1
|
Han Y, Lin X. The relationship between psychological stress and ovulatory disorders and its molecular mechanisms: a narrative review. J Psychosom Obstet Gynaecol 2024; 45:2418110. [PMID: 39436713 DOI: 10.1080/0167482x.2024.2418110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
This narrative review explores the relationship between psychological stress and ovulatory disorders, focusing on the molecular mechanisms involved. Ovulation is regulated by the hypothalamus-pituitary-ovarian (HPO) axis, and disruptions in this axis can lead to ovulatory dysfunction. Chronic psychological stress affects the HPO axis, resulting in abnormalities in hypothalamus hormone secretion, pituitary hormone release, and ovarian function. These disruptions cause ovulation disorders and menstrual irregularities. The mechanisms by which psychological stress affects ovulation involve alterations in neuropeptides and hormones, activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairment of follicular development, generation of oxidative stress, and the decline in ovarian reserve function. Understanding these mechanisms is crucial for developing interventions to restore reproductive health. Psychological interventions, such as cognitive-behavioral therapy, have shown promise in improving ovulation and pregnancy rates in women with ovulatory disorders. Further research is needed to explore the specific mechanisms of these interventions and optimize treatment strategies. Addressing psychological factors is essential in managing reproductive health and ovulatory disorders.
Collapse
Affiliation(s)
- Yichen Han
- Assisted Reproduction Unit, Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Hangzhou, China
| |
Collapse
|
2
|
Ma J, Wang L, Yang D, Luo J, Gao J, Wang J, Guo H, Li J, Wang F, Wu J, Hu R. Chronic stress causes ovarian fibrosis to impair female fertility in mice. Cell Signal 2024; 122:111334. [PMID: 39102927 DOI: 10.1016/j.cellsig.2024.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE Chronic psychological stress is associated with impaired follicular development and ovarian dysfunction. Many aspects of this dysfunction and the underlying mechanisms remain unclear. Using a chronic unpredictable mild stress (CUMS) mouse model, we investigate the influence of chronic stress on ovarian function and explore potential mechanisms. METHODS A CUMS mouse model was constructed over eight months, covering the period from sexual maturity to the onset of declining fertility in mice. At the end of the 2nd, 4th, 6th, and 8th months of exposure to CUMS, behavioral and physiological assays, including the sucrose preference test, tail suspension test, and serum corticosterone levels, were conducted to validate the effectiveness of the stress model. Fertility and ovarian function were assessed by analyzing the estrous cycle, number of offspring, sex hormone levels, follicle counts, granulosa cell proliferation and apoptosis, and the expression levels of fibrosis markers. Furthermore, proteomic analyses were performed on the ovaries to investigate the molecular mechanisms of ovarian fibrosis induced by CUMS. RESULTS With continued CUMS exposure, there was a gradual decline in both the ovary-to-body weight ratio and the number of offspring. Moreover, the percentage of atretic follicles was notably higher in the CUMS-exposed groups compared to the control groups. It is noticeable that CUMS triggered granulosa cell apoptosis and halted proliferation. Additionally, increased expression of α-SMA and Collagen I in the ovaries of CUMS-exposed mice indicated that CUMS could induce ovarian fibrosis. Proteomic analysis provided insights into the activation of specific biological processes and molecules associated with fibrosis induced by chronic stress. CONCLUSIONS Our results strongly suggest that exposure to CUMS induces ovarian fibrosis, which influences follicular development and ultimately contributes to fertility decline. These findings offer novel perspectives on the impact of chronic stress on ovarian dysfunction.
Collapse
Affiliation(s)
- Jie Ma
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lu Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Danyu Yang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jia Luo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jinmei Gao
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jinfang Wang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hua Guo
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jialing Li
- Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Feimiao Wang
- Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Hu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
3
|
Fan X, Wang J, Ma Y, Chai D, Han S, Xiao C, Huang Y, Wang X, Wang J, Wang S, Xiao L, Zhang C. Activation of P2X7 Receptor Mediates the Abnormal Ovulation Induced by Chronic Restraint Stress and Chronic Cold Stress. BIOLOGY 2024; 13:620. [PMID: 39194558 DOI: 10.3390/biology13080620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Chronic stress has become a major problem that endangers people's physical and mental health. Studies have shown that chronic stress impairs female reproduction. However, the related mechanism is not fully understood. P2X7 receptor (P2X7R) is involved in a variety of pathological changes induced by chronic stress. Whether P2X7R is involved in the effect of chronic stress on female reproduction has not been studied. In this study, we established a chronic restraint stress mouse model and chronic cold stress mouse model. We found that the number of corpora lutea was significantly reduced in the two chronic stress models. The number of corpora lutea indirectly reflects the ovulation, suggesting that chronic stress influences ovulation. P2X7R expression was significantly increased in ovaries of the two chronic stress models. A superovulation experiment showed that P2X7R inhibitor A-438079 HCL partially rescued the ovulation rate of the two chronic stress models. Further studies showed that activation of P2X7R signaling inhibited the cumulus expansion and promoted the expression of NPPC in granulosa cells, one key negative factor of cumulus expansion. Moreover, sirius red staining showed that the ovarian fibrosis was increased in the two chronic stress models. For the fibrosis-related factors, TGF-β1 was increased and MMP2 was decreased. In vitro studies also showed that activation of P2X7R signaling upregulated the expression of TGF-β1 and downregulated the expression of MMP2 in granulosa cells. In conclusion, P2X7R expression was increased in the ovaries of the chronic restraint-stress and chronic cold-stress mouse models. Activation of P2X7R signaling promoted NPPC expression and cumulus expansion disorder, which contributed to the abnormal ovulation of the chronic stress model. Activation of P2X7R signaling is also associated with the ovarian fibrosis changes in the chronic stress model.
Collapse
Affiliation(s)
- Xiang Fan
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- Institute of Rehabilitation Science, Shaanxi Provincial Rehabilitation Hospital, Xi'an 710065, China
| | - Jing Wang
- Department of Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yinyin Ma
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Dandan Chai
- Shangrao People's Hospital, Shangrao 334000, China
| | - Suo Han
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chuyu Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yingtong Huang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiaojie Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianming Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shimeng Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Li Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chunping Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Gao S, Zhang L, Wang X, Li R, Han L, Xiong X, Jiang Q, Cheng D, Xiao X, Li H, Yang J. A terrified-sound stress causes cognitive impairment in female mice by impairing neuronal plasticity. Brain Res 2023; 1812:148419. [PMID: 37217110 DOI: 10.1016/j.brainres.2023.148419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Stress is an important environmental factor affecting mental health that cannot be ignored. Moreover, due to the great physiological differences between males and females, the effects of stress may vary by sex. Previous studies have shown that terrified-sound stress, meaning exposed mice to the recorded vocalizations in response to the electric shock by their kind to induce psychological stress, can cause cognitive impairment in male. In the study, we investigated the effects of the terrified-sound stress on adult female mice. METHODS 32 adults female C57BL/6 mice were randomly divided into control (n = 16) and stress group (n = 16). Sucrose preference test (SPT)was carried out to evaluate the depressive-like behavior. Using Open field test (OFT) to evaluate locomotor and exploratory alterations in mice. Spatial learning and memory ability were measured in Morris Water maze test (MWM), Golgi staining and western blotting showed dendritic remodeling after stress. In addition, serum hormone quantifications were performed by ELISA. RESULTS we found the sucrose preference of stress group was significantly decreased (p < 0.05) compared with control group; the escape latency of the stress group was significantly prolonged (p < 0.05), the total swimming distance and the number of target crossings(p < 0.05) were significantly increased (p < 0.05) in MWM; Endocrine hormone, Testosterone (T) (p < 0.05), GnRH (p < 0.05), FSH and LH levels was decreased; Golgi staining and western blotting showed a significant decrease in dendritic arborization, spine density and synaptic plasticity related proteins PSD95 and BDNF in the stress group. CONCLUSION Terrified-sound stress induced depressive-like behaviors, locomotor and exploratory alterations. And impaired cognitive by altering dendritic remodeling and the expression of synaptic plasticity-related proteins. However, females are resilient to terrified-sound stress from a hormonal point of view.
Collapse
Affiliation(s)
- Shanfeng Gao
- Department of Otolaryngology and Head Neck, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Lingyu Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xia Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Rufeng Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Lin Han
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xiaofan Xiong
- Department of Tumor and Immunology in Precision Medicine Institute, Western China Science and Technology Innovation Port, Xi'an 710004, PR China
| | - Qingchen Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Daxin Cheng
- Department of Neonatology, Shaanxi Provincial People's Hospital, Xi'an 710068, PR China
| | - Xuan Xiao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Huajing Li
- Department of Otolaryngology and Head Neck, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, PR China.
| |
Collapse
|
5
|
Ankeny RA, Whittaker AL, Ryan M, Boer J, Plebanski M, Tuke J, Spencer SJ. The power of effective study design in animal Experimentation: Exploring the statistical and ethical implications of asking multiple questions of a data set. Brain Behav Immun 2023:S0889-1591(23)00156-3. [PMID: 37315700 DOI: 10.1016/j.bbi.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023] Open
Abstract
One of the chief advantages of using highly standardised biological models including model organisms is that multiple variables can be precisely controlled so that the variable of interest is more easily studied. However, such an approach often obscures effects in sub-populations resulting from natural population heterogeneity. Efforts to expand our fundamental understanding of multiple sub-populations are in progress. However, such stratified or personalised approaches require fundamental modifications of our usual study designs that should be implemented in Brain, Behavior and Immunity (BBI) research going forward. Here we explore the statistical feasibility of asking multiple questions (including incorporating sex) within the same experimental cohort using statistical simulations of real data. We illustrate and discuss the large explosion in sample numbers necessary to detect effects with appropriate power for every additional question posed using the same data set. This exploration highlights the strong likelihood of type II errors (false negatives) for standard data and type I errors when dealing with complex genomic data, where studies are too under-powered to appropriately test these interactions. We show this power may differ for males and females in high throughput data sets such as RNA sequencing. We offer a rationale for the use of alternative experimental and statistical strategies based on interdisciplinary insights and discuss the real-world implications of increasing the complexities of our experimental designs, and the implications of not attempting to alter our experimental designs going forward.
Collapse
Affiliation(s)
- R A Ankeny
- School of Humanities, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - A L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - M Ryan
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Australia
| | - J Boer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - M Plebanski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - J Tuke
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Australia
| | - S J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia.
| |
Collapse
|
6
|
Younesi S, Soch A, Sominsky L, Spencer SJ. Long-term role of neonatal microglia and monocytes in ovarian health. J Endocrinol 2022; 254:103-119. [PMID: 35670374 DOI: 10.1530/joe-21-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022]
Abstract
Early life microglia are essential for brain development, and developmental disruption in microglial activity may have long-term implications for the neuroendocrine control of reproduction. We and others have previously shown that early life immune activation compromises the long-term potential for reproductive function in females. However, the supportive role of microglia in female reproductive development is still unknown. Here, we examined the long-term programming effects of transient neonatal microglial and monocyte ablation on hypothalamic-pituitary-gonadal (HPG) axis function in female rats. We employed a Cx3cr1-Dtr transgenic Wistar rat model to acutely ablate microglia and monocytes, commencing on either postnatal day (P) 7 or 14, since the development of the HPG axis in female rodents primarily occurs during the first two to three postnatal weeks. After an acutely diminished expression of microglia and monocyte genes in the brain and ovaries, respectively, microglia had repopulated the brain by P21, albeit that cellular complexity was still reduced in both groups at this time. Removal of microglia and monocytes on P7, but not P14 reduced circulating luteinising hormone levels in adulthood and ovarian gonadotropin receptors mRNA. These changes were notably associated with fewer primary and antral follicles in these rats. These data suggest that transient ablation of microglia and monocytes at the start of the second but not the third postnatal week has long-term effects on ovarian health. The findings highlight the important developmental role of a healthy immune system for female potential reproductive capacity and the importance of critical developmental periods to adult ovarian health.
Collapse
Affiliation(s)
- Simin Younesi
- School of Health and Biomedical Sciences RMIT University, Melbourne, Victoria, Australia
| | - Alita Soch
- School of Health and Biomedical Sciences RMIT University, Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Microscopy Facility, Melbourne, Victoria, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences RMIT University, Melbourne, Victoria, Australia
- Barwon Health Laboratory, Barwon Health, University Hospital, Geelong, Victoria, Australia
- Institute for Physical and Mental Health and Clinical Transformation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences RMIT University, Melbourne, Victoria, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Levinson AL, Igonina TN, Rozhkova IN, Brusentsev EY, Amstislavsky SY. Psycho-emotional stress, folliculogenesis, and reproductive technologies: clinical and experimental data. Vavilovskii Zhurnal Genet Selektsii 2022; 26:431-441. [PMID: 36128573 PMCID: PMC9450030 DOI: 10.18699/vjgb-22-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022] Open
Abstract
Modern life, especially in large cities, exposes people to a high level of noise, high density of population, disrupted sleeping, large amount of excessive and controversial information as well as to other negative factors; all this may cause chronic psycho-emotional stress. The latest publications often use the term "Syndrome of megalopolis", which means disruption of sleeping, high anxiety, and altered reproductive function. Medical treatment of infertility may also be considered as a stress factor, especially when infertility lasts for years and is aggravated with emotional frustration. Long-lasting distress may worsen health in general and suppress reproductive function, in particular. The review presents the data on the effects of maternal stress on folliculogenesis, especially when assisted reproductive technologies (ARTs) are used. Clinical data are presented alongside data from laboratory animal experiments. Different maternal stress models are taken into account in respect of their inf luence on oocyte maturation and embryo development. The interfering of psycho-emotional stress and reproductive function is the focus of the review. In these situations, exogenous hormones compensate for the stress-related disruption of the hypothalamic-pituitary-gonadal axis. When ARTs are implemented, stress-induced disruption of oogenesis is realized not via a decrease in hypothalamic and pituitary hormones, but by other ways, which involve paracrine mechanisms described in this review. Based on the literature analysis, one may conclude that stress negatively affects oocyte maturation in the ovary and suppresses subsequent embryo development. The role of some ovarian paracrine factors, such as BDNF, GDF-9, HB-EGF, TNF-α, and some others has been elucidated.
Collapse
Affiliation(s)
- A L Levinson
- Novosibirsk Center of Reproductive Medicine, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - T N Igonina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I N Rozhkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E Yu Brusentsev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S Ya Amstislavsky
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
8
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
9
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
10
|
Nair BB, Khant Aung Z, Porteous R, Prescott M, Glendining KA, Jenkins DE, Augustine RA, Silva MSB, Yip SH, Bouwer GT, Brown CH, Jasoni CL, Campbell RE, Bunn SJ, Anderson GM, Grattan DR, Herbison AE, Iremonger KJ. Impact of chronic variable stress on neuroendocrine hypothalamus and pituitary in male and female C57BL/6J mice. J Neuroendocrinol 2021; 33:e12972. [PMID: 33896057 DOI: 10.1111/jne.12972] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Chronic stress exerts multiple negative effects on the physiology and health of an individual. In the present study, we examined hypothalamic, pituitary and endocrine responses to 14 days of chronic variable stress (CVS) in male and female C57BL/6J mice. In both sexes, CVS induced a significant decrease in body weight and enhanced the acute corticosterone stress response, which was accompanied by a reduction in thymus weight only in females. However, single-point blood measurements of basal prolactin, thyroid-stimulating hormone, luteinising hormone, growth hormone and corticosterone levels taken at the end of the CVS were not different from those of controls. Similarly, pituitary mRNA expression of Fshb, Lhb, Prl and Gh was unchanged by CVS, although Pomc and Tsh were significantly elevated. Within the adrenal medulla, mRNA for Th, Vip and Gal were elevated following CVS. Avp transcript levels within the paraventricular nucleus of the hypothalamus were increased by CVS; however, levels of Gnrh1, Crh, Oxt, Sst, Trh, Ghrh, Th and Kiss1 remained unchanged. Oestrous cycles were lengthened slightly by CVS and ovarian histology revealed a reduction in the number of preovulatory follicles and corpora lutea. Taken together, these observations indicate that 14 days of CVS induces an up-regulation of the neuroendocrine stress axis and creates a mild disruption of female reproductive function. However, the lack of changes in other neuroendocrine axes controlling anterior and posterior pituitary secretion suggest that most neuroendocrine axes are relatively resilient to CVS.
Collapse
Affiliation(s)
- Betina B Nair
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Robert Porteous
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Kelly A Glendining
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Danielle E Jenkins
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Rachael A Augustine
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Mauro S B Silva
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Siew H Yip
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Gregory T Bouwer
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Colin H Brown
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Stephen J Bunn
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Sominsky L, Younesi S, De Luca SN, Loone SM, Quinn KM, Spencer SJ. Ovarian follicles are resistant to monocyte perturbations-implications for ovarian health with immune disruption†. Biol Reprod 2021; 105:100-112. [PMID: 33709094 DOI: 10.1093/biolre/ioab049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 03/10/2021] [Indexed: 02/03/2023] Open
Abstract
Monocytes and macrophages are the most abundant immune cell populations in the adult ovary, with well-known roles in ovulation and corpus luteum formation and regression. They are activated and proliferate in response to immune challenge and are suppressed by anti-inflammatory treatments. It is also likely they have a functional role in the healthy ovary in supporting the maturing follicle from the primordial through to the later stages; however, this role has been unexplored until now. Here, we utilized a Cx3cr1-Dtr transgenic Wistar rat model that allows a conditional depletion of circulating monocytes, to investigate their role in ovarian follicle health. Our findings show that circulating monocyte depletion leads to a significant depletion of ovarian monocytes and monocyte-derived macrophages. Depletion of monocytes was associated with a transient reduction in circulating anti-Müllerian hormone (AMH) at 5 days postdepletion. However, the 50-60% ovarian monocyte/macrophage depletion had no effect on ovarian follicle numbers, follicle atresia, or apoptosis, within 5-21 days postdepletion. These data reveal that the healthy adult ovary is remarkably resistant to perturbations of circulating and ovarian monocytes despite acute changes in AMH. These data suggest that short-term anti-inflammatory therapies that transiently impact on circulating monocytes are unlikely to disrupt ovarian follicle health, findings that have significant implications for fertility planning relative to the experience of an immune challenge or immunosuppression.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Simone N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Sophie M Loone
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Kylie M Quinn
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia.,ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
High Maternal Omega-3 Supplementation Dysregulates Body Weight and Leptin in Newborn Male and Female Rats: Implications for Hypothalamic Developmental Programming. Nutrients 2020; 13:nu13010089. [PMID: 33396616 PMCID: PMC7823471 DOI: 10.3390/nu13010089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal diet is critical for offspring development and long-term health. Here we investigated the effects of a poor maternal diet pre-conception and during pregnancy on metabolic outcomes and the developing hypothalamus in male and female offspring at birth. We hypothesised that offspring born to dams fed a diet high in fat and sugar (HFSD) peri-pregnancy will have disrupted metabolic outcomes. We also determined if these HFSD-related effects could be reversed by a shift to a healthier diet post-conception, in particular to a diet high in omega-3 polyunsaturated fatty acids (ω3 PUFAs), since ω3 PUFAs are considered essential for normal neurodevelopment. Unexpectedly, our data show that there are minimal negative effects of maternal HFSD on newborn pups. On the other hand, consumption of an ω3-replete diet during pregnancy altered several developmental parameters. As such, pups born to high-ω3-fed dams weighed less for their length, had reduced circulating leptin, and also displayed sex-specific disruption in the expression of hypothalamic neuropeptides. Collectively, our study shows that maternal intake of a diet rich in ω3 PUFAs during pregnancy may be detrimental for some metabolic developmental outcomes in the offspring. These data indicate the importance of a balanced dietary intake in pregnancy and highlight the need for further research into the impact of maternal ω3 intake on offspring development and long-term health.
Collapse
|
13
|
Pan D, Wang K, Cao G, Fan K, Liu H, Li P, Li H, Chenguang D. Inhibitory effect of central ghrelin on steroid synthesis affecting reproductive health in female mice. J Steroid Biochem Mol Biol 2020; 204:105750. [PMID: 32920127 DOI: 10.1016/j.jsbmb.2020.105750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022]
Abstract
Ghrelin is a 28-amino acid peptide hormone that regulates ovarian steroid hormone synthesis; however, there is limited evidence regarding the regulation of this pathway by ghrelin in mice ovary. Thus, we aimed to investigate whether central ghrelin action plays a role in murine reproductive health by inhibiting steroid synthesis. Further, we sought to examine the mechanism of central ghrelin action in ovarian steroid hormone synthesis. After the administration of intracerebroventricular ghrelin (1 nmol), we found reduced serum concentrations of oestradiol and progesterone and reduced secretion of follicle-stimulating hormone and luteinising hormone. Although ghrelin reduced 3β-hydroxysteroid dehydrogenase mRNA and protein levels in the hypothalamus, it did not affect the expression of steroidogenic acute regulatory protein and cytochrome P450 17A1. In the ovary, central ghrelin regulation indirectly inhibited the mRNA and protein levels of steroidogenic acute regulatory protein, cytochrome P450 17A1, and 3β-hydroxysteroid dehydrogenase. Moreover, no changes were observed in the expression of proliferating cell nuclear antigen and phosphorylation of extracellular signal-regulated kinase. We hypothesised that central ghrelin regulation suppressed serum oestradiol and progesterone levels by indirectly inhibiting the expression of steroidogenic acute regulatory protein, cytochrome P450 17A1, and 3β-hydroxysteroid dehydrogenase in the ovary. In this regulation, the suppressed secretion of the follicle-stimulating hormone and luteinising hormone in the pituitary by ghrelin could be involved. Furthermore, hypothalamic 3β-hydroxysteroid dehydrogenase expression is reduced by ghrelin injection.
Collapse
Affiliation(s)
- Deng Pan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Kun Wang
- Institute of Grain and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Kuikui Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Haodong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Penghui Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Haijun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Du Chenguang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China; Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, 014109, China.
| |
Collapse
|
14
|
Olsen KW, Castillo-Fernandez J, Zedeler A, Freiesleben NC, Bungum M, Chan AC, Cardona A, Perry JRB, Skouby SO, Borup R, Hoffmann ER, Kelsey G, Grøndahl ML. A distinctive epigenetic ageing profile in human granulosa cells. Hum Reprod 2020; 35:1332-1345. [DOI: 10.1093/humrep/deaa071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
Abstract
STUDY QUESTION
Does women’s age affect the DNA methylation (DNAm) profile differently in mural granulosa cells (MGCs) from other somatic cells?
SUMMARY ANSWER
Accumulation of epimutations by age and a higher number of age-related differentially methylated regions (DMR) in MGCs were found compared to leukocytes from the same woman, suggesting that the MGCs have a distinctive epigenetic profile.
WHAT IS KNOWN ALREADY
The mechanisms underlying the decline in women’s fertility from the mid-30s remain to be fully elucidated. The DNAm age of many healthy tissues changes predictably with and follows chronological age, but DNAm age in some reproductive tissues has been shown to depart from chronological age (older: endometrium; younger: cumulus cells, spermatozoa).
STUDY DESIGN, SIZE, DURATION
This study is a multicenter cohort study based on retrospective analysis of prospectively collected data and material derived from healthy women undergoing IVF or ICSI treatment following ovarian stimulation with antagonist protocol. One hundred and nineteen women were included from September 2016 to June 2018 from four clinics in Denmark and Sweden.
PARTICIPANTS/MATERIALS, SETTING, METHODS
Blood samples were obtained from 118 healthy women with varying ovarian reserve status. MGCs were collected from 63 of the 119 women by isolation from pooled follicles immediately after oocyte retrieval. DNA from leukocytes and MGCs was extracted and analysed with a genome-wide methylation array. Data from the methylation array were processed using the ENmix package. Subsequently, DNAm age was calculated using established and tailored age predictors and DMRs were analysed with the DMRcate package.
MAIN RESULTS AND ROLE OF CHANCE
Using established age predictors, DNAm age in MGCs was found to be considerable younger and constant (average: 2.7 years) compared to chronological age (average: 33.9 years). A Granulosa Cell clock able to predict the age of both MGCs (average: 32.4 years) and leukocytes (average: 38.8 years) was successfully developed. MGCs differed from leukocytes in having a higher number of epimutations (P = 0.003) but predicted telomere lengths unaffected by age (Pearson’s correlation coefficient = −0.1, P = 0.47). DMRs associated with age (age-DMRs) were identified in MGCs (n = 335) and in leukocytes (n = 1) with a significant enrichment in MGCs for genes involved in RNA processing (45 genes, P = 3.96 × 10−08) and gene expression (152 genes, P = 2.3 × 10−06). The top age-DMRs included the metastable epiallele VTRNA2-1, the DNAm regulator ZFP57 and the anti-Müllerian hormone (AMH) gene. The apparent discordance between different epigenetic measures of age in MGCs suggests that they reflect difference stages in the MGC life cycle.
LARGE SCALE DATA
N/A.
LIMITATIONS, REASONS FOR CAUTION
No gene expression data were available to associate with the epigenetic findings. The MGCs are collected during ovarian stimulation, which may influence DNAm; however, no correlation between FSH dose and number of epimutations was found.
WIDER IMPLICATIONS OF THE FINDINGS
Our findings underline that the somatic compartment of the follicle follows a different methylation trajectory with age than other somatic cells. The higher number of epimutations and age-DMRs in MGCs suggest that their function is affected by age.
STUDY FUNDING/COMPETING INTEREST(S)
This project is part of ReproUnion collaborative study, co-financed by the European Union, Interreg V ÖKS, the Danish National Research Foundation and the European Research Council. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- K W Olsen
- Department of Obstetrics and Gynaecology, Department of Reproductive Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - A Zedeler
- Department of Obstetrics and Gynaecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - N C Freiesleben
- Department of Obstetrics and Gynaecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Stork IVF Clinic A/S Copenhagen, VivaNeo Fertility Clinics, Copenhagen, Denmark
| | - M Bungum
- Reproductive Medicine Centre, Skåne University Hospital, Malmoe, UK
| | - A C Chan
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Cardona
- Medical Research Council Epidemiology Unit, University of Cambridge Addenbrooke’s Hospital, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - J R B Perry
- Medical Research Council Epidemiology Unit, University of Cambridge Addenbrooke’s Hospital, Cambridge, UK
| | - S O Skouby
- Department of Obstetrics and Gynaecology, Department of Reproductive Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R Borup
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - E R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - G Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - M L Grøndahl
- Department of Obstetrics and Gynaecology, Department of Reproductive Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
| |
Collapse
|