1
|
Sudnitsyna J, Ruzhnikova TO, Panteleev MA, Kharazova A, Gambaryan S, Mindukshev IV. Chloride Gradient Is Involved in Ammonium Influx in Human Erythrocytes. Int J Mol Sci 2024; 25:7390. [PMID: 39000500 PMCID: PMC11242273 DOI: 10.3390/ijms25137390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The ammonia/ammonium (NH3/NH4+, AM) concentration in human erythrocytes (RBCs) is significantly higher than in plasma. Two main possible mechanisms for AM transport, including simple and facilitated diffusion, are described; however, the driving force for AM transport is not yet fully characterized. Since the erythroid ammonium channel RhAG forms a structural unit with anion exchanger 1 (eAE1) within the ankyrin core complex, we hypothesized the involvement of eAE1 in AM transport. To evaluate the functional interaction between eAE1 and RhAG, we used a unique feature of RBCs to swell and lyse in isotonic NH4+ buffer. The kinetics of cell swelling and lysis were analyzed by flow cytometry and an original laser diffraction method, adapted for accurate volume sensing. The eAE1 role was revealed according to (i) the changes in cell swelling and lysis kinetics, and (ii) changes in intracellular pH, triggered by eAE1 inhibition or the modulation of eAE1 main ligand concentrations (Cl- and HCO3-). Additionally, the AM import kinetics was analyzed enzymatically and colorimetrically. In NH4+ buffer, RBCs concentration-dependently swelled and lysed when [NH4+] exceeded 100 mM. Cell swelling and hemolysis were tightly regulated by chloride concentration. The complete substitution of chloride with glutamate prevented NH4+-induced cell swelling and hemolysis, and the restoration of [Cl-] dose-dependently amplified the rates of RBC swelling and lysis and the percentage of hemolyzed cells. Similarly, eAE1 inhibition impeded cell swelling and completely prevented hemolysis. Accordingly, eAE1 inhibition, or a lack of chloride anions in the buffer, significantly decreased NH4+ import. Our data indicate that the eAE1-mediated chloride gradient is required for AM transport. Taken together, our data reveal a new player in AM transport in RBCs.
Collapse
Affiliation(s)
- Julia Sudnitsyna
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Tamara O Ruzhnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
| | - Alexandra Kharazova
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Igor V Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| |
Collapse
|
2
|
Bourgeois S, Houillier P. State of knowledge on ammonia handling by the kidney. Pflugers Arch 2024; 476:517-531. [PMID: 38448728 PMCID: PMC11006756 DOI: 10.1007/s00424-024-02940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The disposal of ammonia, the main proton buffer in the urine, is important for acid-base homeostasis. Renal ammonia excretion is the predominant contributor to renal net acid excretion, both under basal condition and in response to acidosis. New insights into the mechanisms of renal ammonia production and transport have been gained in the past decades. Ammonia is the only urinary solute known to be produced in the kidney and selectively transported through the different parts of the nephron. Both molecular forms of total ammonia, NH3 and NH4+, are transported by specific proteins. Proximal tubular ammoniagenesis and the activity of these transport processes determine the eventual fate of total ammonia produced and excreted by the kidney. In this review, we summarized the state of the art of ammonia handling by the kidney and highlighted the newest processes described in the last decade.
Collapse
Affiliation(s)
- Soline Bourgeois
- Institut of Physiology, University of Zurich, Zurich, Switzerland.
| | - Pascal Houillier
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Centre National de La Recherche Scientifique (CNRS), EMR 8228, Paris, France
| |
Collapse
|
3
|
Nagami GT, Kraut JA. The Role of the Endocrine System in the Regulation of Acid-Base Balance by the Kidney and the Progression of Chronic Kidney Disease. Int J Mol Sci 2024; 25:2420. [PMID: 38397097 PMCID: PMC10889389 DOI: 10.3390/ijms25042420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic acid-base status is primarily determined by the interplay of net acid production (NEAP) arising from metabolism of ingested food stuffs, buffering of NEAP in tissues, generation of bicarbonate by the kidney, and capture of any bicarbonate filtered by the kidney. In chronic kidney disease (CKD), acid retention may occur when dietary acid production is not balanced by bicarbonate generation by the diseased kidney. Hormones including aldosterone, angiotensin II, endothelin, PTH, glucocorticoids, insulin, thyroid hormone, and growth hormone can affect acid-base balance in different ways. The levels of some hormones such as aldosterone, angiotensin II and endothelin are increased with acid accumulation and contribute to an adaptive increase in renal acid excretion and bicarbonate generation. However, the persistent elevated levels of these hormones can damage the kidney and accelerate progression of CKD. Measures to slow the progression of CKD have included administration of medications which inhibit the production or action of deleterious hormones. However, since metabolic acidosis accompanying CKD stimulates the secretion of several of these hormones, treatment of CKD should also include administration of base to correct the metabolic acidosis.
Collapse
Affiliation(s)
- Glenn T. Nagami
- Nephrology Section, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA;
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jeffrey A. Kraut
- Nephrology Section, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA;
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Zhang Q, Liu J, Yao D, Shi JX, Liu YJ, Wei YG, Guo S. Comprehensive Analysis to Identify Rh Family C Glycoprotein ( RHCG) as the Causative Gene for Psoriasis and Search for Alternative Treatment Modalities. Drug Des Devel Ther 2023; 17:2593-2611. [PMID: 37664450 PMCID: PMC10473404 DOI: 10.2147/dddt.s421300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Background Psoriasis is a complex autoimmune disease. Frequent interactions between epidermal and immune cells are likely to be responsible for the strong heterogeneity of psoriasis. Therefore, our work aims to build on current knowledge and further search for new molecular mechanisms related to psoriasis pathogenesis in order to develop new targeted drugs. Methods Data from psoriasis samples were obtained from the Gene Expression Omnibus (GEO) database, and batch effects were corrected using the "Combat" algorithm in the "SVA" package. Functional annotation of differential genes in psoriasis was performed by Gene set enrichment analysis (GSEA). Core functional modules were identified using the Multiscale Embedded Gene Co-Expression Network Analysis (MEGENA) algorithm for selection from the differential gene interaction network. The expression and potential function of Rh Family C Glycoprotein (RHCG) was predicted in single cell data by the "Seurat" package and validated in psoriasis samples by multiplex immunofluorescence. In addition, the regulatory function of HOP Homeobox (HOPX) on RHCG in keratinocytes was confirmed using RNA interference. Using immune infiltration analysis, RHCG and DC cells were analyzed for their association. Finally, the molecular mechanisms of treatment of psoriasis using Tripterygii Radix (TR) and Cinnamomi Ramulus (CR) were explored through network pharmacology and experimental validation. Results Immune response (represented by C1_2) and collagen matrix formation (represented by C1_3) were identified as two important pathogenic factors in psoriasis and helped to define new biological subtypes of psoriasis. One important psoriasis hub gene, RHCG, was obtained and found to be closely associated with keratinocyte differentiation as well as DC cell maturation. And RHCG was regulated by HOPX in keratinocytes. In addition, the mechanism of action of CR and TR in the treatment of psoriasis was tentatively confirmed to be related to TRPV3, NFKB2, and YAP1. Conclusions Our study identifies a new causal disease gene (RHCG) and offers potential alternatives for the treatment of psoriasis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Jia Liu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Dan Yao
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Jian-Xin Shi
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Yuan-Jie Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Yue-Gang Wei
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Shun Guo
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| |
Collapse
|
5
|
Ribas GS, Lopes FF, Deon M, Vargas CR. Hyperammonemia in Inherited Metabolic Diseases. Cell Mol Neurobiol 2022; 42:2593-2610. [PMID: 34665389 PMCID: PMC11421644 DOI: 10.1007/s10571-021-01156-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Ammonia is a neurotoxic compound which is detoxified through liver enzymes from urea cycle. Several inherited or acquired conditions can elevate ammonia concentrations in blood, causing severe damage to the central nervous system due to the toxic effects exerted by ammonia on the astrocytes. Therefore, hyperammonemic patients present potentially life-threatening neuropsychiatric symptoms, whose severity is related with the hyperammonemia magnitude and duration, as well as the brain maturation stage. Inherited metabolic diseases caused by enzymatic defects that compromise directly or indirectly the urea cycle activity are the main cause of hyperammonemia in the neonatal period. These diseases are mainly represented by the congenital defects of urea cycle, classical organic acidurias, and the defects of mitochondrial fatty acids oxidation, with hyperammonemia being more severe and frequent in the first two groups mentioned. An effective and rapid treatment of hyperammonemia is crucial to prevent irreversible neurological damage and it depends on the understanding of the pathophysiology of the diseases, as well as of the available therapeutic approaches. In this review, the mechanisms underlying the hyperammonemia and neurological dysfunction in urea cycle disorders, organic acidurias, and fatty acids oxidation defects, as well as the therapeutic strategies for the ammonia control will be discussed.
Collapse
Affiliation(s)
- Graziela Schmitt Ribas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - Franciele Fátima Lopes
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|