1
|
Croft J, Grajeda B, Gao L, Abou-Fadel J, Badr A, Sheng V, Zhang J. Whole-Genome Omics Elucidates the Role of CCM1 and Progesterone in Cerebral Cavernous Malformations within CmPn Networks. Diagnostics (Basel) 2024; 14:1895. [PMID: 39272679 PMCID: PMC11394482 DOI: 10.3390/diagnostics14171895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are abnormal expansions of brain capillaries that increase the risk of hemorrhagic strokes, with CCM1 mutations responsible for about 50% of familial cases. The disorder can cause irreversible brain damage by compromising the blood-brain barrier (BBB), leading to fatal brain hemorrhages. Studies show that progesterone and its derivatives significantly impact BBB integrity. The three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC), linking classic and non-classic progesterone signaling within the CmPn network, which is crucial for maintaining BBB integrity. This study aimed to explore the relationship between CCM1 and key pathways of the CmPn signaling network using three mouse embryonic fibroblast lines (MEFs) with distinct CCM1 expressions. Omics and systems biology analysis investigated CCM1-mediated signaling within the CmPn network. Our findings reveal that CCM1 is essential for regulating cellular processes within progesterone-mediated CmPn/CmP signaling, playing a crucial role in maintaining microvessel integrity. This regulation occurs partly through gene transcription control. The critical role of CCM1 in these processes suggests it could be a promising therapeutic target for CCMs.
Collapse
Affiliation(s)
- Jacob Croft
- Departs of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Liyuan Gao
- Department of Computer Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Johnathan Abou-Fadel
- Departs of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Ahmed Badr
- Department of Anesthesiology, Ochsner LSU Health, Shreveport, LA 71130, USA
| | - Victor Sheng
- Department of Computer Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jun Zhang
- Departs of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| |
Collapse
|
2
|
Butz H, Saskői É, Krokker L, Vereczki V, Alpár A, Likó I, Tóth E, Szőcs E, Cserepes M, Nagy K, Kacskovics I, Patócs A. Context-Dependent Role of Glucocorticoid Receptor Alpha and Beta in Breast Cancer Cell Behaviour. Cells 2023; 12:cells12050784. [PMID: 36899920 PMCID: PMC10000936 DOI: 10.3390/cells12050784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Background. The dual role of GCs has been observed in breast cancer; however, due to many concomitant factors, GR action in cancer biology is still ambiguous. In this study, we aimed to unravel the context-dependent action of GR in breast cancer. Methods. GR expression was characterized in multiple cohorts: (1) 24,256 breast cancer specimens on the RNA level, 220 samples on the protein level and correlated with clinicopathological data; (2) oestrogen receptor (ER)-positive and -negative cell lines were used to test for the presence of ER and ligand, and the effect of the GRβ isoform following GRα and GRβ overexpression on GR action, by in vitro functional assays. Results. We found that GR expression was higher in ER- breast cancer cells compared to ER+ ones, and GR-transactivated genes were implicated mainly in cell migration. Immunohistochemistry showed mostly cytoplasmic but heterogenous staining irrespective of ER status. GRα increased cell proliferation, viability, and the migration of ER- cells. GRβ had a similar effect on breast cancer cell viability, proliferation, and migration. However, the GRβ isoform had the opposite effect depending on the presence of ER: an increased dead cell ratio was found in ER+ breast cancer cells compared to ER- ones. Interestingly, GRα and GRβ action did not depend on the presence of the ligand, suggesting the role of the "intrinsic", ligand-independent action of GR in breast cancer. Conclusions. Staining differences using different GR antibodies may be the reason behind controversial findings in the literature regarding the expression of GR protein and clinicopathological data. Therefore, caution in the interpretation of immunohistochemistry should be applied. By dissecting the effects of GRα and GRβ, we found that the presence of the GR in the context of ER had a different effect on cancer cell behaviour, but independently of ligand availability. Additionally, GR-transactivated genes are mostly involved in cell migration, which raises GR's importance in disease progression.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, H-1122 Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences, Semmelweis University, H-1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, H-1089 Budapest, Hungary
- Correspondence:
| | - Éva Saskői
- Department of Oncology Biobank, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Lilla Krokker
- Hereditary Tumours Research Group, Hungarian Academy of Sciences, Semmelweis University, H-1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, H-1089 Budapest, Hungary
| | - Viktória Vereczki
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary
| | - István Likó
- Hereditary Tumours Research Group, Hungarian Academy of Sciences, Semmelweis University, H-1089 Budapest, Hungary
| | - Erika Tóth
- Department of Pathology, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Erika Szőcs
- Department of Oncology Biobank, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Mihály Cserepes
- Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary
| | | | | | - Attila Patócs
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, H-1122 Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|
3
|
Mitre-Aguilar IB, Moreno-Mitre D, Melendez-Zajgla J, Maldonado V, Jacobo-Herrera NJ, Ramirez-Gonzalez V, Mendoza-Almanza G. The Role of Glucocorticoids in Breast Cancer Therapy. Curr Oncol 2022; 30:298-314. [PMID: 36661673 PMCID: PMC9858160 DOI: 10.3390/curroncol30010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoids (GCs) are anti-inflammatory and immunosuppressive steroid molecules secreted by the adrenal gland and regulated by the hypothalamic-pituitary-adrenal (HPA) axis. GCs present a circadian release pattern under normal conditions; they increase their release under stress conditions. Their mechanism of action can be via the receptor-independent or receptor-dependent pathway. The receptor-dependent pathway translocates to the nucleus, where the ligand-receptor complex binds to specific sequences in the DNA to modulate the transcription of specific genes. The glucocorticoid receptor (GR) and its endogenous ligand cortisol (CORT) in humans, and corticosterone in rodents or its exogenous ligand, dexamethasone (DEX), have been extensively studied in breast cancer. Its clinical utility in oncology has mainly focused on using DEX as an antiemetic to prevent chemotherapy-induced nausea and vomiting. In this review, we compile the results reported in the literature in recent years, highlighting current trends and unresolved controversies in this field. Specifically, in breast cancer, GR is considered a marker of poor prognosis, and a therapeutic target for the triple-negative breast cancer (TNBC) subtype, and efforts are being made to develop better GR antagonists with fewer side effects. It is necessary to know the type of breast cancer to differentiate the treatment for estrogen receptor (ER)-positive, ER-negative, and TNBC, to implement therapies that include the use of GCs.
Collapse
Affiliation(s)
- Irma B. Mitre-Aguilar
- Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Daniel Moreno-Mitre
- Centro de Desarrollo de Destrezas Médicas (CEDDEM), Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico
| | - Vilma Maldonado
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico
| | - Nadia J. Jacobo-Herrera
- Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Victoria Ramirez-Gonzalez
- Departamento de Cirugía-Experimental, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Gretel Mendoza-Almanza
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico
| |
Collapse
|
4
|
Butz H, Patócs A. Mechanisms behind context-dependent role of glucocorticoids in breast cancer progression. Cancer Metastasis Rev 2022; 41:803-832. [PMID: 35761157 PMCID: PMC9758252 DOI: 10.1007/s10555-022-10047-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Glucocorticoids (GCs), mostly dexamethasone (dex), are routinely administered as adjuvant therapy to manage side effects in breast cancer. However, recently, it has been revealed that dex triggers different effects and correlates with opposite outcomes depending on the breast cancer molecular subtype. This has raised new concerns regarding the generalized use of GC and suggested that the context-dependent effects of GCs can be taken into potential consideration during treatment design. Based on this, attention has recently been drawn to the role of the glucocorticoid receptor (GR) in development and progression of breast cancer. Therefore, in this comprehensive review, we aimed to summarize the different mechanisms behind different context-dependent GC actions in breast cancer by applying a multilevel examination, starting from the association of variants of the GR-encoding gene to expression at the mRNA and protein level of the receptor, and its interactions with other factors influencing GC action in breast cancer. The role of GCs in chemosensitivity and chemoresistance observed during breast cancer therapy is discussed. In addition, experiences using GC targeting therapeutic options (already used and investigated in preclinical and clinical trials), such as classic GC dexamethasone, selective glucocorticoid receptor agonists and modulators, the GC antagonist mifepristone, and GR coregulators, are also summarized. Evidence presented can aid a better understanding of the biology of context-dependent GC action that can lead to further advances in the personalized therapy of breast cancer by the evaluation of GR along with the conventional estrogen receptor (ER) and progesterone receptor (PR) in the routine diagnostic procedure.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary.
- Hereditary Tumours Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary.
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| | - Attila Patócs
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Kerkvliet CP, Truong TH, Ostrander JH, Lange CA. Stress sensing within the breast tumor microenvironment: how glucocorticoid receptors live in the moment. Essays Biochem 2021; 65:971-983. [PMID: 34132331 PMCID: PMC8627466 DOI: 10.1042/ebc20200165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
The classification and treatment of breast cancer is largely defined by the expression of steroid hormone receptors (HRs), namely estrogen receptor (ER) and progesterone receptor (PR), and gene amplification/overexpression of human epidermal growth factor receptor 2 (HER2). More recently, studies of androgen receptor (AR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) have revealed that targeting these related HRs may be a promising strategy for a more personalized approach to the treatment of specific subtypes of HR+ breast cancer. For example, GR expression is associated with a good prognosis in ER+ breast cancer, but predicts poor prognosis in triple-negative breast cancer (TNBC). GR, like ER, PRs, and AR, is a ligand-activated transcription factor, but also has significant ligand-independent signaling activities. GR transcriptional activity is classically regulated by circulating glucocorticoids (GCs; ligand-dependent). Recent studies demonstrate that GR transcriptional activity is also regulated by a variety of cellular stress stimuli that input to GR Ser134 phosphorylation via rapid activation of the p38 mitogen activated protein kinase (MAPK) signaling pathway (ligand-independent). Furthermore, ligand-independent GR activation promotes feedforward signaling loops that mediate sustained activation of stress signaling pathways to drive advanced cancer biology (i.e. migration, invasion, chemoresistance, survival, and cellular growth). In this review, we will focus on the role of GR as a key sensor and mediator of physiologic and tumor microenvironment (TME)-derived cellular stress signaling in TNBC and discuss how targeting GR and/or associated signaling pathways may provide a strategy to inhibit deadly TNBC progression.
Collapse
Affiliation(s)
| | - Thu H. Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Julie Hanson Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Carol A. Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, U.S.A
| |
Collapse
|
6
|
Glucocorticoid receptor wields chromatin interactions to tune transcription for cytoskeleton stabilization in podocytes. Commun Biol 2021; 4:675. [PMID: 34083716 PMCID: PMC8175753 DOI: 10.1038/s42003-021-02209-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Elucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.
Collapse
|
7
|
Progesterone receptors in normal breast development and breast cancer. Essays Biochem 2021; 65:951-969. [PMID: 34061163 DOI: 10.1042/ebc20200163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Progesterone receptors (PR) play a pivotal role in many female reproductive tissues such as the uterus, the ovary, and the mammary gland (MG). Moreover, PR play a key role in breast cancer growth and progression. This has led to the development and study of different progestins and antiprogestins, many of which are currently being tested in clinical trials for cancer treatment. Recent reviews have addressed the role of PR in MG development, carcinogenesis, and breast cancer growth. Thus, in this review, in addition to making an overview on PR action in normal and tumor breast, the focus has been put on highlighting the still unresolved topics on hormone treatment involving PR isoforms and breast cancer prognosis.
Collapse
|
8
|
Abstract
The aim of this study was to evaluate whether there are thyroid diseases in which breast cancer will appear later as well as the role of autoimmunity. This was a retrospective observational study. A total of 410 females (thyroid surgery and later breast cancer) and 524 females (thyroid surgery only) were compared with regard to pathological thyroid findings, thyroid hormones, thyroid autoimmunity and type of breast cancer. Thyroid autoimmunity, especially antithyroid peroxidase antibodies, significantly increased the risk of breast cancer (p < 0.01); however, this was not true for other thyroid diseases, including thyroid cancer. No variant of breast cancer was predominant, and only thyroid autoimmunity was associated with the risk of breast cancer. Further research is needed to explain the impacts of different antithyroid antibodies. Several studies have long hypothesized a link between thyroid disease and breast cancer. The authors' study retrospectively examined a large cohort of patients who initially underwent thyroid surgery and subsequently had breast cancer compared with a control group consisting of patients with only breast cancer. This comparison showed that only autoimmune thyroid disease was a risk factor for subsequent breast cancer, whereas no significant association of thyroid cancer with breast cancer was found.
Collapse
|
9
|
Perez Kerkvliet C, Dwyer AR, Diep CH, Oakley RH, Liddle C, Cidlowski JA, Lange CA. Glucocorticoid receptors are required effectors of TGFβ1-induced p38 MAPK signaling to advanced cancer phenotypes in triple-negative breast cancer. Breast Cancer Res 2020; 22:39. [PMID: 32357907 PMCID: PMC7193415 DOI: 10.1186/s13058-020-01277-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Altered signaling pathways typify breast cancer and serve as direct inputs to steroid hormone receptor sensors. We previously reported that phospho-Ser134-GR (pS134-GR) species are elevated in triple-negative breast cancer (TNBC) and cooperate with hypoxia-inducible factors, providing a novel avenue for activation of GR in response to local or cellular stress. METHODS We probed GR regulation by factors (cytokines, growth factors) that are rich within the tumor microenvironment (TME). TNBC cells harboring endogenous wild-type (wt) or S134A-GR species were created by CRISPR/Cas knock-in and subjected to transwell migration, invasion, soft-agar colony formation, and tumorsphere assays. RNA-seq was employed to identify pS134-GR target genes that are regulated both basally (intrinsic) or by TGFβ1 in the absence of exogenously added GR ligands. Regulation of selected basal and TGFβ1-induced pS134-GR target genes was validated by qRT-PCR and chromatin immunoprecipitation assays. Bioinformatics tools were used to probe public data sets for expression of pS134-GR 24-gene signatures. RESULTS In the absence of GR ligands, GR is transcriptionally activated via p38-dependent phosphorylation of Ser134 as a mechanism of homeostatic stress-sensing and regulated upon exposure of TNBC cells to TME-derived agents. The ligand-independent pS134-GR transcriptome encompasses TGFβ1 and MAPK signaling gene sets associated with TNBC cell survival and migration/invasion. Accordingly, pS134-GR was essential for TNBC cell anchorage-independent growth in soft-agar, migration, invasion, and tumorsphere formation, an in vitro readout of cancer stemness properties. Both pS134-GR and expression of the MAPK-scaffolding molecule 14-3-3ζ were essential for a functionally intact p38 MAPK signaling pathway downstream of MAP3K5/ASK1, indicative of a feedforward signaling loop wherein self-perpetuated GR phosphorylation enables cancer cell autonomy. A 24-gene pS134-GR-dependent signature induced by TGFβ1 predicts shortened overall survival in breast cancer patients. CONCLUSIONS Phospho-S134-GR is a critical downstream effector of p38 MAPK signaling and TNBC migration/invasion, survival, and stemness properties. Our studies define a ligand-independent role for GR as a homeostatic "sensor" of intrinsic stimuli as well as extrinsic factors rich within the TME (TGFβ1) that enable potent activation of the p38 MAPK stress-sensing pathway and nominate pS134-GR as a therapeutic target in aggressive TNBC.
Collapse
Affiliation(s)
- Carlos Perez Kerkvliet
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| | - Amy R. Dwyer
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| | - Caroline H. Diep
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| | - Robert H. Oakley
- Department of Health and Human Services, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Darlington, NSW 2006 Australia
| | - John A. Cidlowski
- Department of Health and Human Services, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Carol A. Lange
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| |
Collapse
|
10
|
Elizalde PV, Proietti CJ. Steroid hormone receptors: A South American perspective. Steroids 2020; 155:108554. [PMID: 31836480 DOI: 10.1016/j.steroids.2019.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patricia V Elizalde
- Instituto de Biología y Medicina Experimental (IBYME) CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| | - Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME) CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
11
|
Fowler AM, Salem K, DeGrave M, Ong IM, Rassman S, Powers GL, Kumar M, Michel CJ, Mahajan AM. Progesterone Receptor Gene Variants in Metastatic Estrogen Receptor Positive Breast Cancer. Discov Oncol 2020; 11:63-75. [PMID: 31942683 DOI: 10.1007/s12672-020-00377-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/07/2020] [Indexed: 01/20/2023] Open
Abstract
Tumor mutations in the gene encoding estrogen receptor alpha (ESR1) have been identified in metastatic breast cancer patients with endocrine therapy resistance. However, relatively little is known about the occurrence of mutations in the progesterone receptor (PGR) gene in this population. The study objective was to determine the frequency and prognostic significance of tumor PGR mutations for patients with estrogen receptor (ER)-positive metastatic breast cancer. Thirty-five women with metastatic or locally recurrent ER+ breast cancer were included in this IRB-approved, retrospective study. Targeted next-generation sequencing of the PGR gene was performed on isolated tumor DNA. Associations between mutation status and clinicopathologic factors were analyzed as well as overall survival (OS) from time of metastatic diagnosis. The effect of the PGR variant Y890C (c.2669A>G) identified in this cohort on PR transactivation function was tested using ER-PR- (MDA-MB-231), ER+PR+ (T47D), and ER+PR- (T47D PR KO) breast cancer cell lines. There were 71 occurrences of protein-coding PGR variants in 67% (24/36; 95% CI 49-81%) of lesions. Of the 49 unique variants, 14 are single nucleotide polymorphisms (SNPs). Excluding SNPs, the median OS of patients with PGR variants was 32 months compared to 79 months with wild-type PGR (p = 0.42). The most frequently occurring (4/36 lesions) non-SNP variant was Y890C. Cells expressing Y890C had reduced progestin-stimulated PR transactivation compared to cells expressing wild-type PR. PGR variants occur frequently in ER+ metastatic breast cancer. Although some variants are SNPs, others are predicted to be functionally deleterious as demonstrated with Y890C PR.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53792, USA.
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| | - Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Michael DeGrave
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Irene M Ong
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53792, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Shane Rassman
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ginny L Powers
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ciara J Michel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Aparna M Mahajan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| |
Collapse
|
12
|
Tian Z, Tang J, Yang Q, Li X, Zhu J, Wu G. Atypical ubiquitin-binding protein SHARPIN promotes breast cancer progression. Biomed Pharmacother 2019; 119:109414. [DOI: 10.1016/j.biopha.2019.109414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023] Open
|
13
|
Regan Anderson TM, Ma S, Perez Kerkvliet C, Peng Y, Helle TM, Krutilina RI, Raj GV, Cidlowski JA, Ostrander JH, Schwertfeger KL, Seagroves TN, Lange CA. Taxol Induces Brk-dependent Prosurvival Phenotypes in TNBC Cells through an AhR/GR/HIF-driven Signaling Axis. Mol Cancer Res 2018; 16:1761-1772. [PMID: 29991529 PMCID: PMC6214723 DOI: 10.1158/1541-7786.mcr-18-0410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 01/12/2023]
Abstract
The metastatic cascade is a complex process that requires cancer cells to survive despite conditions of high physiologic stress. Previously, cooperation between the glucocorticoid receptor (GR) and hypoxia-inducible factors (HIF) was reported as a point of convergence for host and cellular stress signaling. These studies indicated p38 MAPK-dependent phosphorylation of GR on Ser134 and subsequent p-GR/HIF-dependent induction of breast tumor kinase (PTK6/Brk), as a mediator of aggressive cancer phenotypes. Herein, p-Ser134 GR was quantified in human primary breast tumors (n = 281) and the levels of p-GR were increased in triple-negative breast cancer (TNBC) relative to luminal breast cancer. Brk was robustly induced following exposure of TNBC model systems to chemotherapeutic agents (Taxol or 5-fluorouracil) and growth in suspension [ultra-low attachment (ULA)]. Notably, both Taxol and ULA resulted in upregulation of the Aryl hydrocarbon receptor (AhR), a known mediator of cancer prosurvival phenotypes. Mechanistically, AhR and GR copurified and following chemotherapy and ULA, these factors assembled at the Brk promoter and induced Brk expression in an HIF-dependent manner. Furthermore, Brk expression was upregulated in Taxol-resistant breast cancer (MCF-7) models. Ultimately, Brk was critical for TNBC cell proliferation and survival during Taxol treatment and in the context of ULA as well as for basal cancer cell migration, acquired biological phenotypes that enable cancer cells to successfully complete the metastatic cascade. These studies nominate AhR as a p-GR binding partner and reveal ways to target epigenetic events such as adaptive and stress-induced acquisition of cancer skill sets required for metastatic cancer spread.Implication: Breast cancer cells enlist intracellular stress response pathways that evade chemotherapy by increasing cancer cell survival and promoting migratory phenotypes. Mol Cancer Res; 16(11); 1761-72. ©2018 AACR.
Collapse
Affiliation(s)
- Tarah M Regan Anderson
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Shihong Ma
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carlos Perez Kerkvliet
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Taylor M Helle
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Raisa I Krutilina
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ganesh V Raj
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Julie H Ostrander
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L Schwertfeger
- Department of Lab Medicine and Pathology, Masonic Cancer Center and Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Tiffany N Seagroves
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Carol A Lange
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
14
|
Perkins MS, Louw-du Toit R, Africander D. Hormone Therapy and Breast Cancer: Emerging Steroid Receptor Mechanisms. J Mol Endocrinol 2018; 61:R133-R160. [PMID: 29899079 DOI: 10.1530/jme-18-0094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022]
Abstract
Although hormone therapy is widely used by millions of women to relieve symptoms of menopause, it has been associated with several side-effects such as coronary heart disease, stroke and increased invasive breast cancer risk. These side-effects have caused many women to seek alternatives to conventional hormone therapy, including the controversial custom-compounded bioidentical hormone therapy suggested to not increase breast cancer risk. Historically estrogens and the estrogen receptor were considered the principal factors promoting breast cancer development and progression, however, a role for other members of the steroid receptor family in breast cancer pathogenesis is now evident, with emerging studies revealing an interplay between some steroid receptors. In this review, we discuss examples of hormone therapy used for the relief of menopausal symptoms, highlighting the distinction between conventional hormone therapy and custom-compounded bioidentical hormone therapy. Moreover, we highlight the fact that not all hormones have been evaluated for an association with increased breast cancer risk. We also summarize the current knowledge regarding the role of steroid receptors in mediating the carcinogenic effects of hormones used in menopausal hormone therapy, with special emphasis on the influence of the interplay or crosstalk between steroid receptors. Unraveling the intertwined nature of steroid hormone receptor signaling pathways in breast cancer biology is of utmost importance, considering that breast cancer is the most prevalent cancer among women worldwide. Moreover, understanding these mechanisms may reveal novel prevention or treatment options, and lead to the development of new hormone therapies that does not cause increased breast cancer risk.
Collapse
Affiliation(s)
- Meghan S Perkins
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
15
|
Novel role for receptor dimerization in post-translational processing and turnover of the GRα. Sci Rep 2018; 8:14266. [PMID: 30250038 PMCID: PMC6155283 DOI: 10.1038/s41598-018-32440-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/07/2018] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids (GCs), acting via the glucocorticoid receptor (GRα), remain the mainstay therapeutic choice for the treatment of inflammation. However, chronic GC use, aside from generating undesirable side-effects, results in GRα down-regulation, often coupled to a decrease in GC-responsiveness, which may culminate in acquired GC resistance. The current study presents evidence for a novel role of the dimerization state of the GRα in mediating GC-mediated GRα turnover. Through comparing the effects of dimerization promoting GCs on down-regulation of a transfected human wild type GRα (hGRwt) or a dimerization deficient GRα mutant (hGRdim), we established that a loss of receptor dimerization restricts GRα turnover, which was supported by the use of the dimerization abrogating Compound A (CpdA), in cells containing endogenous GRα. Moreover, we showed that the dimerization state of the GRα influenced the post-translational processing of the receptor, specifically hyper-phosphorylation at Ser404, which influenced the interaction of GRα with the E3 ligase, FBXW7α, thus hampering receptor turnover via the proteasome. Lastly, the restorative effects of CpdA on the GRα pool, in the presence of Dex, were demonstrated in a combinatorial treatment protocol. These results expand our understanding of factors that contribute to GC-resistance and may be exploited clinically.
Collapse
|
16
|
Gompel A, Plu-Bureau G. Progesterone, progestins and the breast in menopause treatment. Climacteric 2018; 21:326-332. [DOI: 10.1080/13697137.2018.1476483] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A. Gompel
- Unité de Gynécologie Endocrinienne, Université Paris Descartes Hôpitaux, Universitaires Port Royal-Cochin, Paris, France
| | - G. Plu-Bureau
- Unité de Gynécologie Endocrinienne, Université Paris Descartes Hôpitaux, Universitaires Port Royal-Cochin, Paris, France
| |
Collapse
|
17
|
McNamara KM, Kannai A, Sasano H. Possible roles for glucocorticoid signalling in breast cancer. Mol Cell Endocrinol 2018; 466:38-50. [PMID: 28687451 DOI: 10.1016/j.mce.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022]
Abstract
Our understanding of breast cancer biology, and our ability to manipulate breast cancers have grown exponentially in the last 20 years. Much of that expansion has focused on the roles of steroids in driving these neoplasms. Initially this research focused on estrogens and progesterone receptors, and more recently on androgen actions in breast cancers. This review aims to make the case for glucocorticoids as the next essential steroid subclass that contributes significantly to our understanding of steroidogenic regulation of these neoplasms. Glucocorticoids have the potential to play multiple roles in the regulation of breast cancers including their control of cellular differentiation, apoptosis and proliferation. Beyond this they also act as a master integrator of organ homeostats in relation to such as circadian rhythms and stress responses. Therefore a better understanding of glucocorticoids and breast cancer could help to explain some of the epidemiological links between circadian disruption and/or stress and breast cancer development. Finally glucocorticoids are currently used during chemotherapeutic treatment in breast cancer therapy and yet results of various studies suggest that this may have an adverse impact on treatment success. This review aims to summarise the current evidence for glucocorticoids as actors in breast cancer and then suggest future essential approaches in order to determine the roles of glucocorticoids in this disease.
Collapse
Affiliation(s)
- Keely M McNamara
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan.
| | - Ayako Kannai
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Trinca GM, Goodman ML, Papachristou EK, D'Santos CS, Chalise P, Madan R, Slawson C, Hagan CR. O-GlcNAc-Dependent Regulation of Progesterone Receptor Function in Breast Cancer. Discov Oncol 2017; 9:12-21. [PMID: 28929346 DOI: 10.1007/s12672-017-0310-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Emerging clinical trial data implicate progestins in the development of breast cancer. While the role for the progesterone receptor (PR) in this process remains controversial, it is clear that PR, a steroid-activated nuclear receptor, alters the transcriptional landscape of breast cancer. PR interacts with many different types of proteins, including transcriptional co-activators and co-repressors, transcription factors, nuclear receptors, and proteins that post-translationally modify PR (i.e., kinases and phosphatases). Herein, we identify a novel interaction between PR and O-GlcNAc transferase (OGT), the enzyme that catalyzes the addition of a single N-acetylglucosamine sugar, referred to as O-GlcNAc, to acceptor serines and threonines in target proteins. This interaction between PR and OGT leads to the post-translational modification of PR by O-GlcNAc. Moreover, we show that O-GlcNAcylated PR is more transcriptionally active on PR-target genes, despite the observation that PR messenger RNA and protein levels are decreased when O-GlcNAc levels are high. O-GlcNAcylation in breast cancer is clinically relevant, as we show that O-GlcNAc levels are higher in breast cancer as compared to matched normal tissues, and PR-positive breast cancers have higher levels of OGT. These data predict that under conditions where O-GlcNAc levels are high (breast cancer), PR, through an interaction with the modifying enzyme OGT, will exhibit increased O-GlcNAcylation and potentiated transcriptional activity. Therapeutic strategies aimed at altering cellular O-GlcNAc levels may have profound effects on PR transcriptional activity in breast cancer.
Collapse
Affiliation(s)
- Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Merit L Goodman
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | | | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Prabhakar Chalise
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Rashna Madan
- Division of Hematology/Oncology, Department of Pathology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA. .,Department of Cancer Biology, and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
19
|
McClure ML, Barnes S, Brodsky JL, Sorscher EJ. Trafficking and function of the cystic fibrosis transmembrane conductance regulator: a complex network of posttranslational modifications. Am J Physiol Lung Cell Mol Physiol 2016; 311:L719-L733. [PMID: 27474090 DOI: 10.1152/ajplung.00431.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
Posttranslational modifications add diversity to protein function. Throughout its life cycle, the cystic fibrosis transmembrane conductance regulator (CFTR) undergoes numerous covalent posttranslational modifications (PTMs), including glycosylation, ubiquitination, sumoylation, phosphorylation, and palmitoylation. These modifications regulate key steps during protein biogenesis, such as protein folding, trafficking, stability, function, and association with protein partners and therefore may serve as targets for therapeutic manipulation. More generally, an improved understanding of molecular mechanisms that underlie CFTR PTMs may suggest novel treatment strategies for CF and perhaps other protein conformational diseases. This review provides a comprehensive summary of co- and posttranslational CFTR modifications and their significance with regard to protein biogenesis.
Collapse
Affiliation(s)
- Michelle L McClure
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
20
|
Clark AJL, Lowry P. 60 YEARS OF POMC: POMC: the consummate peptide hormone precursor. J Mol Endocrinol 2016; 56:E1-2. [PMID: 27273100 DOI: 10.1530/jme-16-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Adrian J L Clark
- Centre for EndocrinologyWilliam Harvey Research Institute, Queen Mary University of London, London, UK
| | - Philip Lowry
- Emeritus Professor School of Biological SciencesThe University of Reading, Reading, UK
| |
Collapse
|
21
|
Clark AJL. 60 YEARS OF POMC: The proopiomelanocortin gene: discovery, deletion and disease. J Mol Endocrinol 2016; 56:T27-37. [PMID: 26643913 DOI: 10.1530/jme-15-0268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 12/04/2015] [Indexed: 11/08/2022]
Abstract
The cloning of the bovine proopiomelanocortin (POMC) cDNA in 1978 by Nakanishi and colleagues was the result of a remarkable series of exacting and ingenious experiments. With this work, they instantly confirmed the single precursor hypothesis for adrenocorticotrophic hormone-β-lipotropin, as it was then known, and in so doing revealed the existence of additional, largely unpredicted, N-terminal peptides that together formed the POMC precursor peptide. This work paved the way for a host of additional studies into the physiology of these peptides and their regulation. Furthermore, the cloning of the murine Pomc gene was essential for subsequent studies, in which Pomc was intentionally deleted in the mouse illuminating its substantial role in body weight regulation and adrenal function. Contemporaneously with this work, naturally occurring mutations in human POMC came to light underlining the vital role of this gene in appetite regulation. This article reviews each of these aspects of POMC with the benefit of several decades of hindsight and informed by more recent genomic and transcriptomic data.
Collapse
Affiliation(s)
- Adrian J L Clark
- Centre for EndocrinologyWilliam Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|