1
|
Veschi V, Turdo A, Modica C, Verona F, Di Franco S, Gaggianesi M, Tirrò E, Di Bella S, Iacono ML, Pantina VD, Porcelli G, Mangiapane LR, Bianca P, Rizzo A, Sciacca E, Pillitteri I, Vella V, Belfiore A, Bongiorno MR, Pistone G, Memeo L, Colarossi L, Giuffrida D, Colarossi C, Vigneri P, Todaro M, Stassi G. Recapitulating thyroid cancer histotypes through engineering embryonic stem cells. Nat Commun 2023; 14:1351. [PMID: 36906579 PMCID: PMC10008571 DOI: 10.1038/s41467-023-36922-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248Q generate undifferentiated TCs. Of note, TCs arise by engineering TPCs, whereas mature thyrocytes have a very limited tumorigenic capacity. The same mutations result in teratocarcinomas when delivered in early differentiating hESCs. Tissue Inhibitor of Metalloproteinase 1 (TIMP1)/Matrix metallopeptidase 9 (MMP9)/Cluster of differentiation 44 (CD44) ternary complex, in cooperation with Kisspeptin receptor (KISS1R), is involved in TC initiation and progression. Increasing radioiodine uptake, KISS1R and TIMP1 targeting may represent a therapeutic adjuvant option for undifferentiated TCs.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Chiara Modica
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Elena Tirrò
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy.,Department of Clinical and Experimental Medicine, A.O.U. Policlinico-Vittorio Emanuele, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | - Sebastiano Di Bella
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Paola Bianca
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | | | - Elisabetta Sciacca
- Queen Mary University, Experimental Medicine & Rheumatology, London, United Kingdom
| | - Irene Pillitteri
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Veronica Vella
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico-Vittorio Emanuele, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.,A.O.U.P. "Paolo Giaccone", University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy.
| |
Collapse
|
2
|
Uchinomiya K, Yoshida K, Kondo M, Tomita M, Iwasaki T. A Mathematical Model for Stem Cell Competition to Maintain a Cell Pool Injured by Radiation. Radiat Res 2020; 194:379-389. [PMID: 32936901 DOI: 10.1667/rade-20-00034.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/23/2020] [Indexed: 11/03/2022]
Abstract
The effect of low-dose-rate exposure to ionizing radiation on cancer risk is a major issue associated with radiation protection. Tissue stem cells are regarded as one of the targets of radiation-induced carcinogenesis. However, it is hypothesized that the effect of radiation may be reduced if damaged stem cells are eliminated via stem cell competition between damaged and intact stem cells. This would be particularly effective under very low-dose-rate conditions, in which only a few stem cells in a stem cell pool may be affected by radiation. Following this hypothesis, we constructed a simple mathematical model to discuss the influence of stem cell competition attenuating the accumulation of damaged cells under very low-dose-rate conditions. In this model, a constant number of cells were introduced into a cell pool, and the numbers of intact and damaged cells were calculated via transition and turnover events. A transition event emulates radiation dose, whereby an intact cell is changed into a damaged cell with a given probability. On the other hand, a turnover event expresses cell competition, where reproduction and elimination of cells occur depending on the properties of cells. Under very low-dose-rate conditions, this model showed that radiation damage to the stem cell pool was strongly suppressed when the damaged cells were less reproductive and tended to be eliminated compared to the intact cells. Furthermore, the size of the stem cell pool was positively correlated with reduction in radiation damage.
Collapse
Affiliation(s)
- Kouki Uchinomiya
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Kazuo Yoshida
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Masahiro Kondo
- Integrated Macroscopic Simulation Team, Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masanori Tomita
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| |
Collapse
|
3
|
Kaiser JC, Misumi M, Furukawa K. Biologically-based modeling of radiation risk and biomarker prevalence for papillary thyroid cancer in Japanese a-bomb survivors 1958-2005. Int J Radiat Biol 2020; 97:19-30. [PMID: 32573332 DOI: 10.1080/09553002.2020.1784488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Thyroid cancer of papillary histology (PTC) is the dominant type in radio-epidemiological cohorts established after nuclear accidents or warfare. Studies on post-Chernobyl PTC and on thyroid cancer in the life span study (LSS) of Japanese a-bomb survivors consistently revealed high radiation risk after exposure during childhood and adolescence. For post-Chernobyl risk assessment overexpression of the CLIP2 gene was proposed as molecular biomarker to separate radiogenic from sporadic PTC. Based on such binary marker a biologically-based risk model of PTC carcinogenesis has been developed for observational Chernobyl data. The model featured two independent molecular pathways of disease development, of which one was associated with radiation exposure. To gain credibility the concept for a mechanistic risk model must be based on general biological features which transcend findings in a single cohort. The purpose of the present study is therefore to demonstrate portability of the model concept by application to PTC incidence data in the LSS. By exploiting the molecular two-path concept we improve the determination of the probability of radiation causing cancer (POC). MATERIALS AND METHODS The current analysis uses thyroid cancer incidence data of the LSS with thyroid cancer diagnoses and papillary histology (n = 292) from the follow-up period between 1958 and 2005. Risk analysis was performed with both descriptive and biologically-based models. RESULTS Judged by goodness-of-fit all applied models described the data almost equally well. They yielded similar risk estimates in cohorts post-Chernobyl and LSS. The preferred mechanistic model was selected by biological plausibility. It reflected important features of an imperfect radiation marker which are not easily addressed by descriptive models. Precise model predictions of marker prevalence in strata of epidemiological covariables can be tested by molecular measurements. Application of the radiation-related molecular pathway from our preferred model in retrospective risk assessment decreases the threshold dose for 50% POC from 0.33 (95% confidence interval (CI) 0.18; 0.64) Gy to 0.04 (95% CI 0.01; 0.19) Gy for females and from 0.43 (95% CI 0.17; 1.84) Gy to 0.19 (95% CI 0.05; 1.00) Gy for males. These improvements are still not sufficient to separate radiation-induced from sporadic PTC cases at very low doses <0.015 Gy typical for the Fukushima accident. CONCLUSIONS Successful application of our preferred mechanistic model to LSS incidence data confirms and improves the biological two-path concept of radiation-induced PTC. Model predictions suggest further molecular validation studies to consolidate the basis of biologically-based risk estimation.
Collapse
Affiliation(s)
- Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine, Oberschleißheim, Germany
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | | |
Collapse
|
4
|
Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. J Transl Med 2018; 98:1133-1142. [PMID: 29967342 PMCID: PMC6138523 DOI: 10.1038/s41374-018-0065-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancers are the most common endocrine malignancy and approximately 2% of thyroid cancers are anaplastic thyroid carcinoma (ATC), one of the most lethal and treatment resistant human cancers. Cancer stem-like cells (CSCs) may initiate tumorigenesis, induce resistance to chemotherapy and radiation therapy, have multipotent capability and may be responsible for recurrent and metastatic disease. The production of CSCs has been linked to epithelial-mesenchymal transition (EMT) and the acquisition of stemness. Exosomes are small (30-150 nm) membranous vesicles secreted by most cells that play a significant role in cell-to-cell communication. Many non-coding RNAs (ncRNA), such as long-non-coding RNAs (lncRNA), can initiate tumorigenesis and the EMT process. Exosomes carry ncRNAs to local and distant cell populations. This study examines secreted exosomes from two in vitro cell culture models; an EMT model and a CSC model. The EMT was induced in a papillary thyroid carcinoma (PTC) cell line by TGFβ1 treatment. Exosomes from this model were isolated and cultured with naïve PTC cells and examined for EMT induction. In the CSC model, exosomes were isolated from a CSC clonal line, cultured with a normal thyroid cell line and examined for EMT induction. The EMT exosomes transferred the lncRNA MALAT1 and EMT effectors SLUG and SOX2; however, EMT was not induced in this model. The exosomes from the CSC model also transferred the lncRNA MALAT1 and the transcription factors SLUG and SOX2 but additionally transferred linc-ROR and induced EMT in the normal thyroid cells. Preliminary siRNA studies directed towards linc-ROR reduced invasion. We hypothesize that CSC exosomes transfer lncRNAs, importantly linc-ROR, to induce EMT and inculcate the local tumor microenvironment and the distant metastatic niche. Therapies directed towards CSCs, their exosomes and/or the lncRNAs they carry may reduce a tumor's metastatic capacity.
Collapse
|
5
|
Development of a functional thyroid model based on an organoid culture system. Biochem Biophys Res Commun 2018; 497:783-789. [PMID: 29470983 DOI: 10.1016/j.bbrc.2018.02.154] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 01/10/2023]
Abstract
The low turnover rate of thyroid follicular cells and the lack of a long-term thyroid cell culture system have hampered studies of thyroid carcinogenesis. We have now established a thyroid organoid culture system that supports thyroid cell proliferation in vitro. The established mouse thyroid organoids performed thyroid functions including thyroglobulin synthesis, iodide uptake, and the production and release of thyroid hormone. Furthermore, transplantation of the organoids into recipient mice resulted in the formation of normal thyroid-like tissue capable of iodide uptake and thyroglobulin production in vivo. Finally, forced expression of oncogenic NRAS (NRASQ61R) in thyroid organoids established from p53 knockout mice and transplantation of the manipulated organoids into mouse recipients generated a model of poorly differentiated thyroid cancer. Our findings suggest that this newly developed thyroid organoid culture system is a potential research tool for the study of thyroid physiology and pathology including thyroid cancer.
Collapse
|
6
|
The evolving concept of cancer stem-like cells in thyroid cancer and other solid tumors. J Transl Med 2017; 97:1142-1151. [PMID: 28394318 DOI: 10.1038/labinvest.2017.41] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022] Open
Abstract
The cancer stem-like cell (CSC) hypothesis postulates that a small population of cells in a cancer has self-renewal and clonal tumor initiation properties. These cells are responsible for tumor initiation, growth, recurrence and for resistance to chemotherapy and radiation therapy. CSCs can be characterized using markers such as SSEA-1, SSEA-4, CD44, CD24, ALDEFLUOR and others. CSCs form spheres when they are cultured in serum-free condition in low attachment plates and can generate tumors when injected into immune-deficient mice. During epithelial to mesenchymal transition (EMT), cells lose cellular adhesion and polarity and acquire an invasive phenotype. Recent studies have established a relationship between EMT and increased numbers of CSCs in some solid malignancies. Non-coding RNAs such as microRNAs and long non-coding RNAs (lncRNAs) have been shown to have important roles during EMT and some of these molecules also have regulatory roles in the proliferation of CSCs. Specific lncRNAs enhanced cell migration and invasion in breast carcinomas, which was associated with the generation of stem cell properties. The tumor microenvironment of CSCs also has an important role in tumor progression. Recent studies have shown that the interaction between tumor cells and the local microenvironment at the metastatic site leads to the development of premetastatic niche(s) and allows for the proliferation of the metastatic cells during colonization. The role of exosomes in the microenvironment during the EMT program is currently a major area of research. This review examines CSCs and the relationship between EMT and CSCs in solid tumors with emphasis on thyroid CSCs. The role of non-coding RNAs and of the microenvironment in EMT and in tumor progression are also examined. This review also highlights the growing number of studies that show the close association of EMT and CSCs and the role of exosomes and other elements of the tissue microenvironment in CSC metastasis. A better understanding of these mechanisms will lead to more effective targeting of primary and metastatic malignancies.
Collapse
|
7
|
Kaiser JC, Meckbach R, Eidemüller M, Selmansberger M, Unger K, Shpak V, Blettner M, Zitzelsberger H, Jacob P. Integration of a radiation biomarker into modeling of thyroid carcinogenesis and post-Chernobyl risk assessment. Carcinogenesis 2016; 37:1152-1160. [PMID: 27729373 PMCID: PMC5137265 DOI: 10.1093/carcin/bgw102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/20/2016] [Accepted: 10/10/2016] [Indexed: 01/18/2023] Open
Abstract
Strong evidence for the statistical association between radiation exposure and disease has been produced for thyroid cancer by epidemiological studies after the Chernobyl accident. However, limitations of the epidemiological approach in order to explore health risks especially at low doses of radiation appear obvious. Statistical fluctuations due to small case numbers dominate the uncertainty of risk estimates. Molecular radiation markers have been searched extensively to separate radiation-induced cancer cases from sporadic cases. The overexpression of the CLIP2 gene is the most promising of these markers. It was found in the majority of papillary thyroid cancers (PTCs) from young patients included in the Chernobyl tissue bank. Motivated by the CLIP2 findings we propose a mechanistic model which describes PTC development as a sequence of rate-limiting events in two distinct paths of CLIP2-associated and multistage carcinogenesis. It integrates molecular measurements of the dichotomous CLIP2 marker from 141 patients into the epidemiological risk analysis for about 13 000 subjects from the Ukrainian-American cohort which were exposed below age 19 years and were put under enhanced medical surveillance since 1998. For the first time, a radiation risk has been estimated solely from marker measurements. Cross checking with epidemiological estimates and model validation suggests that CLIP2 is a marker of high precision. CLIP2 leaves an imprint in the epidemiological incidence data which is typical for a driver gene. With the mechanistic model, we explore the impact of radiation on the molecular landscape of PTC. The model constitutes a unique interface between molecular biology and radiation epidemiology.
Collapse
Affiliation(s)
- Jan Christian Kaiser
- *To whom correspondence should be addressed. Tel: +49 8931874028; Fax: +49 31873363
| | | | - Markus Eidemüller
- Institute of Radiation Protection, Helmholtz Zentrum München, 85764 Oberschleißheim, Germany
- Boris-Blacher-Str. 14, 80939 München, Germany
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, 85764 Neuherberg, Germany
- National Academy of Medical Sciences of the Ukraine, Institute of Endocrinology and Metabolism, 254114 Kyiv, Ukraine
- Johannes Gutenberg Universität, Institut für Medizinische Biometrie Epidemiologie und Informatik, 55131 Mainz, Germany and
- RADRISK, 83727 Schliersee, Germany
| | - Martin Selmansberger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, 85764 Neuherberg, Germany
| | - Kristian Unger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, 85764 Neuherberg, Germany
| | - Viktor Shpak
- National Academy of Medical Sciences of the Ukraine, Institute of Endocrinology and Metabolism, 254114 Kyiv, Ukraine
| | - Maria Blettner
- Johannes Gutenberg Universität, Institut für Medizinische Biometrie Epidemiologie und Informatik, 55131 Mainz, Germany and
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, 85764 Neuherberg, Germany
| | | |
Collapse
|
8
|
Peng W, Wang K, Zheng R, Derwahl M. 1,25 dihydroxyvitamin D3 inhibits the proliferation of thyroid cancer stem-like cells via cell cycle arrest. Endocr Res 2016; 41:71-80. [PMID: 27030645 DOI: 10.3109/07435800.2015.1037048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND An anti-proliferative effect of vitamin D has been reported in different carcinomas, including thyroid cancer. Cancer stem cells (CSCs), a very small fraction of cancer cells, are widely believed to be responsible for cancer initiation, relapse and metastasis. OBJECTIVES We addressed the question as to whether CSCs derived from the anaplastic thyroid carcinoma cell lines SW1736, C643, HTh74 and its doxorubicin- resistant subline HTh74R are also a target of vitamin D action. METHODS The effect of calcitriol on growth of HTh74, HTh74R, SW1736 and C643 cell lines was investigated by cell viability assays. In stem-enriched cells derived from thyro-spheres cell cycle analysis and apoptotic assays were performed. Furthermore, the role of calcitriol in the formation of cancer thyro-spheres and its putative differentiation-inducing effect were analysed. RESULTS CSCs isolated as thyro-spheres from all the four anaplastic thyroid carcinoma cells expressed vitamin D receptors as did their parental cells. Calcitriol inhibited proliferation of anaplastic thyroid carcinoma cells with a more pronounced effect on doxorubicin-resistant HTh74R cells, and it significantly reduced the capacity to form stem cell-derived spheres and decreased the size of these spheres that consist of CSCs and their progenitor cells. As revealed by cell cycle analysis, calcitriol induced G2/M phase arrest in thyro-sphere cells derived cells from HTh74, HTh74R and C643 but did not affect apoptosis. Finally, calcitriol altered morphology of CSCs. CONCLUSION Calcitriol inhibited the growth of CSCs derived from anaplastic thyroid cancer cells. It may also exert a pro-differentiation effect in thyroid CSCs.
Collapse
Affiliation(s)
- Wen Peng
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| | - Kun Wang
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| | - Rendong Zheng
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| | - Michael Derwahl
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| |
Collapse
|
9
|
Generation of Novel Thyroid Cancer Stem-Like Cell Clones: Effects of Resveratrol and Valproic Acid. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1662-73. [PMID: 27060227 DOI: 10.1016/j.ajpath.2016.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/21/2015] [Accepted: 02/04/2016] [Indexed: 12/26/2022]
Abstract
Anaplastic thyroid cancer is an aggressive and highly lethal cancer for which conventional therapies have proved ineffective. Cancer stem-like cells (CSCs) represent a small fraction of cells in the cancer that are resistant to chemotherapy and radiation therapy and are responsible for tumor reoccurrence and metastasis. We characterized CSCs in thyroid carcinomas and generated clones of CSC lines. Our study showed that anaplastic thyroid cancers had significantly more CSCs than well-differentiated thyroid cancers. We also showed that Aldefluor-positive cells revealed significantly higher expression of stem cell markers, self-renewal properties, thyrosphere formation, and enhanced tumorigenicity. In vivo passaging of Aldefluor-positive cells resulted in the growth of larger, more aggressive tumors. We isolated and generated two clonal spheroid CSC lines derived from anaplastic thyroid cancer that were even more enriched with stem cell markers and more tumorigenic than the freshly isolated Aldefluor-positive cells. Resveratrol and valproic acid treatment of one of the CSC lines resulted in a significant decrease in stem cell markers, Aldefluor expression, proliferation, and invasiveness, with an increase in apoptosis and thyroid differentiation markers, suggesting that these cell lines may be useful for discovering new adjuvant therapies for aggressive thyroid cancers. For the first time, we have two thyroid CSC lines that will be useful tools for the study of thyroid CSC targeted therapies.
Collapse
|
10
|
Lin Z, Lu X, Li W, Sun M, Peng M, Yang H, Chen L, Zhang C, Cai L, Li Y. Association of Cancer Stem Cell Markers with Aggressive Tumor Features in Papillary Thyroid Carcinoma. Cancer Control 2015; 22:508-14. [PMID: 26678979 DOI: 10.1177/107327481502200418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zhenzhen Lin
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Xuemian Lu
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
- Chinese-American Research Institute for Diabetic Complications, Ruian Center, Ruian, Zhejiang, China
| | - Weihua Li
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Mengli Sun
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Mengmeng Peng
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Hong Yang
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Liangmiao Chen
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Chi Zhang
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
- Chinese-American Research Institute for Diabetic Complications, Ruian Center, Ruian, Zhejiang, China
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Ruian Center, Ruian, Zhejiang, China
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Yan Li
- Department of Surgery, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
11
|
Szumska J, Qatato M, Rehders M, Führer D, Biebermann H, Grandy DK, Köhrle J, Brix K. Trace Amine-Associated Receptor 1 Localization at the Apical Plasma Membrane Domain of Fisher Rat Thyroid Epithelial Cells Is Confined to Cilia. Eur Thyroid J 2015; 4:30-41. [PMID: 26601071 PMCID: PMC4640295 DOI: 10.1159/000434717] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/02/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The trace amine-associated receptor 1 (Taar1) is one member of the Taar family of G-protein-coupled receptors (GPCR) accepting various biogenic amines as ligands. It has been proposed that Taar1 mediates rapid, membrane-initiated effects of thyronamines, the endogenous decarboxylated and deiodinated relatives of the classical thyroid hormones T4 and T3. OBJECTIVES Although the physiological actions of thyronamines in general and 3-iodothyronamine (T1AM) in particular are incompletely understood, studies published to date suggest that synthetic T1AM-activated Taar1 signaling antagonizes thyromimetic effects exerted by T3. However, the location of Taar1 is currently unknown. METHODS To fill this gap in our knowledge we employed immunofluorescence microscopy and a polyclonal antibody to detect Taar1 protein expression in thyroid tissue from Fisher rats, wild-type and taar1-deficient mice, and in the polarized FRT cells. RESULTS With this approach we found that Taar1 is expressed in the membranes of subcellular compartments of the secretory pathway and on the apical plasma membrane of FRT cells. Three-dimensional analyses further revealed Taar1 immunoreactivity in cilial extensions of postconfluent FRT cell cultures that had formed follicle-like structures. CONCLUSIONS The results suggest Taar1 transport along the secretory pathway and its accumulation in the primary cilium of thyrocytes. These findings are of significance considering the increasing interest in the role of cilia in harboring functional GPCR. We hypothesize that thyronamines can reach and activate Taar1 in thyroid follicular epithelia by acting from within the thyroid follicle lumen, their potential site of synthesis, as part of a nonclassical mechanism of thyroid autoregulation.
Collapse
Affiliation(s)
- Joanna Szumska
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maria Qatato
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Dagmar Führer
- Department of Endocrinology and Metabolism and Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - David K. Grandy
- Department of Physiology and Pharmacology, School of Medicine and the Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oreg., USA
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
- *Dr. Klaudia Brix, Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, DE-28759 Bremen (Germany), E-Mail
| |
Collapse
|
12
|
Haghpanah V, Fallah P, Tavakoli R, Naderi M, Samimi H, Soleimani M, Larijani B. Antisense-miR-21 enhances differentiation/apoptosis and reduces cancer stemness state on anaplastic thyroid cancer. Tumour Biol 2015; 37:1299-308. [PMID: 26289851 DOI: 10.1007/s13277-015-3923-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive malignancy in thyroid cancers. Resistance to current therapies is still a challenge. MicroRNAs are a class of small non-coding RNAs, regulating gene expression. MiR-21 is an oncomiR that is overexpressed in nearly all cancers including ATC. Accumulating evidence suggested that miR-21 has a role in cancer stemness state, apoptosis, cell cycle progression, and differentiation. Therefore, we evaluated the application of Off-miR-21 to sequester the microRNA for therapeutic purposes on ATC cell lines. In this study, C643 and SW1736 were transducted by hsa-miR-21 antagomir (Off-miR-21). PTEN gene expression was performed as a known target of miR-21. Stemness state in cancer stem cells (CSCs) was evaluated by the changes of CSC biomarkers including Oct-4 and ABCG2. Apoptosis was assessed by PDCD4 and Mcl-1 gene expression and flow cytometry. Sodium/iodide symporter (NIS) and thyroglobulin (TG) were measured as ATC differentiation markers. In addition, cell cycle progression was investigated via the alterations of p21 gene expression and flow cytometry. Specific downregulation of miR-21 induced the differentiation and apoptosis in C643 and SW1736. Inversely, the treatment inhibited stemness state and cell cycle progression. Knockdown of miR-21 significantly increased the expression of PDCD4, p21, NIS, and TG while leading to decreased expression of Oct-4, ABCG2, and Mcl-1.Taken together, the results suggest that miR-21, as an oncomiR, has a role not only in stemness state but also in tumor growth, differentiation, and apoptosis. Hence, suppression of miR-21 could pave the way for ATC therapy.
Collapse
Affiliation(s)
- Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Dr. Shariati Hospital, North Kargar Ave., Tehran, 14114, Iran
| | - Parviz Fallah
- Department of Laboratory Science, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Rezvan Tavakoli
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Mahmood Naderi
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Dr. Shariati Hospital, North Kargar Ave., Tehran, 14114, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Dr. Shariati Hospital, North Kargar Ave., Tehran, 14114, Iran.
| |
Collapse
|
13
|
Decaussin-Petrucci M, Deladoëy J, Hafdi-Nejjari Z, Sassolas G, Borson-Chazot F, Abu-Khudir R, Fusco A, Descotes F, Cournoyer S, Sartelet H. Expression of CD133 in differentiated thyroid cancer of young patients. J Clin Pathol 2015; 68:434-40. [PMID: 25770162 DOI: 10.1136/jclinpath-2014-202625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/04/2015] [Indexed: 01/17/2023]
Abstract
AIMS CD133 expression in cancer is frequently associated with poor outcome. Thyroid carcinomas are rare in childhood and adolescence and are associated with a higher risk of recurrence and more metastases than the adult tumours. The aim of the study was to assess whether the expression of CD133 in thyroid carcinomas of children, adolescents and young adults was correlated with clinical prognostic factors. METHODS Tissue microarrays were constructed with 235 tumours coming from 208 young adults with a median age of 28 years and 27 children with a median age of 13 years. An immunohistochemical study was performed with anti-CD133 antibody. CD133 expression was evaluated, using a semiquantitative score based on the percentage of positive cells. The mutation status of tumours was evaluated by reverse transcriptase PCR. Three cell lines were used to confirm CD133 expression by western blot. RESULTS CD133 expression was found in 43% of adult and 37% of child tumours and was confirmed by western blot in cell lines. In young adults, the expression of CD133 was significantly more frequent in patients with tumours >3 cm (p=0.04) and in patients with lymph node metastases (p=0.02). The expression of CD133 was more frequent in patients in whom the tumour presented a BRAF mutation (p=0.03). CONCLUSIONS CD133 expression is correlated with tumour size, lymph nodes metastases and BRAF mutations in young adults. The presence of these cancer stem cells could offer new therapeutic alternatives for aggressive thyroid cancers.
Collapse
Affiliation(s)
- Myriam Decaussin-Petrucci
- Department of Pathology, Lyon Sud Hospital Centre, Pierre Bénite, Hospices Civils de Lyon, University Lyon I, Lyon, France
| | - Johnny Deladoëy
- Department of Endocrinology, CHU Sainte Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Zakia Hafdi-Nejjari
- Registre Rhône Alpin des cancers thyroïdiens, Centre de Médecine Nucléaire, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Geneviève Sassolas
- Registre Rhône Alpin des cancers thyroïdiens, Centre de Médecine Nucléaire, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Françoise Borson-Chazot
- Registre Rhône Alpin des cancers thyroïdiens, Centre de Médecine Nucléaire, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France Department of Endocrinology, Hospices Civils de Lyon, Bron, Université Lyon I, Lyon, France
| | - Rasha Abu-Khudir
- Department of Endocrinology, CHU Sainte Justine, Université de Montréal, Montréal, Quebec, Canada Registre Rhône Alpin des cancers thyroïdiens, Centre de Médecine Nucléaire, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France Department of Endocrinology, Hospices Civils de Lyon, Bron, Université Lyon I, Lyon, France Faculty of Science, Chemistry Department (Biochemistry Branch), Tanta University, Tanta, Egypt
| | - Alfredo Fusco
- Department of Biology and Cellular and Molecular Pathology, Faculty of Medicine and Surgery, Institute of Endocrinology and Experimental Oncology of CNR, Universita degli studi di Napoli Federico II, Naples, Italy
| | - Francoise Descotes
- Department of Biochemistry, Lyon Sud Hospital Centre, Pierre Bénite, Hospices Civils de Lyon, Lyon, France
| | - Sonia Cournoyer
- Department of Pathology, CHU Sainte Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Hervé Sartelet
- Department of Pathology, CHU Sainte Justine, Université de Montréal, Montréal, Quebec, Canada Department of Pathology, Centre Hospitalier Universitaire Robert Debre, Université Paris 7, Paris, France
| | | |
Collapse
|
14
|
Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015; 347:78-81. [PMID: 25554788 PMCID: PMC4446723 DOI: 10.1126/science.1260825] [Citation(s) in RCA: 1251] [Impact Index Per Article: 125.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Some tissue types give rise to human cancers millions of times more often than other tissue types. Although this has been recognized for more than a century, it has never been explained. Here, we show that the lifetime risk of cancers of many different types is strongly correlated (0.81) with the total number of divisions of the normal self-renewing cells maintaining that tissue's homeostasis. These results suggest that only a third of the variation in cancer risk among tissues is attributable to environmental factors or inherited predispositions. The majority is due to "bad luck," that is, random mutations arising during DNA replication in normal, noncancerous stem cells. This is important not only for understanding the disease but also for designing strategies to limit the mortality it causes.
Collapse
Affiliation(s)
- Cristian Tomasetti
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine and Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 550 North Broadway, Baltimore, MD 21205, USA.
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Ahn SH, Henderson YC, Williams MD, Lai SY, Clayman GL. Detection of thyroid cancer stem cells in papillary thyroid carcinoma. J Clin Endocrinol Metab 2014; 99:536-44. [PMID: 24302752 PMCID: PMC3913805 DOI: 10.1210/jc.2013-2558] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT Special populations of cells that can efficiently initiate tumor growth have been characterized, and this feature supports the cancer stem cell theory. These cancer stem cell populations have been identified with CD44 and POU5F1. Most cancer stem cells express high levels of CD44 and low levels of CD24. In thyroid lesions, cancer stem cells have been detected in anaplastic carcinoma. However, little is known about the presence of cancer stem cells in papillary thyroid carcinoma (PTC), especially in recurrent PTC. OBJECTIVE AND DESIGN PTC cells were labeled and sorted by flow cytometry to obtain two populations. Total RNA was prepared from cells with high CD44 and CD24 expressions (CD44+CD24+) and from cells with high CD44 and low CD24 expressions (CD44+CD24-). The expressions of the stem cell marker POU5F1 and several differentiated thyroid markers were measured via real-time PCR. RESULTS CD44+CD24- cells were present in all PTCs tested, and the percentage of these cells was higher in clinically aggressive recurrent PTC than in less aggressive primary PTCs. Higher expression of POU5F1 was found in CD44+CD24- cells compared with that of CD44+CD24+ cells. The expression of POU5F1 was higher in thyrospheroids grown in serum-free condition than in cells grown in the presence of serum from the same patient, and the tumor was initiated in mice using thyrospheroids. CONCLUSIONS The percentage of CD44+CD24- cells varied from tumor to tumor. Our findings suggest that cancer stem cells are present in PTC.
Collapse
Affiliation(s)
- Soon-Hyun Ahn
- Department of Otolaryngology-Head and Neck Surgery (S-H.A.), College of Medicine, Seoul National University Bundang Hospital, Kyunggi-do 463-707, South Korea; and Departments of Head and Neck Surgery (Y.C.H., S.Y.L., G.L.C.), Pathology (M.D.W.), Molecular and Cellular Oncology (S.Y.L.), and Cancer Biology (G.L.C.), The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
16
|
Moon JY, Lee EJ, Chung WY, Moon MH, Chung BC, Choi MH. Comparison of metabolic ratios of urinary estrogens between benign and malignant thyroid tumors in postmenopausal women. BMC Clin Pathol 2013; 13:25. [PMID: 24156385 PMCID: PMC4016477 DOI: 10.1186/1472-6890-13-25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 10/21/2013] [Indexed: 11/21/2022] Open
Abstract
Background Estrogen metabolism may be associated with the pathophysiological development of papillary thyroid carcinoma (PTC). Methods To evaluate the differential estrogen metabolism between benign and malignant PTCs, estrogen profiling by gas chromatography–mass spectrometry was applied to urine samples from postmenopausal patients with 9 benign tumors and 18 malignant stage I and III/IV PTCs. Results The urinary concentration of 2-methoxyestradiol was significantly lower in the stage I malignant patients (3.5-fold; P < 0.025) than in the benign group. The metabolic ratios of 16α-OH-estrone/estrone and estriol/estradiol, which are responsible for 16α-hydroxylase activity, were increased more than 2.5-fold in the advanced-stage malignant PTC (P < 0.02 each). The more than 6.2-fold decrease in the urinary 2-/16α-hydroxylase ratio in stage III/IV malignant PTC was consistent with the ratio in postmenopausal patients with endocrine gland cancers. In addition, reductive 17β-hydroxysteroid dehydrogenase (17β-HSD; estradiol/estrone or estriol/16α-OH-estrone) was present at significantly higher levels in subjects with stage III/IV malignant PTCs than in benign subjects (>3.5-fold difference; P < 0.002). In particular, the estriol/16α-OH-estrone ratio differentiated between the benign and early-stage malignant patients (P < 0.01). Conclusions Increased 16α-hydroxylation and/or a decreased 2-/16α-ratio, as well increased reductive 17β-HSD, with regard to estrogen metabolism could provide potential biomarkers. The devised profiles could be useful for differentiating malignant thyroid carcinomas from benign adenomas in postmenopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | - Man Ho Choi
- Future Convergence Research Division, Korea Institute of Science and Technology, 39-1 Hawolkok-dong, Seoul 136-791, Korea.
| |
Collapse
|
17
|
Thyroid cancer stem-like cells and epithelial-mesenchymal transition in thyroid cancers. Hum Pathol 2013; 44:1707-13. [DOI: 10.1016/j.humpath.2013.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 12/19/2012] [Accepted: 01/01/2013] [Indexed: 02/07/2023]
|
18
|
Xu S, Chen G, Peng W, Renko K, Derwahl M. Oestrogen action on thyroid progenitor cells: relevant for the pathogenesis of thyroid nodules? J Endocrinol 2013; 218:125-33. [PMID: 23645248 DOI: 10.1530/joe-13-0029] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Benign and malignant thyroid nodules are more prevalent in females than in males. Experimental data suggest that the proliferative effect of oestrogen rather than polymorphisms is responsible for this gender difference. This study analysed whether both differentiated thyroid cells and thyroid stem and progenitor cells are targets of oestrogen action. In thyroid stem/progenitor cells derived from nodular goitres, the ability of 17β-oestradiol (E₂) to induce the formation of thyrospheres and the expression of oestrogen receptors (ERs) and the effect of E₂ on the growth and expression of markers of stem cells and thyroid differentiation (TSH receptor, thyroperoxidase, thyroglobulin and sodium iodide symporter (NIS)) were analysed. E₂ induced thyrosphere formation, albeit to a lower extent than other growth factors. Thyroid stem and progenitor cells expressed ERα (ESR1) and ERβ (ESR2) with eight times higher expression levels of ERα mRNA compared with the differentiated thyrocytes. E₂ was a potent stimulator of the growth of thyroid stem/progenitor cells. In contrast, TSH-induced differentiation of progenitor cells, in particular, the expression of NIS, was significantly inhibited by E₂. In conclusion, oestrogen stimulated the growth and simultaneously inhibited the differentiation of thyroid nodule-derived stem/progenitor cells. From these data and based on the concept of cellular heterogeneity, we hypothesize a supportive role of oestrogen in the propagation of thyroid stem/progenitor cells leading to the selection of a progeny of growth-prone cells with a decreased differentiation. These cells may be the origin of hypofunctioning or non-functioning thyroid nodules in females.
Collapse
Affiliation(s)
- Shuhang Xu
- Division of Endocrinology, Department of Medicine, St Hedwig Hospital, Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Lloyd RV, Hardin H, Montemayor-Garcia C, Rotondo F, Syro LV, Horvath E, Kovacs K. Stem cells and cancer stem-like cells in endocrine tissues. Endocr Pathol 2013; 24:1-10. [PMID: 23435637 DOI: 10.1007/s12022-013-9235-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer stem-like cells are a subpopulation of self-renewing cells that are more resistant to chemotherapy and radiation therapy than the other surrounding cancer cells. The cancer stem cell model predicts that only a subset of cancer cells possess the ability to self-renew and produce progenitor cells that can reconstitute and sustain tumor growth. Evidence supporting the existence of cancer stem-like cells in the thyroid, pituitary, and in other endocrine tissues is rapidly accumulating. These cells have been studied using specific biomarkers including: CD133, CD44, Nestin, Nanog, and aldehyde dehydrogenase enzyme. Putative cancer stem-like cells can be studied in vitro using serum-free media supplemented with basic fibroblast growth factor and epidermal growth factor grown in low attachment plates or in extracellular matrix leading to sphere formation in vitro. Cancer stem-like cells can also be separated by fluorescent cell sorting and used for in vitro or in vivo studies. Injection of enriched populations of cancer stem-like cells (also referred to as tumor initiating cells) into immunodeficient mice results in growth of xenografts which express cancer stem-like biomarkers. Human cancer stem-like cells have been identified in thyroid cancer cell lines, in primary thyroid cancers, in normal pituitary, and in pituitary tumors. Other recent studies suggest the existence of stem cells and cancer stem-like cells in endocrine tumors of the gastrointestinal tract, pancreas, lungs, adrenal, parathyroid, and skin. New discoveries in this field may lead to more effective therapies for highly aggressive and lethal endocrine cancers.
Collapse
Affiliation(s)
- Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, K4/436 CSC 8550, Madison, WI 53705, USA.
| | | | | | | | | | | | | |
Collapse
|