patients and to evaluate the potential contribution of the metabolites identified to the genetic diagnosis of breast cancer. The present results show the existence of a differential metabolic signature for BC cells based on the BRCA1 functionality. None of the studied BC cell lines presented hypermethylation of the BRCA1 promoter region. We provide evidence of the existence of free methylated nucleotides capable of distinguishing plasma samples from HBOC patients as BRCA1-mutated and BRCA1 non-mutated, suggesting that they might be considered as BRCA1-like biomarkers for TNBC and HBOC syndrome.
Collapse
|
19
|
Foy V, Schenk MW, Baker K, Gomes F, Lallo A, Frese KK, Forster M, Dive C, Blackhall F. Targeting DNA damage in SCLC. Lung Cancer 2017; 114:12-22. [PMID: 29173760 DOI: 10.1016/j.lungcan.2017.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 02/07/2023]
Abstract
SCLC accounts for 15% of lung cancer worldwide. Characterised by early dissemination and rapid development of chemo-resistant disease, less than 5% of patients survive 5 years. Despite 3 decades of clinical trials there has been no change to the standard platinum and etoposide regimen for first line treatment developed in the 1970's. The exceptionally high number of genomic aberrations observed in SCLC combined with the characteristic rapid cellular proliferation results in accumulation of DNA damage and genomic instability. To flourish in this precarious genomic context, SCLC cells are reliant on functional DNA damage repair pathways and cell cycle checkpoints. Current cytotoxic drugs and radiotherapy treatments for SCLC have long been known to act by induction of DNA damage and the response of cancer cells to such damage determines treatment efficacy. Recent years have witnessed improved understanding of strategies to exploit DNA damage and repair mechanisms in order to increase treatment efficacy. This review will summarise the rationale to target DNA damage response in SCLC, the progress made in evaluating novel DDR inhibitors and highlight various ongoing challenges for their clinical development in this disease.
Collapse
Affiliation(s)
- Victoria Foy
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Maximilian W Schenk
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Katie Baker
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, UK
| | - Fabio Gomes
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Oncologia Medica, Centro Hospitalar Lisboa Central, Lisboa, Portugal
| | - Alice Lallo
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Kristopher K Frese
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Martin Forster
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, UK
| | - Fiona Blackhall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Institute of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
20
|
Ohmoto A, Yachida S. Current status of poly(ADP-ribose) polymerase inhibitors and future directions. Onco Targets Ther 2017; 10:5195-5208. [PMID: 29138572 PMCID: PMC5667784 DOI: 10.2147/ott.s139336] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inhibitors of poly(ADP-ribose) polymerases (PARPs), which play a key role in DNA damage/repair pathways, have been developed as antitumor agents based on the concept of synthetic lethality. Synthetic lethality is the idea that cell death would be efficiently induced by simultaneous loss of function of plural key molecules, for example, by exposing tumor cells with inactivating gene mutation of BRCA-mediated DNA repair to chemically induced inhibition of PARPs. Indeed, three PARP inhibitors, olaparib, rucaparib and niraparib have already been approved in the US or Europe, mainly for the treatment of BRCA-mutant ovarian cancer. Clinical trials of various combinations of PARP inhibitors with cytotoxic or molecular-targeted agents are also underway. In particular, expanded applications of PARP inhibitors are anticipated following recent reports that defects in homologous recombination repair (HRR) are associated with mutations in repair genes other than BRCA1/BRCA2, such as ATM, ATR, PALB2, RAD51, CHEK1 and CHEK2, as well as with epigenetic loss of BRCA1 function through promoter methylation or overexpression of the BRCA2-interacting transcriptional repressor EMSY. Current topics of interest include selection of the best agent in each clinical context, identification of new treatment targets for HRR-proficient cases, and development of PARP inhibitor-based regimens that are less toxic and that prolong overall survival as well as progression-free survival. In addition, potential long-term side effects and suitable biomarkers for predicting efficacy and mechanisms of clinical resistance are in discussion. This review summarizes representative preclinical and clinical data for PARP inhibitors and discusses their potential for future applications to treat various malignancies.
Collapse
Affiliation(s)
- Akihiro Ohmoto
- Laboratory of Clinical Genomics, National Cancer Center Research Institute, Tokyo
| | - Shinichi Yachida
- Laboratory of Clinical Genomics, National Cancer Center Research Institute, Tokyo.,Department of Cancer Genome Informatics, Graduate School of Medicine, Faculty of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
21
|
Capoluongo E, Ellison G, López-Guerrero JA, Penault-Llorca F, Ligtenberg MJL, Banerjee S, Singer C, Friedman E, Markiefka B, Schirmacher P, Büttner R, van Asperen CJ, Ray-Coquard I, Endris V, Kamel-Reid S, Percival N, Bryce J, Röthlisberger B, Soong R, de Castro DG. Guidance Statement On BRCA1/2 Tumor Testing in Ovarian Cancer Patients. Semin Oncol 2017; 44:187-197. [PMID: 29248130 DOI: 10.1053/j.seminoncol.2017.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/28/2017] [Accepted: 08/28/2017] [Indexed: 01/25/2023]
Abstract
The approval, in 2015, of the first poly (adenosine diphosphate-ribose) polymerase inhibitor (PARPi; olaparib, Lynparza) for platinum-sensitive relapsed high-grade ovarian cancer with either germline or somatic BRCA1/2 deleterious mutations is changing the way that BRCA1/2 testing services are offered to patients with ovarian cancer. Ovarian cancer patients are now being referred for BRCA1/2 genetic testing for treatment decisions, in addition to familial risk estimation, and irrespective of a family history of breast or ovarian cancer. Furthermore, testing of tumor samples to identify the estimated 3%-9% of patients with somatic BRCA1/2 mutations who, in addition to germline carriers, could benefit from PARPi therapy is also now being considered. This new testing paradigm poses some challenges, in particular the technical and analytical difficulties of analyzing chemically challenged DNA derived from formalin-fixed, paraffin-embedded specimens. The current manuscript reviews some of these challenges and technical recommendations to consider when undertaking BRCA1/2 testing in tumor tissue samples to detect both germline and somatic BRCA1/2 mutations. Also provided are considerations for incorporating genetic analysis of ovarian tumor samples into the patient pathway and ethical requirements.
Collapse
Affiliation(s)
- Ettore Capoluongo
- Catholic University of the Sacred Heart and A. Gemelli Teaching Hospital Foundation, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | - Jane Bryce
- Nazionale Tumori IRCCS Pascale, Naples, Italy
| | | | | | | |
Collapse
|
22
|
Chan SH, Ngeow J. Germline mutation contribution to chromosomal instability. Endocr Relat Cancer 2017; 24:T33-T46. [PMID: 28808044 DOI: 10.1530/erc-17-0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
Abstract
Genomic instability is a feature of cancer that fuels oncogenesis through increased frequency of genetic disruption, leading to loss of genomic integrity and promoting clonal evolution as well as tumor transformation. A form of genomic instability prevalent across cancer types is chromosomal instability, which involves karyotypic changes including chromosome copy number alterations as well as gross structural abnormalities such as transversions and translocations. Defects in cellular mechanisms that are in place to govern fidelity of chromosomal segregation, DNA repair and ultimately genomic integrity are known to contribute to chromosomal instability. In this review, we discuss the association of germline mutations in these pathways with chromosomal instability in the background of related cancer predisposition syndromes. We will also reflect on the impact of genetic predisposition to clinical management of patients and how we can exploit this vulnerability to promote catastrophic genomic instability as a therapeutic strategy.
Collapse
Affiliation(s)
- Sock Hoai Chan
- Division of Medical OncologyCancer Genetics Service, National Cancer Centre Singapore, Singapore
| | - Joanne Ngeow
- Division of Medical OncologyCancer Genetics Service, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical ProgramDuke-NUS Medical School Singapore, Singapore
| |
Collapse
|
23
|
Wu H, Wu X, Liang Z. Impact of germline and somatic BRCA1/2 mutations: tumor spectrum and detection platforms. Gene Ther 2017; 24:601-609. [PMID: 28771233 DOI: 10.1038/gt.2017.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022]
Abstract
The BRCA1/2 genes are long and complex and mutation carriers are at risk of developing malignancies, mainly of gynecological origin. Various mutations arise in these genes and their characterization is a time-consuming, cost intensive, complicated process. Tumors of BRCA1/2 origin have distinct molecular and histological features that can impact responses to therapy. Therefore, detection of these mutations constitutes an important step in the risk assessment, prevention strategy and treatment of subjects. Although Sanger sequencing is the gold standard for the detection of genetic mutations, several next generation sequencing-based high throughput platforms have been developed and adapted for the detection of BRCA1/2 mutations. This review provides a comprehensive overview of the sequencing platforms available for the screening and identification of these mutations. We also summarize what is known about the different types of mutations that arise in these genes and the tumor spectra they result in. Finally, we present a short discussion on existing clinical guidelines which assist physicians in the decision-making process. These parameters have important consequences for the management of patients and an urgent need exists for the development of detection platforms that are cost effective and can provide clinicians with conclusive results within a significantly shorter time.
Collapse
Affiliation(s)
- H Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - X Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Z Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Bilan V, Selevsek N, Kistemaker HAV, Abplanalp J, Feurer R, Filippov DV, Hottiger MO. New Quantitative Mass Spectrometry Approaches Reveal Different ADP-ribosylation Phases Dependent On the Levels of Oxidative Stress. Mol Cell Proteomics 2017; 16:949-958. [PMID: 28325851 DOI: 10.1074/mcp.o116.065623] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/20/2017] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is a potent inducer of protein ADP-ribosylation. Although individual oxidative stress-induced ADP-ribosylated proteins have been identified, it is so far not clear to which extent different degrees of stress severity quantitatively and qualitatively alter ADP-ribosylation. Here, we investigated both quantitative and qualitative changes of the hydrogen peroxide (H2O2)-induced ADP-ribosylome using a label-free shotgun quantification and a parallel reaction monitoring (PRM) mass spectrometry approach for a selected number of identified ADP-ribosylated peptides. Although the major part of the basal HeLa ADP-ribosylome remained unchanged upon all tested H2O2 concentrations, some selected peptides change the extent of ADP-ribosylation depending on the degree of the applied oxidative stress. Low oxidative stress (i.e. 4 μm and 16 μm H2O2) caused a reduction in ADP-ribosylation of modified proteins detected under untreated conditions. In contrast, mid to strong oxidative stress (62 μm to 1 mm H2O2) induced a significant increase in ADP-ribosylation of oxidative stress-targeted proteins. The application of the PRM approach to SKOV3 and A2780, ovarian cancer cells displaying different sensitivities to PARP inhibitors, revealed that the basal and the H2O2-induced ADP-ribosylomes of SKOV3 and A2780 differed significantly and that the sensitivity to PARP inhibitors correlated with the level of ARTD1 expression in these cells. Overall, this new PRM-MS approach has proven to be sensitive in monitoring alterations of the ADP-ribosylome and has revealed unexpected alterations in proteins ADP-ribosylation depending on the degree of oxidative stress.
Collapse
Affiliation(s)
- Vera Bilan
- From the ‡Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,§Molecular Life Science (MLS) program of the Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Nathalie Selevsek
- ¶Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hans A V Kistemaker
- ‖Leiden Institute of Chemistry, Department of Bio-organic Synthesis, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jeannette Abplanalp
- From the ‡Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,§Molecular Life Science (MLS) program of the Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Roxane Feurer
- From the ‡Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Dmitri V Filippov
- ‖Leiden Institute of Chemistry, Department of Bio-organic Synthesis, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Michael O Hottiger
- From the ‡Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;
| |
Collapse
|
25
|
Danza K, De Summa S, Pinto R, Pilato B, Palumbo O, Carella M, Popescu O, Digennaro M, Lacalamita R, Tommasi S. TGFbeta and miRNA regulation in familial and sporadic breast cancer. Oncotarget 2017; 8:50715-50723. [PMID: 28881597 PMCID: PMC5584195 DOI: 10.18632/oncotarget.14899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/27/2016] [Indexed: 01/20/2023] Open
Abstract
The term ‘BRCAness’ was introduced to identify sporadic malignant tumors sharing characteristics similar to those germline BRCA-related. Among all mechanisms attributable to BRCA1 expression silencing, a major role has been assigned to microRNAs. MicroRNAs role in familial and sporadic breast cancer has been explored but few data are available about microRNAs involvement in homologous recombination repair control in these breast cancer subgroups. Our aim was to seek microRNAs associated to pathways underlying DNA repair dysfunction in breast cancer according to a family history of the disease. Affymetrix GeneChip microRNA Arrays were used to perform microRNA expression analysis in familial and sporadic breast cancer. Pathway enrichment analysis and microRNA target prediction was carried out using DIANA miRPath v.3 web-based computational tool and miRWalk v.2 database. We analyzed an external gene expression dataset (E-GEOD-49481), including both familial and sporadic breast cancers. For microRNA validation, an independent set of 19 familial and 10 sporadic breast cancers was used. Microarray analysis identified a signature of 28 deregulated miRNAs. For our validation analyses by real time PCR, we focused on miR-92a-1*, miR-1184 and miR-943 because associated to TGF-β signalling pathway, ATM and BRCA1 genes expression. Our results highlighted alterations in miR-92a-1*, miR-1184 and miR-943 expression levels suggesting their involvement in repair of DNA double-strand breaks through TGF-beta pathway control.
Collapse
Affiliation(s)
- Katia Danza
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Simona De Summa
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Rosamaria Pinto
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Brunella Pilato
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Orazio Palumbo
- IRCCS 'Casa Sollievo della Sofferenza', Medical Genetics Unit, San Giovanni Rotondo 71013, Italy
| | - Massimo Carella
- IRCCS 'Casa Sollievo della Sofferenza', Medical Genetics Unit, San Giovanni Rotondo 71013, Italy
| | - Ondina Popescu
- IRCCS 'Giovanni Paolo II', Anatomopathology Unit, Bari 70124, Italy
| | - Maria Digennaro
- IRCCS 'Giovanni Paolo II', Experimental Medical Oncology Unit, Bari 70124, Italy
| | - Rosanna Lacalamita
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Stefania Tommasi
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| |
Collapse
|
26
|
Cerrato A, Morra F, Celetti A. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. J Exp Clin Cancer Res 2016; 35:179. [PMID: 27884198 PMCID: PMC5123312 DOI: 10.1186/s13046-016-0456-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND DNA damage response (DDR) defects imply genomic instability and favor tumor progression but make the cells vulnerable to the pharmacological inhibition of the DNA repairing enzymes. Targeting cellular proteins like PARPs, which cooperate and complement molecular defects of the DDR process, induces a specific lethality in DDR defective cancer cells and represents an anti-cancer strategy. Normal cells can tolerate the DNA damage generated by PARP inhibition because of an efficient homologous recombination mechanism (HR); in contrast, cancer cells with a deficient HR are unable to manage the DSBs and appear especially sensitive to the PARP inhibitors (PARPi) effects. MAIN BODY In this review we discuss the proof of concept for the use of PARPi in different cancer types and the success and failure of their inclusion in clinical trials. The PARP inhibitor Olaparib [AZD2281] has been approved by the FDA for use in pretreated ovarian cancer patients with defective BRCA1/2 genes, and by the EMEA for maintenance therapy in platinum sensitive ovarian cancer patients with defective BRCA1/2 genes. BRCA mutations are now recognised as the molecular targets for PARPi sensitivity in several tumors. However, it is noteworthy that the use of PARPi has shown its efficacy also in non-BRCA related tumors. Several trials are ongoing to test different PARPi in different cancer types. Here we review the concept of BRCAness and the functional loss of proteins involved in DDR/HR mechanisms in cancer, including additional molecules that can influence the cancer cells sensitivity to PARPi. Given the complexity of the existing crosstalk between different DNA repair pathways, it is likely that a single biomarker may not be sufficient to predict the benefit of PARP inhibitors therapies. Novel general assays able to predict the DDR/HR proficiency in cancer cells and the PARPi sensitivity represent a challenge for a personalized therapy. CONCLUSIONS PARP inhibition is a potentially important strategy for managing a significant subset of tumors. The discovery of both germline and somatic DNA repair deficiencies in different cancer patients, together with the development of new PARP inhibitors that can kill selectively cancer cells is a potent example of targeting therapy to molecularly defined tumor subtypes.
Collapse
|