1
|
Tunc-Ata M, Altunay ZM, Senol H, Kucukatay V. Visseral Lipectomy Improves Metabolic Syndrome Parameters and Adipokines in a Rat Model of Metabolic Syndrome Induced by Monosodium Glutamate. Aesthetic Plast Surg 2025; 49:2281-2290. [PMID: 39542896 DOI: 10.1007/s00266-024-04486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Metabolic syndrome (MetS) includes abdominal obesity, hypertension, insulin resistance, and dyslipidemia. Research has indicated that reducing excess visceral fat has positive effects on inflammation and insulin resistance. We examined whether visceral lipectomy modifies the effects of MetS parameters and adipocytokine levels. METHODS Each group included 15 newborn male rats: control+sham (C+S), metabolic syndrome+sham (MetS+S), and metabolic syndrome+visceral lipectomy (MetS+VL). On postnatal days 0, 2, 4, 6, 8, and 10, subcutaneous injections of monosodium glutamate (MSG) (4 g/mg) were administered to induce MetS. The control group received saline injection. The rats underwent sham surgery or lipectomy on the 120th day of life. Two months post-surgery, tests were performed to check lipid and insulin levels as well as the Lee index, HOMA-IR, serum adiponectin (ADP), resistin, interleukin-6 (IL6), leptin, tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP) levels. RESULTS These findings showed that the Lee index (p = 0.001), insulin resistance (p = 0.002), and hyperinsulinemia (p = 0.009) were significantly improved in the MetS+VL group compared to those in the MetS+S group. The lipid profile was unaffected by visceral lipectomy. Furthermore, visceral lipectomy normalized MetS-induced adipokine imbalance. CONCLUSION The decrease in the Lee index and improvement in hyperinsulinemia suggest that visceral lipectomy may benefit impaired glucose metabolism. Although visceral lipectomy has no apparent effect on the lipid profile, positive effects on adipokine levels by reducing various inflammatory markers including resistin, IL6, leptin, TNF-α, and CRP. These findings indicate that visceral lipectomy may have therapeutic potential for MetS. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Melek Tunc-Ata
- Medical Faculty Department of Physiology, Pamukkale University, Denizli, Turkey.
| | - Zeynep Mine Altunay
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Hande Senol
- Medical Faculty Department of Biostatistics, Pamukkale University, Denizli, Turkey
| | - Vural Kucukatay
- Medical Faculty Department of Physiology, Pamukkale University, Denizli, Turkey
| |
Collapse
|
2
|
Udom GJ, Abdulyekeen BR, Osakwe MO, Ezejiofor AN, Orish CN, Orish FC, Frazzoli C, Orisakwe OE. Reconsideration of the health effects of monosodium glutamate: from bench to bedside evidence. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 43:51-81. [PMID: 39435965 DOI: 10.1080/26896583.2024.2415202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Monosodium glutamate (MSG) is a food additive that enhances the palatability of foods, thus its frequent use both domestically and industrially. Based on the dose-factor, frequency, and duration of exposure, MSG may provoke adverse health outcomes both in animals and humans. The present report aims at providing a comprehensive analysis of the scientifically proven untoward health effects of MSG. To achieve our aim, we adopted the PRISMA guidelines and checklist and searched four databases (Scopus, Web of Science, PubMed, and Google Scholar) from 2014 to 2024. Retrieved research papers were critically appraised for quality using the ARRIVE and Joanna Briggs (JB) checklists and data analysis was conducted via the narrative synthesis method. Our analysis reveals that though MSG is generally considered safe at low doses; however, high doses and repeated exposure to MSG are associated with embryotoxicity and teratogenicity, obesity, cardiotoxicity, hepatotoxicity, kidney toxicity, neurotoxicity, endothelial dysfunction, reproductive toxicities, alteration of lipid, and glucose metabolism. Thus, chronic exposure to MSG may be of human pathological importance. The findings of the present narrative synthesis provide a rationale for informed decisions on the use and labeling of this widely used food additive.
Collapse
Affiliation(s)
- Godswill J Udom
- Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Ishaka, Uganda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Federal University Oye-Ekiti, Nigeria
| | - Babatunde R Abdulyekeen
- African Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, Choba, Nigeria
| | - Maryann O Osakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, College of Health Sciences, University of Port Harcourt, Port Harcourt, Nigeria
| | | | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Mersin, Turkey
| |
Collapse
|
3
|
Dong S, Yang Y, He B, Xu Z, Zhou Z, Wang J, Chen C, Chen Q. Effect of Sodium Fluoride on Reproductive Function Through Regulating Reproductive Hormone Level and Circulating SIRT1 in Female Rats. Biol Trace Elem Res 2023; 201:1825-1836. [DOI: https:/doi.org/10.1007/s12011-022-03283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/04/2022] [Indexed: 02/14/2024]
|
4
|
Dong S, Yang Y, He B, Xu Z, Zhou Z, Wang J, Chen C, Chen Q. Effect of Sodium Fluoride on Reproductive Function Through Regulating Reproductive Hormone Level and Circulating SIRT1 in Female Rats. Biol Trace Elem Res 2023; 201:1825-1836. [PMID: 35538195 DOI: 10.1007/s12011-022-03283-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022]
Abstract
Fluorosis causes female reproductive dysfunction with reduced fertility without established pathogenesis. To clarify the mechanism, Sprague-Dawley female rats were selected with drinking water containing 0, 50 (low), 100 (moderate), and 150 mg/L (high) sodium fluoride (NaF) for a short (2 months), medium (4 months), and long term (6 months). The water consumption and body weight of female rats were recorded daily. The effect of NaF on the estrous cycle was examined by vaginal smears and recorded in different term treatments. Female and male rats were mated in a 2:1 ratio for 1 week at 2-, 4-, and 6-month treatment time for mating performance and fertility rate. Selected female rats were executed for tissue and blood collection at different treatment terms. Twenty-four-hour urine sample from each female rat was collected using the metabolic cage. The levels of steroid hormones and silent information regulator 2 homolog 1 (SIRT1) in serum were measured by appropriate ELISA kits. Body weight of the high NaF group was significantly less during short-term treatment than that of other treatment groups or control group. Urinary fluoride concentration was increased linearly with treatment time. Treatment of NaF significantly decreased steroid hormone level while increased SIRT1 level in the serum. In addition, NaF treatment significantly decreased pregnancy rate. It is concluded that NaF inhibits the secretion of hormone and estradiol (E2) release from the ovary, thereby reducing the rate of pregnant. SIRT1 may be involved in this NaF-induced reproductive dysfunction in female rats through regulating reproductive hormone, FSH, and LH secretion.
Collapse
Affiliation(s)
- Siyuan Dong
- Guipei Class s0141, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanni Yang
- Xianyang Central Hospital, Xianyang, People's Republic of China
| | - Biqi He
- Class 0128#, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhao Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chen Chen
- Endocrinology, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Qun Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of the People's Republic of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University Health Science Center, No. 76, Yanta Western Road, Shaanxi, 710061, Xi'an, People's Republic of China.
| |
Collapse
|
5
|
Vanden Brink H, Jarrett BY, Pereira N, Spandorfer SD, Hoeger KM, Lujan ME. Diagnostic Performance of Ovarian Morphology on Ultrasonography across Anovulatory Conditions-Impact of Body Mass Index. Diagnostics (Basel) 2023; 13:diagnostics13030374. [PMID: 36766481 PMCID: PMC9914229 DOI: 10.3390/diagnostics13030374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The study objectives were to determine whether ovarian morphology can distinguish between women with regular menstrual cycles, normo-androgenic anovulation (NA-Anov), and PCOS and whether body mass index (BMI)-specific thresholds improved diagnostic potential. Women with PCOS (biochemical and/or clinical hyperandrogenism and irregular cycles; N = 66), NA-Anov (irregular cycles without clinical and/or biochemical hyperandrogenism; N = 64), or regular cycles (controls; cycles every 21-35 days in the absence of clinical or biochemical hyperandrogenism; N = 51) were evaluated. Participants underwent a reproductive history, physical exam, transvaginal ultrasound, and a fasting blood sample. Linear regression analyses were used to assess the impact of BMI on ovarian morphology across groups. The diagnostic performance of ovarian morphology for anovulatory conditions, and by BMI (lean: <25 kg/m2; overweight: ≥25 kg/m2), was tested using Receiver Operating Characteristic (ROC) curves. Follicle number per ovary (FNPO) and ovarian volume (OV), but not follicle number per cross-section (FNPS), increased across controls, NA-Anov, and PCOS. Overall, FNPO had the best diagnostic performance for PCOS versus controls (AUCROC = 0.815) and NA-Anov and controls (AUCROC = 0.704), and OV to differentiate between PCOS and NA-Anov (AUCROC = 0.698). In lean women, FNPO best differentiated between PCOS and controls (AUCROC = 0.843) and PCOS versus NA-Anov (AUCROC = 0.710). FNPS better distinguished between NA-Anov and controls (AUCROC = 0.687), although diagnostic performance was lower than when thresholds were generated using all participants. In women with overweight and obesity, OV persisted as the best diagnostic feature across all analyses (PCOS versus control, AUCROC = 0.885; PCOS versus NA-Anov, AUCROC = 0.673; NA-Anov versus controls, AUCROC = 0.754). Ovarian morphology holds diagnostic potential to distinguish between NA-Anov and PCOS, with marginal differences in diagnostic potential when participants were stratified by BMI suggesting that follicle number may provide better diagnostic performance in lean women and ovarian size in those with overweight.
Collapse
Affiliation(s)
- Heidi Vanden Brink
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
- Department of Nutrition, Texas A&M University, College Station, TX 77840, USA
| | | | - Nigel Pereira
- Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Steven D. Spandorfer
- Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kathy M. Hoeger
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY 14620, USA
| | - Marla E. Lujan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
- Correspondence:
| |
Collapse
|
6
|
Abdulghani MA, Alshehade SA, Kamran S, Alshawsh MA. Effect of monosodium glutamate on serum sex hormones and uterine histology in female rats along with its molecular docking and in-silico toxicity. Heliyon 2022; 8:e10967. [PMID: 36237979 PMCID: PMC9552117 DOI: 10.1016/j.heliyon.2022.e10967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Monosodium glutamate (MSG) is commonly used worldwide as a food flavour enhancer by the food industry. The current study investigated the in vivo toxic effects of MSG on the uterus in adult female Sprague Dawley rats and in vitro using MCF-7 and MDA-MB-231 cells, computational toxicity and molecular docking. The average levels of progesterone and oestrogen in the MSG-treated animals significantly altered. Besides, the average uterine lumen area (μm2) was smaller than the control group. MSG showed high-affinity binding to acetylcholine receptors and disrupted the normal nerve signal with a predicted LD50 of 4500 mg/kg. MSG also demonstrated good binding affinity to human oestrogen receptors beta and some other proteins that have an oxidative stress role in the female reproductive organs. Therefore, a precaution should be taken when utilising this compound, especially for females under the risk factor of hormonal abnormality.
Collapse
Affiliation(s)
- Mahfoudh A.M. Abdulghani
- Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Al Qassim 51911, Saudi Arabia
| | - Salah Abdulrazak Alshehade
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sareh Kamran
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
7
|
Corrie L, Gulati M, Singh SK, Kapoor B, Khursheed R, Awasthi A, Vishwas S, Chellappan DK, Gupta G, Jha NK, Anand K, Dua K. Recent updates on animal models for understanding the etiopathogenesis of polycystic ovarian syndrome. Life Sci 2021; 280:119753. [PMID: 34171379 DOI: 10.1016/j.lfs.2021.119753] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is the primary cause of female infertility affecting several women worldwide. Changes in hormonal functions such as hyperandrogenism are considered a significant factor in developing PCOS in women. In addition, many molecular pathways are involved in the pathogenesis of PCOS in women. To have better insights about PCOS, it is data from clinical studies carried on women suffering from PCOS should be collected. However, this approach has several implications, including ethical considerations, cost involved and availability of subject. Moreover, during the early drug development process, it is always advisable to use non-human models mimicking human physiology as they are less expensive, readily available, have a shorter gestation period and less risk involved. Many animal models have been reported that resemble the PCOS pathways in human subjects. However, the models developed on rats and mice are more preferred over other rodent/non-rodent models due to their closer resemblance with human PCOS development mechanism. The most extensively reported PCOS models for rats and mice include those induced by using testosterone, letrozole and estradiol valerate. As the pathophysiology of PCOS is complex, none of the explored models completely surrogates the PCOS related conditions occurring in women. Hence, there is a need to develop an animal model that can resemble the pathophysiology of PCOS in women. The review focuses on various animal models explored to understand the pathophysiology of PCOS. The article also highlights some environmental and food-related models that have been used to induce PCOS.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia
| |
Collapse
|
8
|
Medeiros KA, Siqueira BS, Urrutia MAD, Porto EM, Grassiolli S, Amorim JPDA. Vagotomy associated with splenectomy reduces lipid accumulation and causes kidneys histological changes in rats with hypothalamic obesity. Acta Cir Bras 2021; 36:e360205. [PMID: 33624722 PMCID: PMC7902077 DOI: 10.1590/acb360205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose To evaluate the influence of autonomic vagal and splenic activities on renal
histomorphometric aspects in obese rats. Methods Thirty male Wistar rats were used, of which, 24 received subcutaneous
injections of monosodium glutamate (MSG) during the first 5 days of life (4
g/kg body weight) and six control animals received injections of saline
solution (CON). Five experimental groups were organized (n = 6/group):
falsely-operated control (CON-FO); falsely-operated obese (MSG-FO);
vagotomized obese (MSG-VAG); splenectomized obese (MSG-SPL); vagotomized and
splenectomized obese (MSG-VAG-SPL). Results The MSG-FO group animals showed a significant reduction in body weight and
nasal-anal length when compared to CON-FO group animals (p < 0.05). The
MSG-VAG-SPL group showed significant reduced in most biometric parameters
associated with obesity. Falsely-operated obese animals showed a significant
reduction in renal weight, glomerular diameters, glomerular tuff and capsule
areas and Bowman’s space compared to CON-FO group animals (p < 0.05).
There was a significant reduction in diameter, glomerular tuft and capsule
areas, and Bowman’s space in MSG-VAG, MSG-SPL, MSG-VAG-SPL groups when
compared to the MSG-FO group. Conclusions Vagotomy associated with splenectomy induces a reduction in the adiposity and
causes histological changes in the kidney of obese rats.
Collapse
|
9
|
de Melo GB, Soares JF, Costa TCL, Benevides ROA, Vale CC, Paes AMDA, Gaspar RS. Early Exposure to High-Sucrose Diet Leads to Deteriorated Ovarian Health. Front Endocrinol (Lausanne) 2021; 12:656831. [PMID: 33953699 PMCID: PMC8092397 DOI: 10.3389/fendo.2021.656831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The metabolic syndrome (MetS) is correlated with disorders of the reproductive system, such as the polycystic ovary syndrome (PCOS). While consumption of a diet rich in carbohydrates is linked to the development of MetS, it is still unclear if this diet leads to ovarian dysfunction and PCOS. OBJECTIVES We investigated the influence of a high-sucrose diet (HSD) on the ovarian milieu of Wistar rats and studied the correlation between high consumption of sugary drinks and the prevalence of PCOS in women. METHODS Wistar rats were given a standard laboratory diet (CTR, 10% sucrose, n = 8) or HSD (HSD, 25% sucrose, n = 8) from postnatal day 21 to 120. Animals were evaluated weekly to calculate food intake, feed efficiency and weight gain. Both onset of puberty and estrous cycle were monitored. Metabolic serum biochemistry, organ morphometry and ovarian histology were performed upon euthanasia. In parallel, a fixed-effects multiple linear regression analysis was performed using data from Brazilian states (459 state-year observations) to test the correlation between the consumption of sugar-sweetened beverages (surrogate for HSD intake) and the prevalence of PCOS (surrogate for ovarian dysfunction). RESULTS HSD animals showed increased adipose tissue accumulation, hyperglycaemia and insulin resistance when compared to CTR. Interestingly HSD rats also entered puberty earlier than CTR. Moreover, ovaries from HSD animals had an increased number of atretic antral follicles and cystic follicles, which were correlated with the hypertrophy of periovarian adipocytes. Finally, there was a positive correlation between the intake of sugary drinks and prevalence of PCOS in women of reproductive age. CONCLUSIONS HSD ingestion leads to ovarian dysfunction in rats and could be correlated with PCOS in women, suggesting these alterations could lead to public health issues. Therefore, we reinforce the deleterious impact of HSD to the ovarian system and suggest that the reduction of added sugars intake could be beneficial to ovarian health.
Collapse
Affiliation(s)
- Giuliane Barros de Melo
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Jéssica Furtado Soares
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Thamyres Cristhina Lima Costa
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Renata Ohana Alves Benevides
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Caroline Castro Vale
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Renato Simões Gaspar
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- *Correspondence: Renato Simões Gaspar,
| |
Collapse
|
10
|
Zanuzo KÉ, Guareschi ZM, Detogni AC, Huning LP, Rodrigues PF, Porto EM, Grassiolli S, Amorim JPA. Physical exercise associated with vitamin D chronic supplementation reduces kidney injury induced by monosodium glutamate. AN ACAD BRAS CIENC 2020; 92:e20201097. [PMID: 33331449 DOI: 10.1590/0001-3765202020201097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022] Open
Abstract
The aim was to evaluate the effects of chronic vitamin D (VD) supplementation associated with regular swimming over renal histomorphometric aspects in obese rats. Thirty Wistar male rats (5 days old) were used. Twenty four rats were given subcutaneous injections of monosodium glutamate (MSG; 4 g/kg), and six control rats were given an equimolar saline solution. At 21-days-old, the MSG-treated rats were randomly distributed among sedentary animals (S) and exercised (E, swimming; 3x/week). These groups were subdivided into groups orally supplemented with VD (12 μg/kg; 3x/week) or not supplemented (NS), totaling Five experimental groups (n = 6 rats/group): MSG, MSG-SVD, MSG-ENS, MSG-EVD and control groups. In MSG-obese rats, there was such as a decrease in the diameter of the, glomerular tuft, Bowman's capsule, Bowman's space areas, and renal cortical thickness, compared to the control group. In MSG-SVD, MSG-ENS, and MSG-EVD animals, there was an increase in the cortical thickness in relation to the MSG group. In MSG-ENS and MSG-EVD animals, there was a reduction of tubular degeneration in relation to the MSG group. We conclude that physical exercise associated with Vitamin D supplementation can prevent of renal injury, increasing the thickness of the renal cortex and decrease the tubular degeneration.
Collapse
Affiliation(s)
- KÉsia Zanuzo
- Programa de Pós-Graduação em Ciências Aplicadas a Saúde, Universidade Estaudual do Oeste do Paraná/UNIOESTE, Rodovia Vitório Traiano, Km 02, Contorno Leste, Água Branca, 85601-970 Francisco Beltrão, PR, Brazil
| | - ZoÉ M Guareschi
- Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Endocrinologia e Fisiologia Metabólica, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - Anna Caroliny Detogni
- Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Biologia Tecidual e da Reprodução, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - Luiz Pierre Huning
- Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Endocrinologia e Fisiologia Metabólica, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - Patrick F Rodrigues
- Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Endocrinologia e Fisiologia Metabólica, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - Elaine M Porto
- Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Biologia Tecidual e da Reprodução, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - Sabrina Grassiolli
- Programa de Pós-Graduação em Ciências Aplicadas a Saúde, Universidade Estaudual do Oeste do Paraná/UNIOESTE, Rodovia Vitório Traiano, Km 02, Contorno Leste, Água Branca, 85601-970 Francisco Beltrão, PR, Brazil.,Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Endocrinologia e Fisiologia Metabólica, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - JoÃo Paulo A Amorim
- Programa de Pós-Graduação em Ciências Aplicadas a Saúde, Universidade Estaudual do Oeste do Paraná/UNIOESTE, Rodovia Vitório Traiano, Km 02, Contorno Leste, Água Branca, 85601-970 Francisco Beltrão, PR, Brazil.,Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Biologia Tecidual e da Reprodução, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| |
Collapse
|
11
|
Abstract
The pathogenesis of polycystic ovarian syndrome (PCOS) in women is poorly understood. With its varied endocrine and metabolic effects, it is unlikely a single genetic mutation or biological insult is the cause of the disease. Animals have been the proposed model for further studying the pathogenesis of PCOS and many modalities can be used to induce PCOS-like phenotypes in animals, most often with rodents. While there is not yet an animal model that perfectly recapitulates the classic PCOS phenotype in human women, many models allow for a better understanding of the complex disease process as well as possible treatments.
Collapse
|
12
|
Manz koule J, Ndomou M, Njinkoue J, Tchoumbougnang F, Milong Melong C, Djopnang JD, Oumbe AS, Nchoutpouen M, Foumedzo R, Gouado I. Antihyperlipidemic potential of oil extracted from Ilisha africana on rats. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Fichman V, Costa RDSSD, Miglioli TC, Marinheiro LPF. Association of obesity and anovulatory infertility. EINSTEIN-SAO PAULO 2020; 18:eAO5150. [PMID: 32159605 PMCID: PMC7053827 DOI: 10.31744/einstein_journal/2020ao5150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To verify the association of obesity and infertility related to anovulatory issues. METHODS This case-control study was carried out with 52 women, aged 20 to 38 years, divided into two groups (infertile - cases - and fertile - control), seen at outpatient clinics, in the period from April to December, 2017. RESULTS We found significant evidence that obesity negatively affects women's fertility (p=0.017). The group of infertile women was 7.5-fold more likely to be obese than fertile women. CONCLUSION Strategies that encourage weight control are indicated for women with chronic anovulation, due to hight metabolic activity of adipose tissue.
Collapse
|
14
|
Ryu Y, Kim SW, Kim YY, Ku SY. Animal Models for Human Polycystic Ovary Syndrome (PCOS) Focused on the Use of Indirect Hormonal Perturbations: A Review of the Literature. Int J Mol Sci 2019; 20:2720. [PMID: 31163591 PMCID: PMC6600358 DOI: 10.3390/ijms20112720] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Hormonal disturbances, such as hyperandrogenism, are considered important for developing polycystic ovary syndrome (PCOS) in humans. Accordingly, directly hormone-regulated animal models are widely used for studying PCOS, as they replicate several key PCOS features. However, the pathogenesis and treatment of PCOS are still unclear. In this review, we aimed to investigate animal PCOS models and PCOS-like phenotypes in animal experiments without direct hormonal interventions and determine the underlying mechanisms for a better understanding of PCOS. We summarized animal PCOS models that used indirect hormonal interventions and suggested or discussed pathogenesis of PCOS-like features in animals and PCOS-like phenotypes generated in other animals. We presented integrated physiological insights and shared cellular pathways underlying the pathogenesis of PCOS in reviewed animal models. Our review indicates that the hormonal and metabolic changes could be due to molecular dysregulations, such as upregulated PI3K-Akt and extracellular signal-regulated kinase (ERK) signalling, that potentially cause PCOS-like phenotypes in the animal models. This review will be helpful for considering alternative animal PCOS models to determine the cellular/molecular mechanisms underlying PCOS symptoms. The efforts to determine the specific cellular mechanisms of PCOS will contribute to novel treatments and control methods for this complex syndrome.
Collapse
Affiliation(s)
- Youngjae Ryu
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea.
| | - Sung Woo Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - Yoon Young Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea.
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - Seung-Yup Ku
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea.
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
15
|
Benevides ROA, Vale CC, Fontelles JLL, França LM, Teófilo TS, Silva SN, Paes AMA, Gaspar RS. Syzygium cumini (L.) Skeels improves metabolic and ovarian parameters in female obese rats with malfunctioning hypothalamus-pituitary-gonadal axis. J Ovarian Res 2019; 12:13. [PMID: 30717749 PMCID: PMC6360653 DOI: 10.1186/s13048-019-0490-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background Obesity is a chronic and multifactorial disease characterized by increased adipose tissue. In females, obesity leads to reduced ovulation and lower chances of conception in diseases like polycystic ovary syndrome, making it important to characterize complementary medicine to attenuate such deleterious effects. Therefore, the aim of this study was to assess the effects of a hydroethanolic extract from Syzigium cumini leaves in female reproductive impairments present in the obesity model of neonatal L-monosodium glutamate injection. Methods Newborn Wistar rats received saline (CTRL) or L-monosodium glutamate 4 mg/g BW (MSG). At 90 days of age, CTRL and some MSG rats received saline, while others received hydroethanolic extract of S. cumini leaves (HESc 500 mg/kg/day, MSG-Syz group) for 30 consecutive days. Estrous cycle was determined by daily vaginal washes. On days 26 and 28 of treatment, oral glucose tolerance test and blood collection were performed for biochemical assessment. At the end, animals were euthanized during estrous phase; blood was collected to measure sex hormones and organs collected for weighing and histological evaluation. Results MSG-Syz showed reduced Lee Index, retroperitoneal fat pads and restored gluco-insulin axis. Moreover, HESc treatment reduced serum cholesterol levels when compared to MSG. Treatment with HESc did not restore the oligociclicity observed in obese animals, though MSG-Syz reestablished ovarian follicle health back to CTRL levels, with proliferating primordial follicles – these effects were followed by a decrease on periovarian adipocyte area. Conclusions This is the first report to show the reversibility of the reproductive dysfunctions seen in MSG female rats through ethnopharmacological treatment. Moreover, it expands the use of HESc as a prominent tool to treat metabolic and reproductive disorders. Finally, we provide novel evidence that, without a functioning hypothalamus-pituitary-gonads axis, metabolic improvement is ineffective for estrous cyclicity, but critical for ovarian follicle health.
Collapse
Affiliation(s)
- R O A Benevides
- Departamento de Ciências Fisiológicas, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - C C Vale
- Departamento de Ciências Fisiológicas, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - J L L Fontelles
- Departamento de Ciências Fisiológicas, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - L M França
- Departamento de Ciências Fisiológicas, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - T S Teófilo
- Departamento de Ciências Animais, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - S N Silva
- Departamento de Ciências Fisiológicas, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - A M A Paes
- Departamento de Ciências Fisiológicas, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - R S Gaspar
- Departamento de Ciências Fisiológicas, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil. .,Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Harborne Building, Reading, UK.
| |
Collapse
|
16
|
Konopelniuk V, Falalyeyeva T, Tsyryuk O, Savchenko Y, Prybytko I, Kobyliak N, Kovalchuk O, Boyko A, Arkhipov VV, Moroz Y, Ostapchenko L. The correction of the metabolic parameters of msg-induced obesity in rats by 2-[4-(benzyloxy) phenoxy] acetic acid. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2018. [DOI: 10.1016/j.jnim.2018.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
17
|
Andrisse S, Childress S, Ma Y, Billings K, Chen Y, Xue P, Stewart A, Sonko ML, Wolfe A, Wu S. Low-Dose Dihydrotestosterone Drives Metabolic Dysfunction via Cytosolic and Nuclear Hepatic Androgen Receptor Mechanisms. Endocrinology 2017; 158:531-544. [PMID: 27967242 PMCID: PMC5460775 DOI: 10.1210/en.2016-1553] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Abstract
Androgen excess in women is associated with metabolic dysfunction (e.g., obesity, hyperinsulinemia, insulin resistance, and increased risk of type 2 diabetes) and reproductive dysfunction (e.g., polycystic ovaries, amenorrhea, dysregulated gonadotropin release, and infertility). We sought to identify the effects of androgen excess on glucose metabolic dysfunction and the specific mechanisms of action by which androgens are inducing pathology. We developed a mouse model that displayed pathophysiological serum androgen levels with normal body mass/composition to ensure that the phenotypes were directly from androgens and not an indirect consequence of obesity. We performed reproductive tests, metabolic tests, and hormonal assays. Livers were isolated and examined via molecular, biochemical, and histological analysis. Additionally, a low-dose dihydrotestosterone (DHT) cell model using H2.35 mouse hepatocytes was developed to study androgen effects on hepatic insulin signaling. DHT mice demonstrated impaired estrous cyclicity; few corpora lutea in the ovaries; glucose, insulin, and pyruvate intolerance; and lowered hepatic insulin action. Mechanistically, DHT increased hepatic androgen-receptor binding to phosphoinositide-3-kinase (PI3K)-p85, resulting in dissociation of PI3K-p85 from PI3K-p110, leading to reduced PI3K activity and decreased p-AKT and, thus, lowered insulin action. DHT increased gluconeogenesis via direct transcriptional regulation of gluconeogenic enzymes and coactivators. The hepatocyte model recapitulated the in vivo findings. The DHT-induced hepatocyte insulin resistance was reversed by the androgen-receptor antagonist, flutamide. These findings present a phenotype (i.e., impaired glucose tolerance and disrupted glucose metabolism) in a lean hyperandrogenemia model (low-dose DHT) and data to support 2 molecular mechanisms that help drive androgen-induced impaired glucose metabolism.
Collapse
Affiliation(s)
- Stanley Andrisse
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shameka Childress
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Yaping Ma
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Katelyn Billings
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Yi Chen
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ping Xue
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ashley Stewart
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Momodou L Sonko
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sheng Wu
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|