1
|
Samiec M, Trzcińska M. From genome to epigenome: Who is a predominant player in the molecular hallmarks determining epigenetic mechanisms underlying ontogenesis? Reprod Biol 2024; 24:100965. [PMID: 39467448 DOI: 10.1016/j.repbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Genetic factors are one of the basic determinants affecting ontogenesis in mammals. Nevertheless, on the one hand, epigenetic factors have been found to exert the preponderant and insightful impact on the intracellular mechanistic networks related to not only initiation and suppression, but also up- and downregulation of gene expression in all the phases of ontogenetic development in a variety of mammalian species. On the other hand, impairments in the epigenetic mechanisms underlying reprogramming of transcriptional activity of genes (termed epimutations) not only give rise to a broad spectrum of acute and chronic developmental abnormalities in mammalian embryos, foetuses and neonates, but also contribute to premature/expedited senescence or neoplastic transformation of cells and even neurodegenerative and mental disorders. The current article is focused on the unveiling the present knowledge aimed at the identification, classification and characterization of epigenetic agents as well as multifaceted interpretation of current and coming trends targeted at recognizing the epigenetic background of proper ontogenesis in mammals. Moreover, the next objective of this paper is to unravel the mechanistic insights into a wide array of disturbances leading to molecular imbalance taking place during epigenetic reprogramming of genomic DNA. The above-indicated imbalance seems to play a predominant role in the initiation and progression of anatomo-, histo-, and physiopathological processes throughout ontogenetic development. Conclusively, different modalities of epigenetically assisted therapeutic procedures that have been exemplified in the current article, might be the powerful and promiseful tools reliable and feasible in the medical treatments of several diseases triggered by dysfunctions in the epigenetic landscapes, e.g., myelodysplastic syndromes or epilepsy.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| |
Collapse
|
2
|
Ooga M, Kikuchi Y, Ito D, Kazama K, Inoue R, Sakamoto M, Wakayama S, Wakayama T. Aberrant histone methylation in mouse early preimplantation embryos derived from round spermatid injection. Biochem Biophys Res Commun 2023; 680:119-126. [PMID: 37738901 DOI: 10.1016/j.bbrc.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Round spermatid injection (ROSI) is the last resort and recourse for men with nonobstructive azoospermia to become biological fathers of their children. However, the ROSI-derived offspring rate is lower than intracytoplasmic sperm injection (ICSI) in mice (20% vs. 60%). This low success rate has hindered the spread of ROSI in ART (Assisted Reproductive Technology). However, the cause of the ROSI-zygote-derived low offspring rate is currently unknown. In the previous studies, we reported that H3K9me3 and H3K27me3 exhibited ectopic localizations in male pronuclei (mPN) of ROSI-zygotes, suggesting that the carried over histone to zygotes conveys epigenetic information. In this study, we analyzed other histone modifications to explore unknown abnormalities. H3K36me3 showed an increased methylation state compared to ICSI-derived embryos but not for H3K4me3. Abnormal H3K36me3 was corrected until 2-cell stage embryos, suggesting a long window of reprogramming ability in ROSI-embryos. Treatment with TSA of ROSI-zygotes, which was reported to be capable of correcting ectopic DNA methylation in ROSI-zygotes, caused abnormalities of H3K36me3 in male and female PN (fPN) of the zygotes. In contrast, round spermatid TSA treatment before ROSI, which was reported to improve the preimplantation development of ROSI-zygotes, showed beneficial effects without toxicity in fPN. Therefore, the results suggest that TSA has some negative effects, but overall, it is effective in the correction of epigenetic abnormalities in ROSI-zygotes. When attempting to correct epigenetic abnormalities, attention should be paid to epigenomes not only in male but also in female pronuclei.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan.
| | - Yasuyuki Kikuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Rei Inoue
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| |
Collapse
|
3
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Wakayama S, Terashita Y, Tanabe Y, Hirose N, Wakayama T. Mouse Cloning Using Outbred Oocyte Donors and Nontoxic Reagents. Methods Mol Biol 2023; 2647:151-168. [PMID: 37041333 DOI: 10.1007/978-1-0716-3064-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) technology has become a useful tool for animal cloning, gene manipulation, and genomic reprogramming research. However, the standard mouse SCNT protocol remains expensive, labor-intensive, and requires hard work for many hours. Therefore, we have been trying to reduce the cost and simplify the mouse SCNT protocol. This chapter describes the methods to use low-cost mouse strains and steps from the mouse cloning procedure. Although this modified SCNT protocol will not improve the success rate of mouse cloning, it is a cheaper, simpler, and less tiring method that allows us to perform more experiments and obtain more offspring with the same working time as the standard SCNT protocol.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, Japan
| | - Yukari Terashita
- Integrated Clinical Education Center, Kyoto University Hospital, Kyoto, Japan
- Department of Cardiovascular Surgery, Takamatsu Red Cross Hospital, Takamatsu, Japan
| | | | - Naoki Hirose
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, Japan.
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
5
|
Aberrant nucleosome organization in mouse SCNT embryos revealed by ULI-MNase-seq. Stem Cell Reports 2022; 17:1730-1742. [PMID: 35750045 PMCID: PMC9287678 DOI: 10.1016/j.stemcr.2022.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) can reprogram terminally differentiated somatic cells into totipotent embryos, but with multiple defects. The nucleosome positioning, as an important epigenetic regulator for gene expression, is largely unexplored during SCNT embryonic development. Here, we mapped genome-wide nucleosome profiles in mouse SCNT embryos using ultra-low-input MNase-seq (ULI-MNase-seq). We found that the nucleosome-depleted regions (NDRs) around promoters underwent dramatic reestablishment, which is consistent with the cell cycle. Dynamics of nucleosome position in SCNT embryos were delayed compared to fertilized embryos. Subsequently, we found that the aberrant gene expression levels in inner cell mass (ICM) were positively correlated with promoter NDRs in donor cells, which indicated that the memory of nucleosome occupancy in donor cells was a potential barrier for SCNT-mediated reprogramming. We further confirmed that the histone acetylation level of donor cells was associated with the memory of promoter NDRs. Our study provides insight into nucleosome reconfiguration during SCNT preimplantation embryonic development.
Collapse
|
6
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
7
|
Srirattana K, Hufana‐Duran D, Atabay EP, Duran PG, Atabay EC, Lu K, Liang Y, Chaikhun‐Marcou T, Theerakittayakorn K, Parnpai R. Current status of assisted reproductive technologies in buffaloes. Anim Sci J 2022; 93:e13767. [PMID: 36123790 PMCID: PMC9787342 DOI: 10.1111/asj.13767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022]
Abstract
Buffaloes are raised by small farm holders primarily as source of draft power owing to its resistance to hot climate, disease, and stress conditions. Over the years, transformation of these animals from draft to dairy was deliberately carried out through genetic improvement program leading to the development of buffalo-based enterprises. Buffalo production is now getting more attention and interest from buffalo raisers due to its socioeconomic impact as well as its contribution to propelling the livestock industry in many developing countries. Reproduction of buffaloes, however, is confronted with huge challenge and concern as being generally less efficient to reproduce compared with cattle due to both intrinsic and extrinsic factors such as poor estrus manifestation, silent heat, marked seasonal infertility, postpartum anestrus, long calving interval, delayed puberty, inherently low number of primordial follicles in their ovaries, high incidence of atresia, and apoptosis. Assisted reproductive technologies (ARTs) are major interventions for the efficient utilization of follicle reserve in buffaloes. The present review focuses on estrus and ovulation synchronization for fixed time artificial insemination, in vitro embryo production, intracytoplasmic sperm injection, cryopreservation of oocytes and embryos, somatic cell nuclear transfer, the factors affecting utilization in various ARTs, and future perspectives in buffaloes.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Danilda Hufana‐Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Eufrocina P. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines
| | - Peregrino G. Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Edwin C. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Kehuan Lu
- Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| | - Yuanyuan Liang
- Department of Reproductive MedicineLiuzhou General HospitalLiuzhouGuangxiChina
| | - Thuchadaporn Chaikhun‐Marcou
- Obstetrics Gynecology Andrology and Animal Biotechnology Clinic, Faculty of Veterinary MedicineMahanakorn University of TechnologyBangkokThailand
| | - Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| |
Collapse
|
8
|
Tekayev M, Vuruskan AK. Clinical values and advances in round spermatid injection (ROSI). Reprod Biol 2021; 21:100530. [PMID: 34171715 DOI: 10.1016/j.repbio.2021.100530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Azoospermia is defined as the complete absence of sperm cells in the ejaculate. Approximately 10-15 % of infertile men display azoospermia. Azoospermia can be subdivided into two types, obstructive azoospermia (OA) and non-obstructive azoospermia (NOA). NOA azoospermia might be the result due to primary testicular damage, secondary testicular damage, or incomplete testicular development. NOA azoospermia accounts for a considerable proportion of male infertility. A significant percentage of men with NOA azoospermia have foci of active spermatogenesis up to the stage of round spermatid. Round spermatid injection (ROSI) is a technique of assisted in-vitro fertilization (IVF) in assisted reproductive technology (ART). ROSI technique involves the injection of haploid germ cells derived from testicular biopsies into the recipient oocytes. The present study demonstrates that more participants and long-term follow-up studies are required to assess the reliability of the ROSI technique. In order to increase the success rate of the ROSI technique, round spermatids should be correctly evaluated and selected. Our study refers to the clinical values, challenges, and innovations in round spermatid injection (ROSI).
Collapse
Affiliation(s)
- Muhammetnur Tekayev
- Department of Histology and Embryology, Faculty of Medicine, Institute of Health Sciences, University of Health Sciences, Istanbul 34668, Turkey
| | - Ayse Kose Vuruskan
- Department of Histology and Embryology, Faculty of Medicine, Institute of Health Sciences, University of Health Sciences, Istanbul 34668, Turkey; IVF Unit, Additional Service Building of Suleymaniye Obstetrics and Pediatrics Hospital, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul 34116, Turkey.
| |
Collapse
|
9
|
Kamimura S, Inoue K, Mizutani E, Kim JM, Inoue H, Ogonuki N, Miyamoto K, Ihashi S, Itami N, Wakayama T, Ito A, Nishino N, Yoshida M, Ogura A. Improved development of mouse somatic cell nuclear transfer embryos by chlamydocin analogues, class I and IIa histone deacetylase inhibitors†. Biol Reprod 2021; 105:543-553. [PMID: 33982061 PMCID: PMC8335354 DOI: 10.1093/biolre/ioab096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian cloning by somatic cell nuclear transfer (SCNT), the treatment of reconstructed embryos with histone deacetylase (HDAC) inhibitors improves efficiency. So far, most of those used for SCNT are hydroxamic acid derivatives-such as trichostatin A-characterized by their broad inhibitory spectrum. Here, we examined whether mouse SCNT efficiency could be improved using chlamydocin analogues, a family of newly designed agents that specifically inhibit class I and IIa HDACs. Development of SCNT-derived embryos in vitro and in vivo revealed that four out of five chlamydocin analogues tested could promote the development of cloned embryos. The highest pup rates (7.1-7.2%) were obtained with Ky-9, similar to those achieved with trichostatin A (7.2-7.3%). Thus, inhibition of class I and/or IIa HDACs in SCNT-derived embryos is enough for significant improvements in full-term development. In mouse SCNT, the exposure of reconstructed oocytes to HDAC inhibitors is limited to 8-10 h because longer inhibition with class I inhibitors causes a two-cell developmental block. Therefore, we used Ky-29, with higher selectivity for class IIa than class I HDACs for longer treatment of SCNT-derived embryos. As expected, 24-h treatment with Ky-29 up to the two-cell stage did not induce a developmental block, but the pup rate was not improved. This suggests that the one-cell stage is a critical period for improving SCNT cloning using HDAC inhibitors. Thus, chlamydocin analogues appear promising for understanding and improving the epigenetic status of mammalian SCNT-derived embryos through their specific inhibitory effects on HDACs.
Collapse
Affiliation(s)
- Satoshi Kamimura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan.,Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kimiko Inoue
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Eiji Mizutani
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan.,Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jin-Moon Kim
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hiroki Inoue
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Narumi Ogonuki
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kei Miyamoto
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama-ken, Japan
| | - Shunya Ihashi
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama-ken, Japan
| | - Nobuhiko Itami
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Norikazu Nishino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
10
|
Abstract
Somatic cell nuclear transfer (SCNT) is a powerful technique, although challenging, to study reprograming into the totipotent state of differentiated nuclei in mammals. This procedure was initially applied in farm animals, then rodents, and more recently in primates. Nuclear transfer of embryonic stem cells is known to be more efficient, but many types of somatic cells have now been successfully reprogramed with this procedure. Moreover, SCNT reprograming is more effective on a per cell basis than induced Pluripotent Stem Cells (iPSC) and provides interesting clues regarding the underlying processes. In this chapter, we describe the protocol of nuclear transfer in mouse that combines cell cycle synchronization of the donor cells, enucleation of metaphase II oocyte and Piezo-driven injection of a donor cell nucleus followed by activation of the reconstructed embryos and nonsurgical transfer into pseudo-pregnant mice. Moreover, this protocol includes two facultative steps to erase the epigenetic "memory" of the donor cells and improve chromatin remodeling by histones modifications targeting.
Collapse
Affiliation(s)
- Vincent Brochard
- Université Paris-Saclay, INRAE, ENVA, BREED U1198, Jouy-en-Josas, France
| | - Nathalie Beaujean
- Université Paris-Saclay, INRAE, ENVA, BREED U1198, Jouy-en-Josas, France. .,Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U1208, USC 1361, Bron, France.
| |
Collapse
|
11
|
Pontelo TP, Franco MM, Kawamoto TS, Caixeta FMC, de Oliveira Leme L, Kussano NR, Zangeronimo MG, Dode MAN. Histone deacetylase inhibitor during in vitro maturation decreases developmental capacity of bovine oocytes. PLoS One 2021; 16:e0247518. [PMID: 33667248 PMCID: PMC7935280 DOI: 10.1371/journal.pone.0247518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate the effect of scriptaid during pre-maturation (PIVM) and/or maturation (IVM) on developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were submitted to PIVM for 6 h in the presence or absence of scriptaid. COCs were distributed into five groups: T1-IVM for 22 h, T2-PIVM for 6 h and IVM for 22 h, T3-PIVM with scriptaid for 6 h and IVM for 22 h, T4-PIVM for 6 h and IVM with scriptaid for 22 h, and T5-PIVM with scriptaid for 6 h and IVM with scriptaid for 22 h. Nuclear maturation, gene expression, cumulus cells (CCs) expansion, and embryo development and quality were evaluated. At the end of maturation, all groups presented the majority of oocytes in MII (P>0.05). Only HAT1 gene was differentially expressed (P<0.01) in oocytes with different treatments. Regarding embryo development at D7, T4 (23%) and T5 (18%) had lower blastocyst rate (P<0.05) than the other treatments (T1 = 35%, T2 = 37% and T3 = 32%). No effect was observed when scriptaid in PIVM was used in less competent oocytes (P>0.05). In conclusion, presence of scriptaid in PIVM and/or IVM did not improve developmental competence or embryo quality.
Collapse
Affiliation(s)
| | - Mauricio Machaim Franco
- Federal University Uberlândia, Animal Science, Uberlândia, Minas Gerais, Brazil
- Institute of Genetics and Biochemistry of Federal, University of Uberlandia, Uberlândia, Minas Gerais, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | | | | | | | | | | | - Margot Alves Nunes Dode
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- University of Brasilia, Animal Science, Brasilia, Distrito Federal, Brazil
- University of Brasilia, Institute of Biology, Brasilia, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
12
|
Zhu L, Marjani SL, Jiang Z. The Epigenetics of Gametes and Early Embryos and Potential Long-Range Consequences in Livestock Species-Filling in the Picture With Epigenomic Analyses. Front Genet 2021; 12:557934. [PMID: 33747031 PMCID: PMC7966815 DOI: 10.3389/fgene.2021.557934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
The epigenome is dynamic and forged by epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA species. Increasing lines of evidence support the concept that certain acquired traits are derived from environmental exposure during early embryonic and fetal development, i.e., fetal programming, and can even be "memorized" in the germline as epigenetic information and transmitted to future generations. Advances in technology are now driving the global profiling and precise editing of germline and embryonic epigenomes, thereby improving our understanding of epigenetic regulation and inheritance. These achievements open new avenues for the development of technologies or potential management interventions to counteract adverse conditions or improve performance in livestock species. In this article, we review the epigenetic analyses (DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs) of germ cells and embryos in mammalian livestock species (cattle, sheep, goats, and pigs) and the epigenetic determinants of gamete and embryo viability. We also discuss the effects of parental environmental exposures on the epigenetics of gametes and the early embryo, and evidence for transgenerational inheritance in livestock.
Collapse
Affiliation(s)
- Linkai Zhu
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Sadie L. Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT, United States
| | - Zongliang Jiang
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
13
|
Do LTK, Wittayarat M, Sato Y, Chatdarong K, Tharasanit T, Techakumphu M, Hirata M, Tanihara F, Taniguchi M, Otoi T. Comparison of Blastocyst Development between Cat-Cow and Cat-Pig Interspecies Somatic Cell Nuclear Transfer Embryos Treated with Trichostatin A. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Advance in the Role of Epigenetic Reprogramming in Somatic Cell Nuclear Transfer-Mediated Embryonic Development. Stem Cells Int 2021; 2021:6681337. [PMID: 33628270 PMCID: PMC7880704 DOI: 10.1155/2021/6681337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) enables terminally differentiated somatic cells to gain totipotency. Many species are successfully cloned up to date, including nonhuman primate. With this technology, not only the protection of endangered animals but also human therapeutics is going to be a reality. However, the low efficiency of the SCNT-mediated reprogramming and the defects of extraembryonic tissues as well as abnormalities of cloned individuals limit the application of reproductive cloning on animals. Also, due to the scarcity of human oocytes, low efficiency of blastocyst development and embryonic stem cell line derivation from nuclear transfer embryo (ntESCs), it is far away from the application of this technology on human therapeutics to date. In recent years, multiple epigenetic barriers are reported, which gives us clues to improve reprogramming efficiency. Here, we reviewed the reprogramming process and reprogramming defects of several important epigenetic marks and highlighted epigenetic barriers that may lead to the aberrant reprogramming. Finally, we give our insights into improving the efficiency and quality of SCNT-mediated reprogramming.
Collapse
|
15
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|
16
|
Konno S, Wakayama S, Ito D, Kazama K, Hirose N, Ooga M, Wakayama T. Removal of remodeling/reprogramming factors from oocytes and the impact on the full-term development of cloned embryos. Development 2020; 147:dev.190777. [PMID: 32665239 DOI: 10.1242/dev.190777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
The reason for the poor development of cloned embryos is not yet clear. Several reports have suggested that some nuclear remodeling/reprogramming factors (RRFs) are removed from oocytes at the time of enucleation, which might cause the low success rate of animal cloning. However, there is currently no method to manipulate the amount of RRFs in oocytes. Here, we describe techniques we have developed to gradually reduce RRFs in mouse oocytes by injecting somatic cell nuclei into oocytes. These injected nuclei were remodeled and reprogrammed using RRFs, and then RRFs were removed by subsequent deletion of somatic nuclei from oocytes. The size of the metaphase II spindle reduced immediately, but did recover when transferred into fresh oocytes. Though affected, the full-term developmental potential of these RRF-reduced oocytes with MII-spindle shrinkage was not lost after fertilization. When somatic cell nuclear transfer was performed, the successful generation of cloned mice was somewhat improved and abnormalities were reduced when oocytes with slightly reduced RRF levels were used. These results suggest that a change in RRFs in oocytes, as achieved by the method described in this paper or by enucleation, is important but not the main reason for the incomplete reprogramming of somatic cell nuclei.
Collapse
Affiliation(s)
- Shunsuke Konno
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Naoki Hirose
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan .,Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| |
Collapse
|
17
|
Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos. Nat Commun 2020; 11:1813. [PMID: 32286279 PMCID: PMC7156422 DOI: 10.1038/s41467-020-15607-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/14/2020] [Indexed: 01/03/2023] Open
Abstract
The oocyte cytoplasm can reprogram the somatic cell nucleus into a totipotent state, but with low efficiency. The spatiotemporal chromatin organization of somatic cell nuclear transfer (SCNT) embryos remains elusive. Here, we examine higher order chromatin structures of mouse SCNT embryos using a low-input Hi-C method. We find that donor cell chromatin transforms to the metaphase state rapidly after SCNT along with the dissolution of typical 3D chromatin structure. Intriguingly, the genome undergoes a mitotic metaphase-like to meiosis metaphase II-like transition following activation. Subsequently, weak chromatin compartments and topologically associating domains (TADs) emerge following metaphase exit. TADs are further removed until the 2-cell stage before being progressively reestablished. Obvious defects including stronger TAD boundaries, aberrant super-enhancer and promoter interactions are found in SCNT embryos. These defects are partially caused by inherited H3K9me3, and can be rescued by Kdm4d overexpression. These observations provide insight into chromatin architecture reorganization during SCNT embryo development. The organisation of chromatin in somatic cell nuclear transfer (SCNT) embryos remains poorly understood. Here, the authors examine higher order chromatin structures of mouse SCNT embryos and provide insights into chromatin architecture reorganisation during SCNT embryo development.
Collapse
|
18
|
Gouveia C, Huyser C, Egli D, Pepper MS. Lessons Learned from Somatic Cell Nuclear Transfer. Int J Mol Sci 2020; 21:E2314. [PMID: 32230814 PMCID: PMC7177533 DOI: 10.3390/ijms21072314] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) has been an area of interest in the field of stem cell research and regenerative medicine for the past 20 years. The main biological goal of SCNT is to reverse the differentiated state of a somatic cell, for the purpose of creating blastocysts from which embryonic stem cells (ESCs) can be derived for therapeutic cloning, or for the purpose of reproductive cloning. However, the consensus is that the low efficiency in creating normal viable offspring in animals by SCNT (1-5%) and the high number of abnormalities seen in these cloned animals is due to epigenetic reprogramming failure. In this review we provide an overview of the current literature on SCNT, focusing on protocol development, which includes early SCNT protocol deficiencies and optimizations along with donor cell type and cell cycle synchrony; epigenetic reprogramming in SCNT; current protocol optimizations such as nuclear reprogramming strategies that can be applied to improve epigenetic reprogramming by SCNT; applications of SCNT; the ethical and legal implications of SCNT in humans; and specific lessons learned for establishing an optimized SCNT protocol using a mouse model.
Collapse
Affiliation(s)
- Chantel Gouveia
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Carin Huyser
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10027, USA;
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
| |
Collapse
|
19
|
Lv L, Lu X, Feng T, Rehman SU, Sun J, Wu Z, Shi D, Liu Q, Cui K. Valproic acid enhances in vitro developmental competence of porcine handmade cloned embryos. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Abstract
The mouse is the most extensively used mammalian laboratory species in biology and medicine because of the ready availability of a wide variety of defined genetic and gene-modified strains and abundant genetic information. Its small size and rapid generation turnover are also advantages compared with other experimental animals. Using these advantages, somatic cell nuclear transfer (SCNT) in mice has provided invaluable information on epigenetics related to SCNT technology and cloning, playing a leading role in relevant technical improvements. These improvements include treatment with histone deacetylase inhibitors, correction of Xist gene expression (controlling X chromosome inactivation), and removal of methylated histones from SCNT-generated embryos, which have proven to be effective for SCNT cloning of other species. However, even with the best combination of these treatments, the birth rate in cloned offspring is still lower than intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). One remaining issue associated with SCNT is placental enlargement (hyperplasia) found in late pregnancy, but this abnormality might not be a major cause for the low efficiency of SCNT because many SCNT-derived embryos die before their placentas start to enlarge at midgestation (early postimplantation stage). It is known that, at this stage, undifferentiated trophoblast cells in the extraembryonic tissue of SCNT-derived embryos fail to proliferate. Understanding the molecular mechanisms is essential for further technical improvements of mouse SCNT, which might also provide clues for technical breakthroughs in mammalian SCNT and cloning in general.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Research Center, Ibaraki, 305-0074, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan; RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.
| |
Collapse
|
21
|
Lucas CG, Chen PR, Seixas FK, Prather RS, Collares T. Applications of omics and nanotechnology to improve pig embryo production in vitro. Mol Reprod Dev 2019; 86:1531-1547. [PMID: 31478591 PMCID: PMC7183242 DOI: 10.1002/mrd.23260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
An appropriate environment to optimize porcine preimplantation embryo production in vitro is required as genetically modified pigs have become indispensable for biomedical research and agriculture. To provide suitable culture conditions, omics technologies have been applied to elucidate which metabolic substrates and pathways are involved during early developmental processes. Metabolomic profiling and transcriptional analysis comparing in vivo- and in vitro-derived embryos have demonstrated the important role of amino acids during preimplantation development. Transcriptional profiling studies have been helpful in assessing epigenetic reprogramming agents to allow for the correction of gene expression during the cloning process. Along with this, nanotechnology, which is a highly promising field, has allowed for the use of engineered nanoplatforms in reproductive biology. A growing number of studies have explored the use of nanoengineered materials for sorting, labeling, and targeting purposes; which demonstrates their potential to become one of the solutions for precise delivery of molecules into gametes and embryos. Considering the contributions of omics and the recent progress in nanoscience, in this review, we focused on their emerging applications for current in vitro pig embryo production systems to optimize the generation of genetically modified animals.
Collapse
Affiliation(s)
- Caroline G Lucas
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Paula R Chen
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Fabiana K Seixas
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Randall S Prather
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Tiago Collares
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Li W, Xu H, Yin Y, Shen W, Sun QY, Zhao M. In vitro production of canine blastocysts. Theriogenology 2019; 135:164-168. [PMID: 31216507 DOI: 10.1016/j.theriogenology.2019.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 01/28/2023]
Abstract
Though blastocyst production in vitro has been successful in several animal species, a culture system to produce viable and normal canine blastocysts in vitro remains to be established. In this study, we report the development of an in vitro culture system for canine preimplantation embryos produced via parthenogenetic activation (PA) and somatic cell nucleus transfer (SCNT). Our results show that the medium developed by us, named "Qingdao Agricultural University's (QAU)-4 medium", successfully breaks the developmental arrest observed at the eight-cell stage in canine embryos grown in other culture systems. The blastocysts produced in QAU-4 displayed normal blastocyst structures, including a clear inner cell mass and blastocyst cavity. We also found that blastocyst formation in PA embryos cultured in QAU-4 medium was quite high, though this was not so in the case of SCNT embryos. However, supplementation of QAU-4 medium with 100 nM of scriptaid caused a sharp increase in blastocyst formation in SCNT embryos. After culture, hatched blastocysts were also observed to successfully adhere to collagen-coated dishes, where further growth and differentiation occurred. To our knowledge, this is the first in vitro canine preimplantation embryo culture system that can successfully produce canine blastocysts.
Collapse
Affiliation(s)
- Weidong Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China; College of Life Science, Institute of Reproductive Science, Qingdao Agricultural University, Qingdao, China
| | - Haina Xu
- Osight Biological Technology co., LTD, Qingdao, China
| | - Yanbo Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China; Bolong Experimental co., LTD, Qingdao, China
| | - Wei Shen
- College of Life Science, Institute of Reproductive Science, Qingdao Agricultural University, Qingdao, China
| | - Qing-Yuan Sun
- College of Life Science, Institute of Reproductive Science, Qingdao Agricultural University, Qingdao, China; State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Minghui Zhao
- College of Life Science, Institute of Reproductive Science, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
23
|
GUO ZHENHUA, LV LEI, LIU DI, LIANGWANG LIANGWANG. Meta-analysis of trichostatin A treatment effects on mouse somatic cell nuclear transfer. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i5.90015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Improving somatic cell nuclear transfer (SCNT) efficiency is challenging, and trichostatin A (TSA) has been implemented to improve this technique, but it does not work for porcine and monkey SCNT. Thus, a meta-analysis was done to understand the relationship between TSA and mouse SCNT. Published articles were collected using PubMed and ScienceDirect from 2000 to 2018. Total 15 studies were included that suggest TSA can improve SCNT mouse blastocyst formation and live birth. Most TSA effects studied were on histone deacetylase (HDACs), hence the impacts of TSA on the cytoplasm, specifically cancer signaling pathways, endoplasmic reticulum, and HDACs localization were investigated. It is likely that TSA benefits mouse SCNT because the nucleus is easy to remove. Using fluorescent labeling to remove nuclei and TSA incorporation, SNCT may be improved for pig and monkey studies.
Collapse
|
24
|
Wang H, Cui W, Meng C, Zhang J, Li Y, Qian Y, Xing G, Zhao D, Cao S. MC1568 Enhances Histone Acetylation During Oocyte Meiosis and Improves Development of Somatic Cell Nuclear Transfer Embryos in Pig. Cell Reprogram 2019; 20:55-65. [PMID: 29412739 DOI: 10.1089/cell.2017.0023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An increasing number of studies have revealed that histone deacetylase (HDAC) mediated histone deacetylation is important for mammalian oocyte development. However, nonselective HDAC inhibitors (HDACi) were applied in most studies; the precise functions of specific HDAC classes during meiosis are poorly defined. In this study, the class IIa-specific HDACi MC1568 was used to reveal a crucial role of class IIa HDACs in the regulation of histone deacetylation during porcine oocyte meiosis. Besides, the functions of HDACs and histone acetyltransferases in regulating the balance of histone acetylation/deacetylation were also confirmed during oocyte maturation. After the validation of nontoxicity of MC1568 in maturation rate, spindle morphology, and chromosome alignment, effects of MC1568 on developmental competence of porcine somatic cell nuclear transfer (SCNT) embryos were evaluated, and data indicated that treatment with 10 μM MC1568 for 12 hours following electrical activation significantly enhanced the blastocyst rate and cell numbers. Moreover, results showed that optimal MC1568 treatment increased the H4K12 acetylation level in SCNT one cells and two cells. In addition, MC1568 treatment stimulated expression of the development-related genes OCT4, CDX2, SOX2, and NANOG in SCNT blastocysts. Collectively, our investigation uncovered a critical role of class IIa HDACs in the regulation of histone deacetylation during oocyte meiosis. Furthermore, for the first time, we showed that MC1568 can improve the in vitro development of porcine SCNT embryos. These findings provide an alternative HDACi for improving animal cloning efficiency and may shed more light on nuclear reprogramming.
Collapse
Affiliation(s)
- Huili Wang
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Wei Cui
- 2 Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, Massachusetts
| | - Chunhua Meng
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Jun Zhang
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Yinxia Li
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Yong Qian
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Guangdong Xing
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Dongmin Zhao
- 3 Institute of Veterinary Medicine , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Shaoxian Cao
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| |
Collapse
|
25
|
Qiu X, Xiao X, Martin GB, Li N, Ling W, Wang M, Li Y. Strategies for improvement of cloning by somatic cell nuclear transfer. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is a powerful tool that is being applied in a variety of fields as diverse as the cloning and production of transgenic animals, rescue of endangered species and regenerative medicine. However, cloning efficiency is still very low and SCNT embryos generally show poor developmental competency and many abnormalities. The low efficiency is probably due to incomplete reprogramming of the donor nucleus and most of the developmental problems are thought to be caused by epigenetic defects. Applications of SCNT will, therefore, depend on improvements in the efficiency of production of healthy clones. This review has summarised the progress and strategies that have been used to make improvements in various animal species, especially over the period 2010–2017, including strategies based on histone modification, embryo aggregation and mitochondrial function. There has been considerable investiagation into the mechanisms that underpin each strategy, helping us better understand the nature of genomic reprogramming and nucleus–cytoplasm interactions.
Collapse
|
26
|
Abstract
Somatic cell nuclear transfer (SCNT) technology has become a useful tool for animal cloning, gene manipulation, and genomic reprograming research. The original SCNT was performed using cell fusion between the donor cell and oocyte. This method remains very popular, but we have recently developed an alternative method that relies on nuclear injection rather than cell fusion. The advantages of nuclear injection include a shortened experimental procedure and reduced contamination of donor cytoplasm in the oocyte. In particular, only this method allows us to perform SCNT using dead cells or naked nuclei such as those from cadavers or body wastes. This chapter describes a basic protocol for the production of cloned mice by the nuclear injection method using a piezo-actuated micromanipulator as well as our recent advances in SCNT using noninvasively collected donor cells such as urine-derived somatic cells. This technique will greatly help not only SCNT but also other forms of micromanipulation, including sperm microinjection into oocytes and embryonic stem cell injection into blastocysts.
Collapse
|
27
|
Gao R, Wang C, Gao Y, Xiu W, Chen J, Kou X, Zhao Y, Liao Y, Bai D, Qiao Z, Yang L, Wang M, Zang R, Liu X, Jia Y, Li Y, Zhang Y, Yin J, Wang H, Wan X, Liu W, Zhang Y, Gao S. Inhibition of Aberrant DNA Re-methylation Improves Post-implantation Development of Somatic Cell Nuclear Transfer Embryos. Cell Stem Cell 2018; 23:426-435.e5. [PMID: 30146410 DOI: 10.1016/j.stem.2018.07.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/26/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
Abstract
Somatic cell nuclear transfer (SCNT) enables cloning of differentiated cells by reprogramming their nuclei to a totipotent state. However, successful full-term development of SCNT embryos is a low-efficiency process and arrested embryos frequently exhibit epigenetic abnormalities. Here, we generated genome-wide DNA methylation maps from mouse pre-implantation SCNT embryos. We identified widespread regions that were aberrantly re-methylated, leading to mis-expression of genes and retrotransposons important for zygotic genome activation. Inhibition of DNA methyltransferases (Dnmts) specifically rescued these re-methylation defects and improved the developmental capacity of cloned embryos. Moreover, combining inhibition of Dnmts with overexpression of histone demethylases led to stronger reductions in inappropriate DNA methylation and synergistic enhancement of full-term SCNT embryo development. These findings show that excessive DNA re-methylation is a potent barrier that limits full-term development of SCNT embryos and that removing multiple epigenetic barriers is a promising approach to achieve higher cloning efficiency.
Collapse
Affiliation(s)
- Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chenfei Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenchao Xiu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuhan Liao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhibin Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingzhu Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruge Zang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoyu Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanping Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhe Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yalin Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoping Wan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Yong Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
28
|
Simões R, Rodrigues Santos A. Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer. Organogenesis 2018; 13:156-178. [PMID: 29020571 DOI: 10.1080/15476278.2017.1389367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.
Collapse
Affiliation(s)
- Renata Simões
- a Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , SP , Brazil
| | | |
Collapse
|
29
|
Li H, Gao S, Huang H, Liu W, Huang H, Liu X, Gao Y, Le R, Kou X, Zhao Y, Kou Z, Li J, Wang H, Zhang Y, Wang H, Cai T, Sun Q, Gao S, Han Z. High throughput sequencing identifies an imprinted gene, Grb10, associated with the pluripotency state in nuclear transfer embryonic stem cells. Oncotarget 2018; 8:47344-47355. [PMID: 28476045 PMCID: PMC5564569 DOI: 10.18632/oncotarget.17185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
Somatic cell nuclear transfer and transcription factor mediated reprogramming are two widely used techniques for somatic cell reprogramming. Both fully reprogrammed nuclear transfer embryonic stem cells and induced pluripotent stem cells hold potential for regenerative medicine, and evaluation of the stem cell pluripotency state is crucial for these applications. Previous reports have shown that the Dlk1-Dio3 region is associated with pluripotency in induced pluripotent stem cells and the incomplete somatic cell reprogramming causes abnormally elevated levels of genomic 5-methylcytosine in induced pluripotent stem cells compared to nuclear transfer embryonic stem cells and embryonic stem cells. In this study, we compared pluripotency associated genes Rian and Gtl2 in the Dlk1-Dio3 region in exactly syngeneic nuclear transfer embryonic stem cells and induced pluripotent stem cells with same genomic insertion. We also assessed 5-methylcytosine and 5-hydroxymethylcytosine levels and performed high-throughput sequencing in these cells. Our results showed that Rian and Gtl2 in the Dlk1-Dio3 region related to pluripotency in induced pluripotent stem cells did not correlate with the genes in nuclear transfer embryonic stem cells, and no significant difference in 5-methylcytosine and 5-hydroxymethylcytosine levels were observed between fully and partially reprogrammed nuclear transfer embryonic stem cells and induced pluripotent stem cells. Through syngeneic comparison, our study identifies for the first time that Grb10 is associated with the pluripotency state in nuclear transfer embryonic stem cells.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, People's Republic of China.,National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Shuai Gao
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Hua Huang
- State Key Laboratory of Environment Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, People's Republic of China
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Huanwei Huang
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Xiaoyu Liu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Zhaohui Kou
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Jia Li
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yu Zhang
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Hailin Wang
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, People's Republic of China.,State Key Laboratory of Environment Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, People's Republic of China
| | - Tao Cai
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Qingyuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, People's Republic of China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
30
|
Diao YF, Lin T, Li X, Oqani RK, Lee JE, Kim SY, Jin DI. Dynamic changes of SETD2, a histone H3K36 methyltransferase, in porcine oocytes, IVF and SCNT embryos. PLoS One 2018; 13:e0191816. [PMID: 29447173 PMCID: PMC5813925 DOI: 10.1371/journal.pone.0191816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/11/2018] [Indexed: 01/12/2023] Open
Abstract
SETD2 (SET domain containing protein 2) acts as a histone H3 lysine 36 (H3K36)-specific methyltransferase and may play important roles in active gene transcription in human cells. However, its expression and role in porcine oocytes and preimplantation embryos are not well understood. Here, we used immunofluorescence and laser scanning confocal microscopy to examine SETD2 expression in porcine fetal fibroblasts, oocytes, and preimplantation embryos derived from in vitro fertilization (IVF), parthenogenetic activation (PA), and somatic cell nuclear transfer (SCNT). In porcine fetal fibroblasts, SETD2 expression was detected in interphase cells, but not in M (mitotic)-phase cells. The SETD2 signal was observed in non-surrounded nucleolus (NSN)-stage oocytes, but not in surrounded nucleolus (SN)-, metaphase I (MI)-, or metaphase II (MII)-stage oocytes. The SETD2 signal was detectable in sperm, and undetectable immediately after fertilization, detectable at the 2-cell stage, and peaked at the 4-cell stage of IVF embryos in which porcine embryonic genome is activated. Similar to the pattern found in IVF embryos, the SETD2 signal was absent from PA embryos at the 1-cell stage, but it was detected at the 2-cell stage and thereafter maintained to the blastocyst stage. Interestingly, unlike the IVF and PA embryos, the SETD2 signal was detected throughout the development of SCNT embryos, including at the 1-cell stage. These data suggest that SETD2 may be functional for embryonic gene transcription in porcine preimplantation embryos. It is further speculated that the aberrant expression of SETD2 at the 1-cell stage of porcine SCNT embryos may be a factor in the low efficiency of cloning in pig.
Collapse
Affiliation(s)
- Yun Fei Diao
- Institute of Special Animal & Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tao Lin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Republic of Korea
| | - Xiaoxia Li
- Institute of Special Animal & Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Reza K. Oqani
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Eun Lee
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Republic of Korea
| | - So Yeon Kim
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Il Jin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
31
|
Sharma P, Yadav A, Selokar N, Kumar D, Dhaka S, Yadav P. Epigenetic status of buffalo fibroblasts treated with sodium butyrate a chromatin remodeling agent. Tissue Cell 2018; 50:51-58. [DOI: 10.1016/j.tice.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023]
|
32
|
Laguna-Barraza R, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Rizos D, Pérez-Cerezales S. Effects of the HDAC inhibitor scriptaid on the in vitro development of bovine embryos and on imprinting gene expression levels. Theriogenology 2018; 110:79-85. [PMID: 29353144 DOI: 10.1016/j.theriogenology.2017.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/11/2017] [Accepted: 12/29/2017] [Indexed: 01/12/2023]
Abstract
This study examines the effects of the histone deacetylation inhibitor scriptaid (SCR) on preimplantation embryo development in vitro and on imprinting gene expression. We hypothesized that SCR would increase histone acetylation levels, enhance embryonic genome activation, and regulate imprinting and X-chromosome inactivation (XCI) in in vitro produced bovine embryos. Zygotes were cultured in vitro in presence or absence of SCR added at different time points. We assessed cleavage and blastocyst rates as well as the quality of blastocysts through: (i) differential cell counts; (ii) survival after vitrification/thawing and (iii) gene expression analysis -including imprinted genes. Blastocyst yields were not different in the control and experimental groups. While no significant differences were observed between groups in total cell or trophectoderm cell numbers, SCR treatment reduced the number of inner cell mass cells and improved the survival of vitrified embryos. Further, genes involved in the mechanism of paternal imprinting (GRB10, GNAS, XIST) were downregulated in presence of SCR compared with controls. These observations suggest SCR prevents deacetylation of paternally imprinting control regions and/or their up-regulation, as these events took place in controls. Whether or not such reductions in XIST and imprinting gene expression are beneficial for post implantation development remains to be clarified.
Collapse
Affiliation(s)
| | - M J Sánchez-Calabuig
- Dpto de Reproducción Animal, INIA, Madrid, Spain; Dpto de Medicina y Cirugía Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | | | - D Rizos
- Dpto de Reproducción Animal, INIA, Madrid, Spain
| | | |
Collapse
|
33
|
No JG, Hur TY, Zhao M, Lee S, Choi MK, Nam YS, Yeom DH, Im GS, Kim DH. Scriptaid improves the reprogramming of donor cells and enhances canine-porcine interspecies embryo development. Reprod Biol 2017; 18:18-26. [PMID: 29162325 DOI: 10.1016/j.repbio.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/26/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023]
Abstract
Histone methylation, histone acetylation, and DNA methylation are the important factors for somatic cell nuclear transfer (SCNT). Histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have been used to improve cloning efficiency. In particular, scriptaid, an HDACi, has been shown to improve SCNT efficiency. However, no studies have been performed on canines. Here, we evaluated the effects of scriptaid on histone modification in canine ear fibroblasts (cEFs) and cloned canine embryos derived from cEFs. The early development of cloned canine-porcine interspecies SCNT (iSCNT) embryos was also examined. cEFs were treated with scriptaid (0, 100, 250, 500, 750, and 1000nM) in a medium for 24h. Scriptaid treatment (all concentrations) did not significantly affect cell apoptosis. Treatment with 500nM scriptaid caused a significant increase in the acetylation of H3K9, H3K14, and H4K5. cEFs treated with 500nM scriptaid showed significantly decreased Gcn5, Hat1, Hdac6, and Bcl2 and increased Oct4 and Sox2 expression levels. After SCNT with canine oocytes, H3K14 acetylation was significantly increased in the one- and two-cell cloned embryos from scriptaid-treated cEFs. In iSCNT, the percentage of embryos in the 16-cell stage was significantly higher in the scriptaid-treated group (21.6±2.44%) than in the control (7.5±2.09%). The expression levels of Oct4, Sox2, and Bcl2 were significantly increased in 16-cell iSCNT embryos, whereas that of Hdac6 was decreased. These results demonstrated that scriptaid affected the reprogramming of canine donor and cloned embryos, as well as early embryo development in canine-porcine iSCNT, by regulating reprogramming and apoptotic genes.
Collapse
Affiliation(s)
- Jin-Gu No
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea; Department of Biological Science, University of Sungkyunkwan, Suwon 16419, Republic of Korea
| | - Tai-Young Hur
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Minghui Zhao
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Seunghoon Lee
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Mi-Kyung Choi
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Yoon-Seok Nam
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Dong-Hyun Yeom
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Gi-Sun Im
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Dong-Hoon Kim
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea.
| |
Collapse
|
34
|
Tanabe Y, Kuwayama H, Wakayama S, Nagatomo H, Ooga M, Kamimura S, Kishigami S, Wakayama T. Production of cloned mice using oocytes derived from ICR-outbred strain. Reproduction 2017; 154:859-866. [PMID: 28971892 DOI: 10.1530/rep-17-0372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 01/08/2023]
Abstract
Recently, it has become possible to generate cloned mice using a somatic cell nucleus derived from not only F1 strains but also inbred strains. However, to date, all cloned mice have been generated using F1 mouse oocytes as the recipient cytoplasm. Here, we attempted to generate cloned mice from oocytes derived from the ICR-outbred mouse strain. Cumulus cell nuclei derived from BDF1 and ICR mouse strains were injected into enucleated oocytes of both strains to create four groups. Subsequently, the quality and developmental potential of the cloned embryos were examined. ICR oocytes were more susceptible to damage associated with nuclear injection than BDF1 oocytes, but their activation rate and several epigenetic markers of reconstructed cloned oocytes/embryos were similar to those of BDF1 oocytes. When cloned embryos were cultured for up to 4 days, those derived from ICR oocytes demonstrated a significantly decreased rate of development to the blastocyst stage, irrespective of the nuclear donor mouse strain. However, when cloned embryos derived from ICR oocytes were transferred to female recipients at the two-cell stage, healthy cloned offspring were obtained at a success rate similar to that using BDF1 oocytes. The ICR mouse strain is very popular for biological research and less expensive to establish than most other strains. Thus, the results of this study should promote the study of nuclear reprogramming not only by reducing the cost of experiments but also by allowing us to study the effect of oocyte cytoplasm by comparing it between strains.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Hiroki Kuwayama
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| | | | - Masatoshi Ooga
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Satoshi Kamimura
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan.,Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan .,Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| |
Collapse
|
35
|
Wang S, Liu B, Liu W, Xiao Y, Zhang H, Yang L. The effects of melatonin on bovine uniparental embryos development in vitro and the hormone secretion of COCs. PeerJ 2017; 5:e3485. [PMID: 28698819 PMCID: PMC5502088 DOI: 10.7717/peerj.3485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/31/2017] [Indexed: 12/23/2022] Open
Abstract
Melatonin is a unique multifunctional molecule that mediates reproductive functions in animals. In this study, we investigated the effects of melatonin on bovine parthenogenetic and androgenetic embryonic development, oocyte maturation, the reactive oxygen species (ROS) levels in parthenogenetic and androgenetic embryos and cumulus—oocyte complexes (COCs) hormone secretion with melatonin supplementation at four concentrations (0, 10, 20, and 30 pmol/mL), respectively. The results showed that melatonin significantly promoted the rates of bovine parthenogenetic and androgenetic embryonic cleavage and morula and blastocysts development (P < 0.05). The rate of cleavage was higher in the androgenetic embryo than that in the parthenogenetic embryo. Compared with the parthenogenetic embryos, the androgenetic embryos had a poor developmental competence from morula to blastocyst stage. Moreover, the levels of ROS were significantly lower in the parthenogenetic and androgenetic embryoes with melatonin-treated group than that of the control group (P < 0.05). Melatonin supplemented significantly increased the maturation rate of oocyte in vitro (P < 0.05). More importantly, melatonin significantly promoted the secretion of progesterone and estradiol by COCs (P < 0.05). To reveal the regulatory mechanism of melatonin on steroids synthesis, we found that steroidogenic genes (CYP11A1, CYP19A1 and StAR) were upregulated, suggesting that melatonin regulated estradiol and progesterone secretion through mediating the expression of steroidogenic genes (CYP11A1, CYP19A1 and StAR). In addition, MT1 and MT2 were identified in bovine early parthenogenetic and androgenetic embryos using western blot. It could be concluded that melatonin had beneficial effects on bovine oocyte in vitro maturation, COC hormone secretion, early development of subsequent parthenogenetic and androgenetic embryos. It is inferred that melatonin could be used to enhance the efficiency of in vitro developed embryos.
Collapse
Affiliation(s)
- Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, Anhui, China.,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Baoru Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Wenju Liu
- College of Animal Science, Anhui Science and Technology University, Bengbu, Anhui, China
| | - Yao Xiao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Hualin Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| |
Collapse
|
36
|
Sun JM, Cui KQ, Li ZP, Lu XR, Xu ZF, Liu QY, Huang B, Shi DS. Suberoylanilide hydroxamic acid, a novel histone deacetylase inhibitor, improves the development and acetylation level of miniature porcine handmade cloning embryos. Reprod Domest Anim 2017; 52:763-774. [DOI: 10.1111/rda.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/07/2017] [Indexed: 01/23/2023]
Affiliation(s)
- JM Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - KQ Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
| | - ZP Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - XR Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
| | - ZF Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - QY Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - B Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - DS Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| |
Collapse
|
37
|
Opiela J, Samiec M, Romanek J. In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology 2017; 97:27-33. [PMID: 28583605 DOI: 10.1016/j.theriogenology.2017.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/31/2017] [Accepted: 04/13/2017] [Indexed: 01/21/2023]
Abstract
Artificial epigenomic modulation of in vitro cultured mesenchymal stem cells (MSCs) by applying a non-selective HDAC inhibitor, termed TSA, can facilitate more epigenetic reprogramming of transcriptional activity of the somatic cell-descended nuclear genome in NT pig embryos. The results of the present investigation showed that TSA-dependent epigenomic modulation of nuclear donor MSCs highly affects both the in vitro developmental capability and the cytological quality of inter-species (porcine→bovine) cloned embryos. The developmental competences to reach the blastocyst stage among hybrid (porcine→bovine) nuclear-transferred embryos that had been reconstructed with bovine ooplasts and epigenetically modulated porcine MSCs were maintained at a relatively high level. These competences were higher than those noted in studies by other authors, but they were still decreased compared to those of intra-species (porcine) cloned embryos that had been reconstituted with porcine ooplasts and either the cell nuclei of epigenetically transformed MSCs or the cell nuclei of epigenetically non-transformed MSCs. In conclusion, MSCs undergoing TSA-dependent epigenetic transformation were used for the first time as a source of nuclear donor cells not only for inter-species somatic cell cloning in pigs but also for inter-species somatic cell cloning in other livestock species. Moreover, as a result of the current research, efficient sequential physicochemical activation of inter-species nuclear-transferred clonal cybrids derived from bovine ooplasm and porcine MSC nuclei was developed.
Collapse
Affiliation(s)
- J Opiela
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland.
| | - M Samiec
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland
| | - J Romanek
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland
| |
Collapse
|
38
|
Jin L, Guo Q, Zhu HY, Xing XX, Zhang GL, Xuan MF, Luo QR, Luo ZB, Wang JX, Yin XJ, Kang JD. Quisinostat treatment improves histone acetylation and developmental competence of porcine somatic cell nuclear transfer embryos. Mol Reprod Dev 2017; 84:340-346. [PMID: 28224725 DOI: 10.1002/mrd.22787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
Abnormal epigenetic modifications are considered a main contributing factor to low cloning efficiency. In the present study, we explored the effects of quisinostat, a novel histone deacetylase inhibitor, on blastocyst formation rate in porcine somatic-cell nuclear transfer (SCNT) embryos, on acetylation of histone H3 lysine 9 (AcH3K9), and on expression of POU5F1 protein and apoptosis-related genes BAX and BCL2. Our results showed that treatment with 10 nM quisinostat for 24 hr significantly improved the development of reconstructed embryos compared to the untreated group (19.0 ± 1.6% vs. 10.2 ± 0.9%; p < 0.05). Quisinostat-treated SCNT embryos also possessed significantly increased AcH3K9 at the pseudo-pronuclear stage (p < 0.05), as well as improved immunostaining intensity for POU5F1 at the blastocyst stage (p < 0.05). While no statistical difference in BAX expression was observed, BCL2 transcript abundance was significantly different in the quisinostat-treated compared to the untreated control group. Of the 457 quisinostat-treated cloned embryos transferred into three surrogates, six fetuses developed from the one sow that became pregnant. These findings suggested that quisinostat can regulate gene expression and epigenetic modification, facilitating nuclear reprogramming, and subsequently improving the developmental competence of pig SCNT embryos and blastocyst quality.
Collapse
Affiliation(s)
| | - Qing Guo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Hai-Ying Zhu
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xiao-Xu Xing
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Guang-Lei Zhang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Mei-Fu Xuan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Qi-Rong Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Jun-Xia Wang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
39
|
Zhang L, Huang Y, Wu Y, Si J, Huang Y, Jiang Q, Lan G, Guo Y, Jiang H. Scriptaid Upregulates Expression of Development-Related Genes, Inhibits Apoptosis, and Improves the Development of Somatic Cell Nuclear Transfer Mini-Pig Embryos. Cell Reprogram 2017; 19:19-26. [DOI: 10.1089/cell.2016.0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Li Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuemeng Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanjun Wu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jinglei Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yafen Guo
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
40
|
Qiu X, You H, Xiao X, Li N, Li Y. Effects of Trichostatin A and PXD101 on the In Vitro Development of Mouse Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2017; 19:1-9. [DOI: 10.1089/cell.2016.0030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Xiaoyan Qiu
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Haihong You
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Xiong Xiao
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Nan Li
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Yuemin Li
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| |
Collapse
|
41
|
Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:60-72. [PMID: 27614213 DOI: 10.1016/j.pnpbp.2016.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that histone hypoacetylation which is partly mediated by histone deacetylase (HDAC), plays a causative role in the etiology of various clinical disorders such as cancer and central nervous diseases. HDAC inhibitors (HDACis) are natural or synthetic small molecules that can inhibit the activities of HDACs and restore or increase the level of histone acetylation, thus may represent the potential approach to treating a number of clinical disorders. This manuscript reviewed the progress of the most recent experimental application of HDACis as novel potential drugs or agents in a large number of clinical disorders including various brain disorders including neurodegenerative and neurodevelopmental cognitive disorders and psychiatric diseases like depression, anxiety, fear and schizophrenia, and cancer, endometriosis and cell reprogramming in somatic cell nuclear transfer in human and animal models of disease, and concluded that HDACis as potential novel therapeutic agents could be used alone or in adjunct to other pharmacological agents in various clinical diseases.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Xiong Xiao
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Nan Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Yuemin Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China.
| |
Collapse
|
42
|
Rissi VB, Glanzner WG, Mujica LKS, Antoniazzi AQ, Gonçalves PBD, Bordignon V. Effect of Cell Cycle Interactions and Inhibition of Histone Deacetylases on Development of Porcine Embryos Produced by Nuclear Transfer. Cell Reprogram 2016; 18:8-16. [PMID: 27281695 DOI: 10.1089/cell.2015.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The aim of this study was to evaluate if the positive effects of inhibiting histone deacetylase enzymes on cell reprogramming and development of somatic cell nuclear transfer (SCNT) embryos is affected by the cell cycle stage of nuclear donor cells and host oocytes at the time of embryo reconstruction. SCNT embryos were produced with metaphase II (MII) or telophase II (TII) cytoplasts and nuclear donor cells that were either at the G1-0 or G2/M stages. Embryos reconstructed with the different cell cycle combinations were treated or not with the histone deacetylase inhibitor (HDACi) Scriptaid for 15 h and then cultured in vitro for 7 days. Embryos reconstructed with MII-G1-0 and TII-G2/M developed to the blastocyst stage with a higher frequency compared to the other groups, confirming the importance of cell cycle interactions on cell reprogramming and SCNT embryo development. Treatment with HDACi improved development of SCNT embryos produced with MII but not TII cytoplasts, independently of the cell cycle stage of nuclear donor cells. These findings provide evidence that the positive effect of HDACi treatment on development of SCNT embryos depends upon cell cycle interactions between the host cytoplast and the nuclear donor cells.
Collapse
Affiliation(s)
- Vitor B Rissi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Werner G Glanzner
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Lady K S Mujica
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Alfredo Q Antoniazzi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Paulo B D Gonçalves
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Vilceu Bordignon
- 2 Department of Animal Science, McGill University , Ste. Anne de Bellevue, Quebec, Canada , H9X 3V9
| |
Collapse
|
43
|
Kong P, Yin M, Chen D, Li S, Li Y, Xing F, Jiang M, Fang Z, Lyu Q, Chen X. Effects of the histone deacetylase inhibitor 'Scriptaid' on the developmental competence of mouse embryos generated through round spermatid injection. Hum Reprod 2016; 32:76-87. [PMID: 27864358 DOI: 10.1093/humrep/dew290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/18/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Can the histone deacetylase inhibitor Scriptaid improve the efficiency of the development of round spermatid injection (ROSI)-fertilized embryos in a mouse model? SUMMARY ANSWER Treatment of ROSI mouse zygotes with Scriptaid increased the expression levels of several development-related genes at the blastocyst stage, resulting in more efficient in vitro development of the blastocyst and an increased birth rate of ROSI-derived embryos. WHAT IS KNOWN ALREADY The full-term development of embryos derived through ROSI is significantly lower than that following ICSI in humans and other species. STUDY DESIGN, SIZE, DURATION Oocytes, spermatozoa and round spermatids were collected from BDF1 (C57BL/6 × DBA/2) mice. For in vitro development experiments, mouse ROSI-derived zygotes were treated with Scriptaid at different concentrations (0, 125, 250, 500 and 1000 nM) and for different exposure times (0, 6, 10, 16 or 24 h). Next, blastocysts of the optimal Scriptaid-treated group and the non-treated ROSI group were separately transferred into surrogate ICR mice to compare in vivo development with the ICSI group (control). Each experiment was repeated at least three times. PARTICIPANTS/MATERIALS, SETTING, METHODS Metaphase II (MII) oocytes, spermatozoa and round spermatids were obtained from sexually mature BDF1 female or male mice. The developmental potential of embryos among the three groups (the ICSI, ROSI and optimal Scriptaid-treated ROSI groups) was assessed based on the rates of obtaining zygotes, two-cell stage embryos, four-cell stage embryos, blastocysts and full-term offspring. In addition, the expression levels of development-related genes (Oct4, Nanog, Klf4 and Sox2) were analysed using real-time PCR, and the methylation states of imprinted genes (H19 and Snrpn) in these three groups were detected using methylation-specific PCR (MS-PCR) sequencing following bisulfite treatment. MAIN RESULTS AND THE ROLE OF CHANCE The in vitro experiments revealed that treating ROSI-derived zygotes with 250 nM Scriptaid for 10 h significantly improved the blastocyst formation rate (59%) compared with the non-treated group (38%) and further increased the birth rates of ROSI-derived embryos from 21% to 40% in vivo. Moreover, in ROSI-derived embryos, the expression of the Oct4, Nanog and Sox2 genes at the blastocyst stage was decreased, but the optimal Scriptaid treatment restored expression to a level similar to their ICSI counterparts. In addition, Scriptaid treatment moderately repaired the abnormal DNA methylation pattern in the imprinting control regions (ICRs) of H19 and Snrpn. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION: Because of the ethics regarding the use of human gametes for ROSI studies, the mouse model was used as an approach to explore the effects of Scriptaid on the developmental potential of ROSI-derived embryos. However, to determine whether these findings can be applied to humans, further investigation will be required. WIDER IMPLICATIONS OF THE FINDINGS Scriptaid treatment provides a new means of improving the efficiency and safety of clinical human ROSI. STUDY FUNDING/COMPETING INTERESTS The study was financially supported through grants from the National Key Research Program of China (No. 2016YFC1304800); the National Natural Science Foundation of China (Nos: 81170756, 81571486); the Natural Science Foundation of Shanghai (Nos: 15140901700, 15ZR1424900) and the Programme for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. There are no conflicts of interest to declare.
Collapse
Affiliation(s)
- Pengcheng Kong
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China.,Center of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 2699 West Gaoke, 200040 Shanghai, China
| | - Mingru Yin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju road, 200011 Shanghai, China
| | - Dongbao Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Shangang Li
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Fengying Xing
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Manxi Jiang
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Zhenfu Fang
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju road, 200011 Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing, 200025 Shanghai, China
| |
Collapse
|
44
|
Wakayama S, Tanabe Y, Nagatomo H, Mizutani E, Kishigami S, Wakayama T. Effect of Long-Term Exposure of Donor Nuclei to the Oocyte Cytoplasm on Production of Cloned Mice Using Serial Nuclear Transfer. Cell Reprogram 2016; 18:382-389. [PMID: 27622855 DOI: 10.1089/cell.2016.0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although animal cloning is becoming increasingly practicable, cloned embryos possess many abnormalities and so there has been a low success rate for producing live animals. This is most likely due to incomplete reprogramming of somatic cell nuclei before they start to develop as the donor nuclei are usually only exposed to the oocyte cytoplasm for 1-2 hours before reconstructed oocytes are activated to avoid oocyte aging. Therefore, in this study, we attempted to extend the exposure period of somatic cell nuclei to the oocyte cytoplasm to determine whether this could enhance reprogramming of donor nuclei. Donor nuclei were transferred into oocytes, following which pseudo-MII spindles (pMIIs) derived from these were extracted and injected into newly collected enucleated oocytes 24 hours after the first nuclear transfer (NT). These serial NT oocytes were then activated and their developmental potential was examined to full term. There was no obvious difference in the pMIIs of reconstructed oocytes at 6 and 24 hours after donor nucleus injection; however, in both of these, the chromosomes were more widely spread inside the spindle than in fresh intact oocytes. Furthermore, a few chromosomes remained in 25% and 47% of these enucleated oocytes at 6 and 24 hours after donor nucleus injection, respectively. When these pMIIs were injected into fresh enucleated oocytes, the developmental rate to blastocyst was significantly lower, but we could still obtain several healthy cloned offspring. Thus, serial NT at intervals of 24 hours using fresh oocytes is possible, but the success rate could not be improved due to loss of chromosomes during the second NT.
Collapse
Affiliation(s)
- Sayaka Wakayama
- 1 Advanced Biotechnology Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Yoshiaki Tanabe
- 2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Hiroaki Nagatomo
- 3 COC Promotion Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Eiji Mizutani
- 1 Advanced Biotechnology Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan .,2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Satoshi Kishigami
- 2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| | - Teruhiko Wakayama
- 1 Advanced Biotechnology Center, University of Yamanashi , Kofu-shi, Yamanashi, Japan .,2 Faculty of Life and Environmental Sciences, University of Yamanashi , Kofu-shi, Yamanashi, Japan
| |
Collapse
|
45
|
Whitworth KM, Mao J, Lee K, Spollen WG, Samuel MS, Walters EM, Spate LD, Prather RS. Transcriptome Analysis of Pig In Vivo, In Vitro-Fertilized, and Nuclear Transfer Blastocyst-Stage Embryos Treated with Histone Deacetylase Inhibitors Postfusion and Activation Reveals Changes in the Lysosomal Pathway. Cell Reprogram 2016; 17:243-58. [PMID: 26731590 DOI: 10.1089/cell.2015.0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetically modified pigs are commonly created via somatic cell nuclear transfer (SCNT). Treatment of reconstructed embryos with histone deacetylase inhibitors (HDACi) immediately after activation improves cloning efficiency. The objective of this experiment was to evaluate the transcriptome of SCNT embryos treated with suberoylanilide hydroxamic acid (SAHA), 4-iodo-SAHA (ISAHA), or Scriptaid as compared to untreated SCNT, in vitro-fertilized (IVF), and in vivo (IVV) blastocyst-stage embryos. SAHA (10 μM) had the highest level of blastocyst development at 43.9%, and all treatments except 10 μM ISAHA had the same percentage of blastocyst development as Scriptaid (p<0.05). Two treatments, 1.0 μM ISAHA and 1.0 μM SAHA, had higher mean cell number than No HDACi treatment (p<0.021). Embryo transfers performed with 10 μM SAHA- and 1 μM ISAHA-treated embryos resulted in the birth of healthy piglets. GenBank accession numbers from up- and downregulated transcripts were loaded into the Database for Annotation, Visualization and Integrated Discovery to identify enriched biological themes. HDACi treatment yielded the highest enrichment for transcripts within the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway, lysosome. The mean intensity of LysoTracker was lower in IVV embryos compared to IVF and SCNT embryos (p<0.0001). SAHA and ISAHA can successfully be used to create healthy piglets from SCNT.
Collapse
Affiliation(s)
- Kristin M Whitworth
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Jiude Mao
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Kiho Lee
- 2 Department of Animal and Poultry Science, Virginia Tech , Blacksburg, VA, 24061
| | - William G Spollen
- 3 Informatics Research Core Facility, University of Missouri , Columbia, MO, 65211
| | - Melissa S Samuel
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Eric M Walters
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Lee D Spate
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Randall S Prather
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| |
Collapse
|
46
|
Glanzner WG, Komninou ER, Mahendran A, Rissi VB, Gutierrez K, Bohrer RC, Collares T, Gonçalves PBD, Bordignon V. Exposure of Somatic Cells to Cytoplasm Extracts of Porcine Oocytes Induces Stem Cell-Like Colony Formation and Alters Expression of Pluripotency and Chromatin-Modifying Genes. Cell Reprogram 2016; 18:137-46. [PMID: 27253625 DOI: 10.1089/cell.2016.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell permeabilization followed by exposure to cytoplasmic extracts of oocytes has been proposed as an alternative to transduction of transcription factors for inducing pluripotency in cultured somatic cells. The main goal in this study was to investigate the effect of treating porcine fibroblast cells with cytoplasmic extracts of GV-stage oocyte (OEx) followed by inhibition of histone deacetylases with Scriptaid (Scrip) on the formation of stem cell-like colonies and expression of genes encoding pluripotency and chromatin-modifying enzymes. Stem cell-like colonies start developing ∼2 weeks after treatment in cells exposed to OEx or OEx + Scrip. The number of cell colonies at the first day of appearance and 48 hours later was also similar between OEx and OEx + Scrip treatments. Transcripts for Nanog, Rex1, and c-Myc genes were detected in most cell samples that were analyzed on different days after OEx treatment. However, Sox2 transcripts were not detected and only a small proportion of samples had detectable levels of Oct4 mRNA after OEx treatment. A similar pattern of transcripts for pluripotency genes was observed in cells treated with OEx alone or OEx + Scrip. Transcript levels for Dnmt1 and Ezh2 were reduced at Day 3 after treatment in cells exposed to OEx. These findings revealed that: (a) exposure to OEx can induce a partial reprogramming of fibroblast cells toward pluripotency, characterized by colony formation and activation of pluripotency genes; and (b) inhibition of histone deacetylases does not improve the reprogramming effect of OEx treatment.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Eliza R Komninou
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Ashwini Mahendran
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Vitor B Rissi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Karina Gutierrez
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Rodrigo C Bohrer
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Tiago Collares
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Paulo B D Gonçalves
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Vilceu Bordignon
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| |
Collapse
|
47
|
Hosseini SM, Dufort I, Nieminen J, Moulavi F, Ghanaei HR, Hajian M, Jafarpour F, Forouzanfar M, Gourbai H, Shahverdi AH, Nasr-Esfahani MH, Sirard MA. Epigenetic modification with trichostatin A does not correct specific errors of somatic cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors. BMC Genomics 2016; 17:16. [PMID: 26725231 PMCID: PMC4698792 DOI: 10.1186/s12864-015-2264-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 12/01/2015] [Indexed: 12/27/2022] Open
Abstract
Background The limited duration and compromised efficiency of oocyte-mediated reprogramming, which occurs during the early hours following somatic cell nuclear transfer (SCNT), may significantly interfere with epigenetic reprogramming, contributing to the high incidence of ill/fatal transcriptional phenotypes and physiological anomalies occurring later during pre- and post-implantation events. A potent histone deacetylase inhibitor, trichostatin A (TSA), was used to understand the effects of assisted epigenetic modifications on transcriptional profiles of SCNT blastocysts and to identify specific or categories of genes affected. Results TSA improved the yield and quality of in vitro embryo development compared to control (CTR-NT). Significance analysis of microarray results revealed that of 37,238 targeted gene transcripts represented on the microarray slide, a relatively small number of genes were differentially expressed in CTR-NT (1592 = 4.3 %) and TSA-NT (1907 = 5.1 %) compared to IVF embryos. For both SCNT groups, the majority of downregulated and more than half of upregulated genes were common and as much as 15 % of all deregulated transcripts were located on chromosome X. Correspondence analysis clustered CTR-NT and IVF transcriptomes close together regardless of the embryo production method, whereas TSA changed SCNT transcriptome to a very clearly separated cluster. Ontological classification of deregulated genes using IPA uncovered a variety of functional categories similarly affected in both SCNT groups with a preponderance of genes required for biological processes. Examination of genes involved in different canonical pathways revealed that the WNT and FGF pathways were similarly affected in both SCNT groups. Although TSA markedly changed epigenetic reprogramming of donor cells (DNA-methylation, H3K9 acetylation), reconstituted oocytes (5mC, 5hmC), and blastocysts (DNA-methylation, H3K9 acetylation), these changes did not recapitulate parallel marked changes in chromatin remodeling, and nascent mRNA and OCT4-EGFP expression of TSA-NT vs. CRT-NT embryos. Conclusions The results obtained suggest that despite the extensive reprogramming of donor cells that occurred by the blastocyst stage, SCNT-specific errors are of a non-random nature in bovine and are not responsive to epigenetic modifications by TSA. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2264-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sayyed Morteza Hosseini
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Isabelle Dufort
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Julie Nieminen
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Fariba Moulavi
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Hamid Reza Ghanaei
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mahdi Hajian
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Farnoosh Jafarpour
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohsen Forouzanfar
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Hamid Gourbai
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Abdol Hossein Shahverdi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
48
|
Effect of ATM and HDAC Inhibition on Etoposide-Induced DNA Damage in Porcine Early Preimplantation Embryos. PLoS One 2015; 10:e0142561. [PMID: 26556501 PMCID: PMC4640854 DOI: 10.1371/journal.pone.0142561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/25/2015] [Indexed: 11/24/2022] Open
Abstract
Oocyte maturation and embryonic development are sensitive to DNA damage. Compared with somatic cells or oocytes, little is known about the response to DNA damage in early preimplantation embryos. In this study, we examined DNA damage checkpoints and DNA repair mechanisms in parthenogenetic preimplantation porcine embryos. We found that most of the etoposide-treated embryos showed delay in cleavage and ceased development before the blastocyst stage. In DNA-damaged embryos, the earliest positive TUNEL signals were detected on Day 5 of in vitro culture. Caffeine, which is an ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3-related protein) kinase inhibitor, and KU55933, which is an ATM kinase inhibitor, were equally effective in rescuing the etoposide-induced cell-cycle blocks. This indicates that ATM plays a central role in the regulation of the checkpoint mechanisms. Treating the embryos with histone deacetylase inhibitors (HDACi) increased embryonic development and reduced etoposide-induced double-strand breaks (DSBs). The mRNA expression of genes involved in non-homologous end-joining (NHEJ) or homologous recombination (HR) pathways for DSB repair was reduced upon HDACi treatment in 5-day-old embryos. Furthermore, HDACi treatment increased the expression levels of pluripotency-related genes (OCT4, SOX2 and NANOG) and decreased the expression levels of apoptosis-related genes (CASP3 and BAX). These results indicate that early embryonic cleavage and development are disturbed by etoposide-induced DNA damage. ATMi (caffeine or KU55933) treatment bypasses the checkpoint while HDACi treatment improves the efficiency of DSB repair to increase the cleavage and blastocyst rate in porcine early preimplantation embryos.
Collapse
|
49
|
Agudo J, Ruzo A, Park ES, Sweeney R, Kana V, Wu M, Zhao Y, Egli D, Merad M, Brown BD. GFP-specific CD8 T cells enable targeted cell depletion and visualization of T-cell interactions. Nat Biotechnol 2015; 33:1287-1292. [PMID: 26524661 PMCID: PMC4675673 DOI: 10.1038/nbt.3386] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/23/2015] [Indexed: 11/09/2022]
Abstract
There are numerous cell types with scarcely understood functions, and whose interactions with the immune system are not well characterized. To facilitate their study, we generated a mouse bearing enhanced green fluorescent protein (EGFP)-specific CD8+ T-cells. Transfer of the T-cells into EGFP reporter animals killed GFP-expressing cells, allowing selective depletion of desired cell types, or interrogation of T-cell interactions with specific populations. Using this system, we eliminate HCN4+ GFP-expressing cells in the heart and elicit their importance in cardiac function. We also show that naïve T-cells are recruited into the mouse brain by antigen-expressing microglia, providing evidence of an immune surveillance pathway in the central nervous system. The just EGFP death-inducing (JEDI) T-cells enable visualization of a T-cell antigen. They also make it possible to utilize hundreds of GFP-expressing mice, tumors, and pathogens, to study T-cell interactions with virtually any cell type, to model disease states, or to determine the functions of poorly characterized cell populations.
Collapse
Affiliation(s)
- Judith Agudo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Albert Ruzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eun Sook Park
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert Sweeney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Veronika Kana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yong Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dieter Egli
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian D Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
50
|
Yamada M, Byrne J, Egli D. From cloned frogs to patient matched stem cells: induced pluripotency or somatic cell nuclear transfer? Curr Opin Genet Dev 2015; 34:29-34. [PMID: 26282611 DOI: 10.1016/j.gde.2015.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 01/24/2023]
Abstract
Nuclear transfer has seen a remarkable comeback in the past few years. Three groups have independently reported the derivation of stem cell lines by somatic cell nuclear transfer, from either adult, neonatal or fetal cells. Though the ability of human oocytes to reprogram somatic cells to stem cells had long been anticipated, success did not arrive on a straightforward path. Little was known about human oocyte biology, and nuclear transfer protocols developed in animals required key changes to become effective with human eggs. By overcoming these challenges, human nuclear transfer research has contributed to a greater understanding of oocyte biology, provided a point of reference for the comparison of induced pluripotent stem cells, and delivered a method for the generation of personalized stem cells with therapeutic potential.
Collapse
Affiliation(s)
- Mitsutoshi Yamada
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - James Byrne
- The Eli and Edythe Broad Center of Regenerative Medicine & Regenerative Medicine, CA 90095, USA
| | - Dieter Egli
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|