1
|
Mélanie F, Emmanuelle M, Lincoln T, Sandra D, Nina RR, Cécily L, Laure C, Bruno P, Anne-Sophie G, Emmanuel H, Lucie GP, Anne B, Florence B, Gaëlle M. Optimization of freezing and thawing protocols for human ovarian tissue cryopreservation through thermophysical characterisation of freezing medium by differential scanning calorimetry. Cryobiology 2025; 119:105245. [PMID: 40318449 DOI: 10.1016/j.cryobiol.2025.105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
Fertility preservation should be offered to patients facing gonadotoxic therapy. The method for preserving prepubescent girls' fertility, which is also suitable for women, is ovarian tissue cryopreservation (OTC). Although 200 births have been reported worldwide with this approach, significant improvements are needed. The literature indeed reports numerous protocols for freezing and thawing ovarian tissue, with no clear rationale for selection criteria. This study aims to optimize human OTC protocols by characterizing the thermodynamic properties of freezing medium. The freezing medium associated with most live births after autograft (Leibovitz L-15 medium with 4 mg/mL human serum albumin (HSA), 1.5M DMSO, and 0.1M sucrose) was characterized using differential scanning calorimetry. We obtained -120.49 °C for glass transition temperature (Tg'), -20 °C for crystallization temperature when cooling at 2.5 °C/min (Tc) and -4.11 °C for melting temperature (Tm). With these parameters, we optimized a freezing protocol in a programmable freezer (Nano-Digitcool, Cryo Bio System) and a thawing protocol. The freezing curve was as follows: 5 min at 4 °C, 1 °C/min to -7 °C, seeding: 60 °C/min to -32 °C, and 10 °C/min to -15 °C, 0.3 °C/min to -40 °C, 10 °C/min to -140 °C. The thawing protocol consisted in a 3.5-min step in a cold chamber to reach slowly Tg', limiting thermal and mechanical shocks, and then a 2-min incubation at 37 °C to quickly reach Tm. Ovarian tissue frozen-thawed according to these protocols had a similar quality to that of fresh tissue and could resume folliculogenesis during organotypic culture. Our study will contribute to improve human OTC and optimize women fertility preservation.
Collapse
Affiliation(s)
- Fiot Mélanie
- IMoST UMR 1240 INSERM/University Clermont Auvergne, Fertility and Cancer Group, Clermont-Ferrand, France.
| | - Martinot Emmanuelle
- IMoST UMR 1240 INSERM/University Clermont Auvergne, Fertility and Cancer Group, Clermont-Ferrand, France; CHU Clermont-Ferrand, ART Department "AMP, CECOS", Clermont-Ferrand, France.
| | | | - Dollet Sandra
- IMoST UMR 1240 INSERM/University Clermont Auvergne, Fertility and Cancer Group, Clermont-Ferrand, France.
| | - Radosevic-Robin Nina
- Platform for Advanced and/or Novel Tissue Analyses (TANYA), Department of Pathology, Centre Jean Perrin, INSERM U1240, University Clermont Auvergne, 58 Rue Montalembert, 63011, Clermont-Ferrand, France.
| | - Lucas Cécily
- CHU Clermont-Ferrand, ART Department "AMP, CECOS", Clermont-Ferrand, France.
| | - Chaput Laure
- IMoST UMR 1240 INSERM/University Clermont Auvergne, Fertility and Cancer Group, Clermont-Ferrand, France; CHU Clermont-Ferrand, ART Department "AMP, CECOS", Clermont-Ferrand, France.
| | - Pereira Bruno
- CHU Clermont Ferrand, Biostatistics Unit (Délégation Recherche Clinique et Innovation), Clermont Ferrand, France.
| | - Gremeau Anne-Sophie
- CHU Clermont-Ferrand, ART Department "AMP, CECOS", Clermont-Ferrand, France.
| | | | | | - Baudot Anne
- Université Paris Cité, CNRS, INSERM, NABI, Paris, France.
| | - Brugnon Florence
- IMoST UMR 1240 INSERM/University Clermont Auvergne, Fertility and Cancer Group, Clermont-Ferrand, France; CHU Clermont-Ferrand, ART Department "AMP, CECOS", Clermont-Ferrand, France.
| | - Marteil Gaëlle
- IMoST UMR 1240 INSERM/University Clermont Auvergne, Fertility and Cancer Group, Clermont-Ferrand, France.
| |
Collapse
|
2
|
Dey P, Monferini N, Donadini L, Lodde V, Franciosi F, Luciano AM. A spotlight on factors influencing the in vitro folliculogenesis of isolated preantral follicles. J Assist Reprod Genet 2024; 41:3287-3300. [PMID: 39373807 PMCID: PMC11707212 DOI: 10.1007/s10815-024-03277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
Female fertility preservation via complete in vitro folliculogenesis is still chimerical. Due to many factors affecting the efficiency of isolation and culture of preantral follicles, the improvement of techniques geared to fertility preservation in higher mammals seems to be at an impasse. We need an objective view of the current stand to understand how to progress further. As such, a survey was conducted to analyze the relative distribution of studies performed in ten mammalian species on preantral follicle culture available on PubMed. Using the bovine as a reference model, we explore some factors influencing data variation that contribute to the difficulty in reproducing studies. While years of research have enabled the recapitulation of folliculogenesis from as modest as the early antral follicle stage ex vivo, in vitro preantral folliculogenesis remains elusive. Herein, we revisit the classical evidence that laid the foundations for understanding preantral folliculogenesis and review the length, breadth, and depth of information that the era of big data has currently levied. Moving forward, we recognize the urgency of synthesizing the multi-disciplinary approaches to mimic folliculogenesis in vitro to achieve a translational landscape of infertility at individual and large-scale conservation levels.
Collapse
Affiliation(s)
- Pritha Dey
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Noemi Monferini
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ludovica Donadini
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy.
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| |
Collapse
|
3
|
Hao J, Li T, Heinzelmann M, Moussaud-Lamodière E, Lebre F, Krjutškov K, Damdimopoulos A, Arnelo C, Pettersson K, Alfaro-Moreno E, Lindskog C, van Duursen M, Damdimopoulou P. Effects of chemical in vitro activation versus fragmentation on human ovarian tissue and follicle growth in culture. Hum Reprod Open 2024; 2024:hoae028. [PMID: 38803550 PMCID: PMC11128059 DOI: 10.1093/hropen/hoae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
STUDY QUESTION What is the effect of the chemical in vitro activation (cIVA) protocol compared with fragmentation only (Frag, also known as mechanical IVA) on gene expression, follicle activation and growth in human ovarian tissue in vitro? SUMMARY ANSWER Although histological assessment shows that cIVA significantly increases follicle survival and growth compared to Frag, both protocols stimulate extensive and nearly identical transcriptomic changes in cultured tissue compared to freshly collected ovarian tissue, including marked changes in energy metabolism and inflammatory responses. WHAT IS KNOWN ALREADY Treatments based on cIVA of the phosphatase and tensin homolog (PTEN)-phosphatidylinositol 3-kinase (PI3K) pathway in ovarian tissue followed by auto-transplantation have been administered to patients with refractory premature ovarian insufficiency (POI) and resulted in live births. However, comparable effects with mere tissue fragmentation have been shown, questioning the added value of chemical stimulation that could potentially activate oncogenic responses. STUDY DESIGN SIZE DURATION Fifty-nine ovarian cortical biopsies were obtained from consenting women undergoing elective caesarean section (C-section). The samples were fragmented for culture studies. Half of the fragments were exposed to bpV (HOpic)+740Y-P (Frag+cIVA group) during the first 24 h of culture, while the other half were cultured with medium only (Frag group). Subsequently, both groups were cultured with medium only for an additional 6 days. Tissue and media samples were collected for histological, transcriptomic, steroid hormone, and cytokine/chemokine analyses at various time points. PARTICIPANTS/MATERIALS SETTING METHODS Effects on follicles were evaluated by counting and scoring serial sections stained with hematoxylin and eosin before and after the 7-day culture. Follicle function was assessed by quantification of steroids by ultra-performance liquid chromatography tandem-mass spectrometry at different time points. Cytokines and chemokines were measured by multiplex assay. Transcriptomic effects were measured by RNA-sequencing (RNA-seq) of the tissue after the initial 24-h culture. Selected differentially expressed genes (DEGs) were validated by quantitative PCR and immunofluorescence in cultured ovarian tissue as well as in KGN cell (human ovarian granulosa-like tumor cell line) culture experiments. MAIN RESULTS AND THE ROLE OF CHANCE Compared to the Frag group, the Frag+cIVA group exhibited a significantly higher follicle survival rate, increased numbers of secondary follicles, and larger follicle sizes. Additionally, the tissue in the Frag+cIVA group produced less dehydroepiandrosterone compared to Frag. Cytokine measurement showed a strong inflammatory response at the start of the culture in both groups. The RNA-seq data revealed modest differences between the Frag+cIVA and Frag groups, with only 164 DEGs identified using a relaxed cut-off of false discovery rate (FDR) <0.1. Apart from the expected PI3K-protein kinase B (Akt) pathway, cIVA also regulated pathways related to hypoxia, cytokines, and inflammation. In comparison to freshly collected ovarian tissue, gene expression in general was markedly affected in both the Frag+cIVA and Frag groups, with a total of 3119 and 2900 DEGs identified (FDR < 0.001), respectively. The top enriched gene sets in both groups included several pathways known to modulate follicle growth such as mammalian target of rapamycin (mTOR)C1 signaling. Significant changes compared to fresh tissue were also observed in the expression of genes encoding for steroidogenesis enzymes and classical granulosa cell markers in both groups. Intriguingly, we discovered a profound upregulation of genes related to glycolysis and its upstream regulator in both Frag and Frag+cIVA groups, and these changes were further boosted by the cIVA treatment. Cell culture experiments confirmed glycolysis-related genes as direct targets of the cIVA drugs. In conclusion, cIVA enhances follicle growth, as expected, but the mechanisms may be more complex than PI3K-Akt-mTOR alone, and the impact on function and quality of the follicles after the culture period remains an open question. LARGE SCALE DATA Data were deposited in the GEO data base, accession number GSE234765. The code for sequencing analysis can be found in https://github.com/tialiv/IVA_project. LIMITATIONS REASONS FOR CAUTION Similar to the published IVA protocols, the first steps in our study were performed in an in vitro culture model where the ovarian tissue was isolated from the regulation of hypothalamic-pituitary-ovarian axis. Further in vivo experiments will be needed, for example in xeno-transplantation models, to explore the long-term impacts of the discovered effects. The tissue collected from patients undergoing C-section may not be comparable to tissue of patients with POI. WIDER IMPLICATIONS OF THE FINDINGS The general impact of fragmentation and short (24 h) in vitro culture on gene expression in ovarian tissue far exceeded the effects of cIVA. Yet, follicle growth was stimulated by cIVA, which may suggest effects on specific cell populations that may be diluted in bulk RNA-seq. Nevertheless, we confirmed the impact of cIVA on glycolysis using a cell culture model, suggesting impacts on cellular signaling beyond the PI3K pathway. The profound changes in inflammation and glycolysis following fragmentation and culture could contribute to follicle activation and loss in ovarian tissue culture, as well as in clinical applications, such as fertility preservation by ovarian tissue auto-transplantation. STUDY FUNDING/COMPETING INTERESTS This study was funded by research grants from European Union's Horizon 2020 Research and Innovation Programme (Project ERIN No. 952516, FREIA No. 825100), Swedish Research Council VR (2020-02132), StratRegen funding from Karolinska Institutet, KI-China Scholarship Council (CSC) Programme and the Natural Science Foundation of Hunan (2022JJ40782). International Iberian Nanotechnology Laboratory Research was funded by the European Union's H2020 Project Sinfonia (857253) and SbDToolBox (NORTE-01-0145-FEDER-000047), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund. No competing interests are declared.
Collapse
Affiliation(s)
- Jie Hao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, P.R. China
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Tianyi Li
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Heinzelmann
- Department of Environment and Health, Amsterdam Institute for Life and Environment, Amsterdam, The Netherlands
| | - Elisabeth Moussaud-Lamodière
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Filipa Lebre
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Kaarel Krjutškov
- Faculty of Medicine, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | | | - Catarina Arnelo
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Pettersson
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Research Program, Uppsala University, Uppsala, Sweden
| | - Majorie van Duursen
- Department of Environment and Health, Amsterdam Institute for Life and Environment, Amsterdam, The Netherlands
| | - Pauliina Damdimopoulou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Candelaria JI, Denicol AC. Assessment of ovarian tissue and follicular integrity after cryopreservation via slow freezing or vitrification followed by in vitro culture. F&S SCIENCE 2024; 5:154-162. [PMID: 39382049 DOI: 10.1016/j.xfss.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To evaluate ovarian tissue and follicle integrity before and after slow freezing or vitrification and postthawing in vitro culture. DESIGN A laboratory study using bovine ovarian cortical tissue. SETTING Academic laboratory. ANIMALS Ovaries from healthy cattle. INTERVENTIONS Bovine ovarian cortical tissue was subjected to either slow freezing or vitrification and subsequent in vitro culture. Tissue and follicle integrity were assessed before and after cryopreservation and culture. MAIN OUTCOME MEASURES Hematoxylin and eosin staining was used to assess follicle stages, morphology, and stromal cell density. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to examine apoptosis, and Masson's trichrome staining was used to evaluate collagen content in the stromal environment. Immunofluorescent labeling was used to localize and quantify connexin 37 (CX37) and Ki67 expression. RESULTS Regardless of previous cryopreservation, ovarian tissue culture resulted in a decreased percentage of primordial follicles and an increased percentage of primary follicles compared with fresh tissue, indicating that follicle activation was not negatively affected by cryopreservation. However, both culture and cryopreservation followed by culture decreased the percentage of normal preantral follicles compared with fresh tissue that had not been cultured. Culture and/or cryopreservation did not impact stromal cell number, but there was increased cell apoptosis in tissue that was cultured after vitrification compared with tissue that was not cultured. Tissue culture, regardless of cryopreservation, resulted in decreased collagen deposition. There were fewer follicles expressing CX37 in vitrified and thawed tissue compared with all other treatments. Cryopreservation and/or culture of ovarian tissue did not change the percentage of follicles that contained Ki67-positive granulosa cells or the percentage of Ki67-positive granulosa cells within those follicles. CONCLUSION Based on these data, we conclude that tissue cryopreservation followed by culture does not affect follicle activation and growth, but it decreases the proportion of viable follicles within the tissue. Slow freezing was superior to vitrification as indicated by a higher proportion of follicles with normal morphology, lower stromal cell apoptosis, and maintenance of CX37 expression postthawing and after culture.
Collapse
Affiliation(s)
| | - Anna C Denicol
- Department of Animal Science, University of California Davis, Davis, California.
| |
Collapse
|
5
|
Dey P, Monferini N, Donadini L, Lodde V, Franciosi F, Luciano AM. Method of Isolation and In Vitro Culture of Primordial Follicles in Bovine Animal Model. Methods Mol Biol 2024; 2770:171-182. [PMID: 38351454 DOI: 10.1007/978-1-0716-3698-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The mammalian ovary is a substantial source of oocytes arranged into follicles at various stages of folliculogenesis, from the primordial to the ovulatory ones. Primordial follicles constitute the most abundant source of gametes inside the mammalian ovary at any given time.The isolation of a high number of primordial follicles, together with the development of protocols for in vitro follicle growth, would provide a powerful tool to fully exploit the female reproductive potential and boost the rescue and restoration of fertility in assisted reproduction technologies in human medicine, animal breeding, and preservation of threatened species. However, the most significant limitation is the lack of efficient methods for isolating a healthy and homogeneous population of viable primordial follicles suitable for in vitro culture. Here, we provide a fast and high-yield strategy for the mechanical isolation of primordial follicles from limited portions of the ovarian cortex in the bovine animal model.
Collapse
Affiliation(s)
- Pritha Dey
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Noemi Monferini
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ludovica Donadini
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
6
|
Appeltant R, Hermes R, Holtze S, Modina SC, Galli C, Bjarkadottir BD, Adeniran BV, Wei X, Swegen A, Hildebrandt TB, Williams SA. The neonatal southern white rhinoceros ovary contains oogonia in germ cell nests. Commun Biol 2023; 6:1049. [PMID: 37848538 PMCID: PMC10582104 DOI: 10.1038/s42003-023-05256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/18/2023] [Indexed: 10/19/2023] Open
Abstract
The northern white rhinoceros is functionally extinct with only two females left. Establishing methods to culture ovarian tissues, follicles, and oocytes to generate eggs will support conservation efforts using in vitro embryo production. To the best of our knowledge, this is the first description of the structure and molecular signature of any rhinoceros, more specifically, we describe the neonatal and adult southern white rhinoceros (Ceratotherium simum simum) ovary; the closest relation of the northern white rhinoceros. Interestingly, all ovaries contain follicles despite advanced age. Analysis of the neonate reveals a population of cells molecularly characterised as mitotically active, pluripotent with germ cell properties. These results indicate that unusually, the neonatal ovary still contains oogonia in germ cell nests at birth, providing an opportunity for fertility preservation. Therefore, utilising ovaries from stillborn and adult rhinoceros can provide cells for advanced assisted reproductive technologies and investigating the neonatal ovaries of other endangered species is crucial for conservation.
Collapse
Affiliation(s)
- Ruth Appeltant
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Robert Hermes
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str 17, D-10315, Berlin, Germany
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str 17, D-10315, Berlin, Germany
| | - Silvia Clotilde Modina
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Cesare Galli
- Avantea srl, Laboratory of Reproductive Technologies, Via Porcellasco 7/F, 26100, Cremona, Italy
- Fondazione Avantea, 26100, Cremona, Italy
| | - Briet D Bjarkadottir
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Babatomisin V Adeniran
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Xi Wei
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Thomas Bernd Hildebrandt
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
- Freie Universität Berlin, D-14195, Berlin, Germany
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
7
|
Zhou Y, Wang W, Todorov P, Pei C, Isachenko E, Rahimi G, Mallmann P, Nawroth F, Isachenko V. RNA Transcripts in Human Ovarian Cells: Two-Time Cryopreservation Does Not Affect Developmental Potential. Int J Mol Sci 2023; 24:ijms24086880. [PMID: 37108043 PMCID: PMC10139221 DOI: 10.3390/ijms24086880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Sometimes, for medical reasons, when a frozen tissue has already thawed, an operation by re-transplantation may be cancelled, and ovarian tissues should be re-frozen for transplantation next time. Research about the repeated cryopreservation of ovarian cells is rarely reported. It has been published that there is no difference in the follicle densities, proportions of proliferation of early preantral follicles, appearance of atretic follicles, or ultrastructural quality of frozen-thawed and re-frozen-rethawed tissue. However, the molecular mechanisms of a repeated cryopreservation effect on the developmental potential of ovarian cells are unknown. The aim of our experiments was to investigate the effect of re-freezing and re-thawing ovarian tissue on gene expression, gene function annotation, and protein-protein interactions. The morphological and biological activity of primordial, primary, and secondary follicles, aimed at using these follicles for the formation of artificial ovaries, was also detected. Second-generation mRNA sequencing technology with a high throughput and accuracy was adopted to determine the different transcriptome profiles in the cells of four groups: one-time cryopreserved (frozen and thawed) cells (Group 1), two-time cryopreserved (re-frozen and re-thawed after first cryopreservation) cells (Group 2), one-time cryopreserved (frozen and thawed) and in vitro cultured cells (Group 3), and two times cryopreserved (re-frozen and re-thawed after first cryopreservation) and in vitro cultured cells (Group 4). Some minor changes in the primordial, primary, and secondary follicles in terms of the morphology and biological activity were detected, and finally, the availability of these follicles for the formation of artificial ovaries was explored. It was established that during cryopreservation, the CEBPB/CYP19A1 pathway may be involved in regulating estrogen activity and CD44 is crucial for the development of ovarian cells. An analysis of gene expression in cryopreserved ovarian cells indicates that two-time (repeated) cryopreservation does not significantly affect the developmental potential of these cells. For medical reasons, when ovarian tissue is thawed but cannot be transplanted, it can be immediately re-frozen again.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Wanxue Wang
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction of Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Cheng Pei
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Evgenia Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Gohar Rahimi
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Peter Mallmann
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Frank Nawroth
- Center for Infertility, Prenatal Medicine, Endocrinology and Osteology, Amedes Medical Center MVZ Hamburg, 20095 Hamburg, Germany
| | - Volodimir Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| |
Collapse
|