1
|
Bagheri A, Nazari H, Shams-Esfandabadi N, Ahmadi E, Afzali A, Davoodian N, Nazifi S, Shirian S. Vitamin C Synergistically Enhances Protective Effects of Vitamin E Against Preantral Follicle Degeneration of Ovine Vitrified/Warmed Ovarian Tissue. Biopreserv Biobank 2025; 23:89-98. [PMID: 38905140 DOI: 10.1089/bio.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
This study aimed to evaluate whether the addition of vitamins E and C as two conventional antioxidants improves the cryotolerance of preantral follicles enclosed in ovine ovarian tissue slices. For this purpose, ovarian slices were obtained from abattoired juvenile lambs and randomly distributed to the following groups: fresh, toxicity, vitrified (control), and three treatment groups in two experiments. Vitamin E, vitamin C, or vitamin E + C was added to the vitrification media alone in the first experiment and added to all vitrification, warming, and culture media in the second experiment. Finally, the treated tissues were cultured in vitro for 12 hours. The histological analysis showed that single or combined use of vitamins E and C increases intact preantral follicles in comparison to the control in two experiments (p < 0.05), and simultaneous use of vitamins E and C had a synergistic effect on increasing the percentage of normal preantral follicles in experiment 2 (p < 0.05). Due to the better results in Experiment 2, stromal cell density, antioxidant activity, and molecular evaluation were followed only in this experiment. The vitamin E + C group had higher stromal cell density compared with control group (p < 0.05). Vitamin E strengthened antioxidant capacity compared with the control and vitamin C groups (p < 0.05). This effect was exacerbated when used in combination with vitamin C (p < 0.05). The expression of all evaluated genes (BMP4, BMP15, GDF9, and KITLG) was significantly increased in ovarian tissue treated with vitamin E + C compared with the control group (p < 0.05). This increase was also observed in BMP4, GDF9, and KITLG genes compared with the vitamin C group (p < 0.05). In conclusion, this study revealed the positive effects of vitamins E and C on preantral follicle viability and to some extent a synergistic action of vitamin C on the protective effects of vitamin E against preantral follicle degeneration and increasing antioxidant capacity and development of preantral follicles after ovine ovarian tissue vitrification.
Collapse
Affiliation(s)
- Azita Bagheri
- Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Naser Shams-Esfandabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Ebrahim Ahmadi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Azita Afzali
- Faculty of Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Davoodian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Sina Nazifi
- Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Sadegh Shirian
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
2
|
Dey P, Monferini N, Donadini L, Lodde V, Franciosi F, Luciano AM. A spotlight on factors influencing the in vitro folliculogenesis of isolated preantral follicles. J Assist Reprod Genet 2024; 41:3287-3300. [PMID: 39373807 PMCID: PMC11707212 DOI: 10.1007/s10815-024-03277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
Female fertility preservation via complete in vitro folliculogenesis is still chimerical. Due to many factors affecting the efficiency of isolation and culture of preantral follicles, the improvement of techniques geared to fertility preservation in higher mammals seems to be at an impasse. We need an objective view of the current stand to understand how to progress further. As such, a survey was conducted to analyze the relative distribution of studies performed in ten mammalian species on preantral follicle culture available on PubMed. Using the bovine as a reference model, we explore some factors influencing data variation that contribute to the difficulty in reproducing studies. While years of research have enabled the recapitulation of folliculogenesis from as modest as the early antral follicle stage ex vivo, in vitro preantral folliculogenesis remains elusive. Herein, we revisit the classical evidence that laid the foundations for understanding preantral folliculogenesis and review the length, breadth, and depth of information that the era of big data has currently levied. Moving forward, we recognize the urgency of synthesizing the multi-disciplinary approaches to mimic folliculogenesis in vitro to achieve a translational landscape of infertility at individual and large-scale conservation levels.
Collapse
Affiliation(s)
- Pritha Dey
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Noemi Monferini
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ludovica Donadini
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy.
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| |
Collapse
|
3
|
Wang Y, Chao T, Li Q, He P, Zhang L, Wang J. Metabolomic and Transcriptomic Analyses Reveal the Potential Mechanisms of Dynamic Ovarian Development in Goats during Sexual Maturation. Int J Mol Sci 2024; 25:9898. [PMID: 39337386 PMCID: PMC11432265 DOI: 10.3390/ijms25189898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The ovary is a crucial reproductive organ in mammals, and its development directly influences an individual's sexual maturity and reproductive capacity. To comprehensively describe ovarian sexual maturation in goats, we integrated phenotypic, hormonal, metabolomic, and transcriptomic data from four specific time points: after birth (D1), at 2 months old (M2), at 4 months old (M4), and at 6 month old (M6). The study showed that during the early stage (D1-M2), ovarian growth was the most rapid, with weight and morphology increasing by 284% and 65%, respectively, and hormone levels rose significantly, with estradiol increasing by 57%. Metabolomic analysis identified 1231 metabolites, primarily lipids, lipid molecules, and organic acids, which can support hormone balance and follicle development by providing energy and participating in signaling transduction. Transcriptomic analysis identified 543 stage-specific differentially expressed genes, mainly enriched in steroid biosynthesis, amino acid metabolism, and the PI3K/AKT pathway, which are key factors influencing ovarian cell proliferation, apoptosis, hormone secretion, and metabolism. The integrated analysis revealed the key processes in the ovarian steroid hormone biosynthesis pathway and gene/metabolite networks associated with ovarian phenotypes and hormone levels, ultimately highlighting scavenger receptor class B type 1 (SCARB1), Cytochrome P450 Family 1 Subfamily A Member 1 (CYP11A1), 3beta-hydroxysteroid dehydrogenase (3BHSD), progesterone, estradiol, and L-phenylalanine as key regulators of ovarian morphological and functional changes at different developmental stages. This study is the first to reveal the metabolic changes and molecular regulatory mechanisms during ovarian sexual maturation in goats, providing valuable insights for understanding reproductive system development and optimizing reproductive performance and breeding efficiency.
Collapse
Affiliation(s)
- Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Y.W.); (T.C.); (Q.L.); (P.H.); (L.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| |
Collapse
|
4
|
Gómez-Guzmán JA, Parra-Bracamonte GM, Velazquez MA. Impact of Heat Stress on Oocyte Developmental Competence and Pre-Implantation Embryo Viability in Cattle. Animals (Basel) 2024; 14:2280. [PMID: 39123806 PMCID: PMC11311040 DOI: 10.3390/ani14152280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Rectal and vaginal temperatures are utilised in both in vivo and in vitro models to study the effects of heat stress on oocyte competence and embryo viability in cattle. However, uterine temperature increases by only 0.5 °C in heat-stressed cows, significantly lower than simulated increases in in vitro models. Temperature variations within oviducts and ovarian follicles during heat stress are poorly understood or unavailable, and evidence is lacking that oocytes and pre-implantation embryos experience mild (40 °C) or severe (41 °C) heat stress inside the ovarian follicle and the oviduct and uterus, respectively. Gathering detailed temperature data from the reproductive tract and follicles is crucial to accurately assess oocyte competence and embryo viability under realistic heat stress conditions. Potential harm from heat stress on oocytes and embryos may result from reduced nutrient availability (e.g., diminished blood flow to the reproductive tract) or other unidentified mechanisms affecting tissue function rather than direct thermal effects. Refining in vivo stress models in cattle is essential to accurately identify animals truly experiencing heat stress, rather than assuming heat stress exposure as done in most studies. This will improve model reliability and aid in the selection of heat-tolerant animals.
Collapse
Affiliation(s)
- Javier A. Gómez-Guzmán
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Gaspar M. Parra-Bracamonte
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Miguel A. Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
5
|
Deligiannis SP, Kask K, Modhukur V, Boskovic N, Ivask M, Jaakma Ü, Damdimopoulou P, Tuuri T, Velthut-Meikas A, Salumets A. Investigating the impact of vitrification on bovine ovarian tissue morphology, follicle survival, and transcriptomic signature. J Assist Reprod Genet 2024; 41:1035-1055. [PMID: 38358432 PMCID: PMC11052753 DOI: 10.1007/s10815-024-03038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
PURPOSE Ovarian tissue cryopreservation is vital for fertility preservation, yet its effect on ovarian tissue follicle survival and transcriptomic signature requires further investigation. This study delves into the effects of vitrification on tissue morphology, function, and transcriptomic changes, helping to find possibilities for vitrification protocol improvements. METHODS Ovarian cortex from 19 bovine animals were used to conduct pre- and post-vitrification culture followed by histological assessment, immunohistochemistry, and TUNEL assay. Follicles' functionality was assessed for viability and growth within the tissue and in isolated cultures. RNA-sequencing of ovarian tissue was used to explore the transcriptomic alterations caused by vitrification. RESULTS Follicle density, cell proliferation, and DNA damage in ovarian stroma were unaffected by vitrification. However, vitrified cultured tissue exhibited reduced follicle density of primordial/primary and antral follicles, while freshly cultured tissue manifested reduction of antral follicles. Increased stromal cell proliferation and DNA damage occurred in both groups post-culture. Isolated follicles from vitrified tissue exhibited similar viability to fresh follicles until day 4, after which the survival dropped. RNA-sequencing revealed minor effects of vitrification on transcriptomic signatures, while culture induced significant gene expression changes in both groups. The altered expression of WNT and hormonal regulation pathway genes post-vitrification suggests the molecular targets for vitrification protocol refinement. CONCLUSION Vitrification minimally affects tissue morphology, follicle density, and transcriptomic signature post-thawing. However, culture revealed notable changes in vitrified tissue samples, including reduced follicle density, decreased isolated follicle survival, and alteration in WNT signalling and ovarian hormonal regulation pathways, highlighted them as possible limitations of the current vitrification protocol.
Collapse
Affiliation(s)
- Spyridon P Deligiannis
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, 14186, Stockholm, Sweden.
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, 14186, Stockholm, Sweden.
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia.
- Department of Obstetrics and Gynecology, University of Helsinki, 00290, Helsinki, Finland.
| | - Keiu Kask
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
- Competence Centre of Health Technologies, 50411, Tartu, Estonia
| | - Vijayachitra Modhukur
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
- Competence Centre of Health Technologies, 50411, Tartu, Estonia
| | - Nina Boskovic
- Department of Obstetrics and Gynecology, University of Helsinki, 00290, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Marilin Ivask
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014, Tartu, Estonia
| | - Ülle Jaakma
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014, Tartu, Estonia
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, 14186, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, 14186, Stockholm, Sweden
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki, 00290, Helsinki, Finland
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Andres Salumets
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, 14186, Stockholm, Sweden.
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, 14186, Stockholm, Sweden.
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia.
- Competence Centre of Health Technologies, 50411, Tartu, Estonia.
| |
Collapse
|
6
|
Liu J, Ning C, Zhang J, Xu S, Wu J, Tao C, Ma F, Chen Q, Pan Z. Comparative miRNA expression profile analysis of porcine ovarian follicles: new insights into the initiation mechanism of follicular atresia. Front Genet 2023; 14:1338411. [PMID: 38174044 PMCID: PMC10761487 DOI: 10.3389/fgene.2023.1338411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Follicular atresia occurs in every stage of ovarian development, which is relevant to female fertility. In the past decade, increasing studies have confirmed that miRNAs, a class of short non-coding RNAs, play an important role in follicular atresia by post-transcription regulation of their target genes. However, the function of miRNAs on follicular atresia initiation is unknown. In the present study, high-throughput small RNA sequencing was performed to analyze differential miRNA expression profiles between healthy (HF) follicles and early atretic (EAF) follicles. A total of 237 conserved miRNA were detected, and the miR-143 is the highest expressed in follicles. Meanwhile, we also found wide sequence variations (isomiRs) in porcine ovarian miRNA, including in 5'un-translation region, core seed sequences and 3'untranslation region. Furthermore, we identified 22 differentially expressed miRNAs in EAF groups compared to HF group, of which 3 miRNAs were upregulated, as well as 19 miRNAs were downregulated, and then the RT-PCR was performed to validate these profiles. The target genes of these differentially expressed miRNAs were predicted by using miRwalk, miRDB, and Targetscan database, respectively. Moreover, the gene ontology and KEGG pathway enrichment established that the regulating functions and signaling pathways of these miRNAs contribute to follicular atresia initiation and cell fate. In conclusion, this study provides new insights into the changes of miRNAs in early atretic follicles to demonstrate their molecular regulation in ovarian follicular atretic initiation.
Collapse
Affiliation(s)
- Jingge Liu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Caibo Ning
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Jinbi Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Shiyong Xu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Jiege Wu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fanhua Ma
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Qing Chen
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| |
Collapse
|
7
|
Wei F, Fan X, del Valle JS, Asseler JD, van der Meeren LE, Cheng H, Roelen BAJ, Louwe LA, Pilgram GSK, van der Westerlaken LAJ, van Mello NM, Chuva de Sousa Lopes SM. Classification of Atretic Small Antral Follicles in the Human Ovary. Int J Mol Sci 2023; 24:16846. [PMID: 38069168 PMCID: PMC10706134 DOI: 10.3390/ijms242316846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The reproductive lifespan in humans is regulated by a delicate cyclical balance between follicular recruitment and atresia in the ovary. The majority of the small antral follicles present in the ovary are progressively lost through atresia without reaching dominance, but this process remains largely underexplored. In our study, we investigated the characteristics of atretic small antral follicles and proposed a classification system based on molecular changes observed in granulosa cells, theca cells, and extracellular matrix deposition. Our findings revealed that atresia spreads in the follicle with wave-like dynamics, initiating away from the cumulus granulosa cells. We also observed an enrichment of CD68+ macrophages in the antrum during the progression of follicular atresia. This work not only provides criteria for classifying three stages of follicular atresia in small antral follicles in the human ovary but also serves as a foundation for understanding follicular degeneration and ultimately preventing or treating premature ovarian failure. Understanding follicular remodeling in the ovary could provide a means to increase the number of usable follicles and delay the depletion of the follicular reserve, increasing the reproductive lifespan.
Collapse
Affiliation(s)
- Fu Wei
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (F.W.); (X.F.); (J.S.d.V.)
| | - Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (F.W.); (X.F.); (J.S.d.V.)
| | - Julieta S. del Valle
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (F.W.); (X.F.); (J.S.d.V.)
| | - Joyce D. Asseler
- Department of Obstetrics and Gynaecology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (J.D.A.); (N.M.v.M.)
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, 1081 HV Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, 1081 HV Amsterdam, The Netherlands
| | - Lotte E. van der Meeren
- Department of Pathology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands;
- Department of Pathology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hui Cheng
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (F.W.); (X.F.); (J.S.d.V.)
| | - Bernard A. J. Roelen
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands;
| | - Leoni A. Louwe
- Department of Gynaecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.A.L.); (G.S.K.P.); (L.A.J.v.d.W.)
| | - Gonneke S. K. Pilgram
- Department of Gynaecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.A.L.); (G.S.K.P.); (L.A.J.v.d.W.)
| | | | - Norah M. van Mello
- Department of Obstetrics and Gynaecology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (J.D.A.); (N.M.v.M.)
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, 1081 HV Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, 1081 HV Amsterdam, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (F.W.); (X.F.); (J.S.d.V.)
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Appeltant R, Hermes R, Holtze S, Modina SC, Galli C, Bjarkadottir BD, Adeniran BV, Wei X, Swegen A, Hildebrandt TB, Williams SA. The neonatal southern white rhinoceros ovary contains oogonia in germ cell nests. Commun Biol 2023; 6:1049. [PMID: 37848538 PMCID: PMC10582104 DOI: 10.1038/s42003-023-05256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/18/2023] [Indexed: 10/19/2023] Open
Abstract
The northern white rhinoceros is functionally extinct with only two females left. Establishing methods to culture ovarian tissues, follicles, and oocytes to generate eggs will support conservation efforts using in vitro embryo production. To the best of our knowledge, this is the first description of the structure and molecular signature of any rhinoceros, more specifically, we describe the neonatal and adult southern white rhinoceros (Ceratotherium simum simum) ovary; the closest relation of the northern white rhinoceros. Interestingly, all ovaries contain follicles despite advanced age. Analysis of the neonate reveals a population of cells molecularly characterised as mitotically active, pluripotent with germ cell properties. These results indicate that unusually, the neonatal ovary still contains oogonia in germ cell nests at birth, providing an opportunity for fertility preservation. Therefore, utilising ovaries from stillborn and adult rhinoceros can provide cells for advanced assisted reproductive technologies and investigating the neonatal ovaries of other endangered species is crucial for conservation.
Collapse
Affiliation(s)
- Ruth Appeltant
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Robert Hermes
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str 17, D-10315, Berlin, Germany
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str 17, D-10315, Berlin, Germany
| | - Silvia Clotilde Modina
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Cesare Galli
- Avantea srl, Laboratory of Reproductive Technologies, Via Porcellasco 7/F, 26100, Cremona, Italy
- Fondazione Avantea, 26100, Cremona, Italy
| | - Briet D Bjarkadottir
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Babatomisin V Adeniran
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Xi Wei
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Thomas Bernd Hildebrandt
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
- Freie Universität Berlin, D-14195, Berlin, Germany
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
9
|
Yao Y, Wang Y, Wang F, Meng C, Niu J, Guo M, Sizhu S, Xu Y. BMP15 Modulates the H19/miR-26b/SMAD1 Axis Influences Yak Granulosa Cell Proliferation, Autophagy, and Apoptosis. Reprod Sci 2023; 30:1266-1280. [PMID: 36071342 DOI: 10.1007/s43032-022-01051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022]
Abstract
Bone morphogenetic protein 15 (BMP15) regulates the growth and development of follicles. In particular, the long non-coding RNA H19 plays an important role in mammalian reproduction. However, the function and regulatory mechanism of the interaction of BMP15 with H19 in yak granulosa cell (GC) proliferation, autophagy, and apoptosis are poorly understood. In our study, quantitative reverse-transcription-polymerase chain reaction analysis showed that H19 were highly expressed in yak healthy follicles. H19 was induced by BMP15 protein in yak GCs. In addition, we confirmed that overexpression of H19 promoted yak GC proliferation and autophagy and inhibited apoptosis. Bioinformatic analysis and luciferase reporter assays demonstrated that H19 directly binds to miR-26b, and SMAD1 was identified as a target of miR-26b. miR-26b overexpression inhibited GC proliferation and autophagy and promoted apoptosis through decreased SMAD1 expression, which was attenuated by H19 overexpression. RNA immunoprecipitation-quantitative polymerase chain reaction and dual-luciferase assays showed that miR-26b was sponged by H19 to preserve SMAD1 expression. Furthermore, SMAD1 mRNA expression was induced and miR-26b expression was reduced after yak GCs were treated with BMP15 protein. In conclusion, our results demonstrated that the H19/miR-26b/SMAD1 axis responds to BMP15 to regulate yack GC proliferation, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Yilong Yao
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yunlu Wang
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
- Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research, Tibet Agriculture & Animal Husbandry College, Tibet, 860000, Nyingchi, China
| | - Fupeng Wang
- College of Animal Science and Technology, China Agricultural University, Haidian, Beijing, 100193, China
| | - Chaoyi Meng
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
| | - Jiaqiang Niu
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
- Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research, Tibet Agriculture & Animal Husbandry College, Tibet, 860000, Nyingchi, China
| | - Ming Guo
- College of Animal Science and Technology, China Agricultural University, Haidian, Beijing, 100193, China
| | - Suolang Sizhu
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
| | - Yefen Xu
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China.
| |
Collapse
|
10
|
Afzali A, Nazari H, Ahmadi E, Davoodian N, Amidi F, Taheri F, Bashiri Z, Kadivar A, Nemati Dehkordi M. The protective effects of astaxanthin on pre-antral follicle degeneration in ovine vitrified/warmed ovarian tissue. Cryobiology 2023:S0011-2240(23)00024-X. [PMID: 36925029 DOI: 10.1016/j.cryobiol.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/11/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
This study assesses the protective effects of astaxanthin (AST) against vitrification/warming-induced cryoinjuries of ovarian tissue slices in sheep. Cortical slices of slaughterhouse acquired-ovine ovaries were randomly distributed in different groups: fresh, toxicity, and five vitrification groups including vitrification in presence of 0 (control group), 1, 10 and 100 μM astaxanthin or 100 μM vitamin E. After vitrification/warming and 24 h culturing, the samples were subjected to histological studies, antioxidant evaluation by TAC and TBAR assays, and assessment of relative expression of BMP4, BMP15, GDF9 and KITLG genes related to folliculogenesis and follicular growth regulation. According to the results, vitrification reduced the percentage of morphologically intact follicles compared to the fresh and toxicity groups (p < 0.05). In vitrification groups, vitamin E and all three concentrations of AST increased the percentage of intact pre-antral follicles and antioxidant activity relative to the vitrified control (p < 0.05). This enhancement significantly occurred in 10 μM AST group more than vitamin E (p < 0.05). Also, 10 μM concentration of AST enhanced the expression of all the examined genes compared to the control (p < 0.05), while the expression of BMP4, BMP15 and KITLG was higher in the AST than vitamin E (p < 0.05). The latter could increase only the expression of GDF9 compared to the control group (p = 0.011). In conclusion, AST is a highly effective antioxidant for maintaining the survival of pre-antral follicles, retaining cell density, increasing total antioxidant capacity, and increasing the expression of some genes related to follicular development after short-term culture of vitrified/warmed ovarian tissue slices.
Collapse
Affiliation(s)
- Azita Afzali
- Faculty of Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.
| | - Ebrahim Ahmadi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Najmeh Davoodian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Fardin Amidi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taheri
- Faculty of Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Anatomy, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Bashiri
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Omid Fertility and Infertility Clinic, Hamedan, Iran
| | - Ali Kadivar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Maryam Nemati Dehkordi
- Department of Gynecology and Obstetrics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
Fiorentino G, Cimadomo D, Innocenti F, Soscia D, Vaiarelli A, Ubaldi FM, Gennarelli G, Garagna S, Rienzi L, Zuccotti M. Biomechanical forces and signals operating in the ovary during folliculogenesis and their dysregulation: implications for fertility. Hum Reprod Update 2023; 29:1-23. [PMID: 35856663 DOI: 10.1093/humupd/dmac031] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/12/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Folliculogenesis occurs in the highly dynamic environment of the ovary. Follicle cyclic recruitment, neo-angiogenesis, spatial displacement, follicle atresia and ovulation stand out as major events resulting from the interplay between mechanical forces and molecular signals. Morphological and functional changes to the growing follicle and to the surrounding tissue are required to produce oocytes capable of supporting preimplantation development to the blastocyst stage. OBJECTIVE AND RATIONALE This review will summarize the ovarian morphological and functional context that contributes to follicle recruitment, growth and ovulation, as well as to the acquisition of oocyte developmental competence. We will describe the changes occurring during folliculogenesis to the ovarian extracellular matrix (ECM) and to the vasculature, their influence on the mechanical properties of the ovarian tissue, and, in turn, their influence on the regulation of signal transduction. Also, we will outline how their dysregulation might be associated with pathologies such as polycystic ovary syndrome (PCOS), endometriosis or premature ovarian insufficiency (POI). Finally, for each of these three pathologies, we will highlight therapeutic strategies attempting to correct the altered biomechanical context in order to restore fertility. SEARCH METHODS For each area discussed, a systematic bibliographical search was performed, without temporal limits, using PubMed Central, Web of Science and Scopus search engines employing the keywords extracellular matrix, mechanobiology, biomechanics, vasculature, angiogenesis or signalling pathway in combination with: ovary, oogenesis, oocyte, folliculogenesis, ovarian follicle, theca, granulosa, cumulus, follicular fluid, corpus luteum, meiosis, oocyte developmental competence, preimplantation, polycystic ovary syndrome, premature ovarian insufficiency or endometriosis. OUTCOMES Through search engines queries, we yielded a total of 37 368 papers that were further selected based on our focus on mammals and, specifically, on rodents, bovine, equine, ovine, primates and human, and also were trimmed around each specific topic of the review. After the elimination of duplicates, this selection process resulted in 628 papers, of which 287 were cited in the manuscript. Among these, 89.2% were published in the past 22 years, while the remaining 8.0%, 2.4% or 0.3% were published during the 1990s, 1980s or before, respectively. During folliculogenesis, changes occur to the ovarian ECM composition and organization that, together with vasculature modelling around the growing follicle, are aimed to sustain its recruitment and growth, and the maturation of the enclosed oocyte. These events define the scenario in which mechanical forces are key to the regulation of cascades of molecular signals. Alterations to this context determine impaired folliculogenesis and decreased oocyte developmental potential, as observed in pathological conditions which are causes of infertility, such as PCOS, endometriosis or POI. WIDER IMPLICATIONS The knowledge of these mechanisms and the rules that govern them lay a sound basis to explain how follicles recruitment and growth are modulated, and stimulate insights to develop, in clinical practice, strategies to improve follicular recruitment and oocyte competence, particularly for pathologies like PCOS, endometriosis and POI.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | | | | | - Daria Soscia
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy
| | | | | | - Gianluca Gennarelli
- Obstetrics and Gynecology, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Torino, Turin, Italy.,Livet, GeneraLife IVF, Turin, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy.,Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Nascimento DR, Azevedo VAN, Barroso PAA, Barrozo LG, Silva BR, Silva AWB, Donato MAM, Peixoto CA, Silva JRV. Effects of N-acetylcysteine on Growth, Viability, and Ultrastructure of In Vitro Cultured Bovine Secondary Follicles. Animals (Basel) 2022; 12:ani12223190. [PMID: 36428416 PMCID: PMC9687016 DOI: 10.3390/ani12223190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the effects of different concentrations of N-acetylcysteine (NAC) on the growth, antrum formation, viability, and ultrastructure of bovine secondary follicles cultured in vitro for 18 days. To this end, the follicles were cultured in TCM-199+ medium alone or supplemented with 1.0, 5.0, or 25.0 mM NAC. Follicular growth, antrum formation, viability (calcein-AM and ethidium homodimer-1) and ultrastructure were evaluated at the end of culture period. The results showed that 1.0 mM NAC increased the percentage of growing follicles and the fluorescence intensity for calcein-AM when compared to other treatments (p < 0.05). On the other hand, follicles cultured with 25.0 mM NAC had higher fluorescence intensity for ethidium homodimer-1, which is a sign of degeneration. Ultrastructural analysis showed that oocytes from follicles cultured in control medium alone or with 1 mM NAC had intact zonae pellucidae in close association with oolemmae, but the ooplasm showed mitochondria with a reduced number of cristae. On the other hand, oocytes from follicles cultured with 5 or 25 mM NAC had extremely vacuolated cytoplasm and no recognizable organelles. In conclusion, 1 mM NAC increases cytoplasmic calcein staining and the growth rate in bovine secondary follicles cultured in vitro, but the presence of 5 or 25 mM NAC causes damage in cellular membranes and organelles, as well as reducing the percentages of growing follicles.
Collapse
Affiliation(s)
- Danisvânia R. Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Venância A. N. Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Pedro A. A. Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Laryssa G. Barrozo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Bianca R. Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Anderson W. B. Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Mariana A. M. Donato
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife CEP 50670-901, PE, Brazil
| | - Christina A. Peixoto
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife CEP 50670-901, PE, Brazil
| | - José R. V. Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
- Correspondence: ; Tel.: +55-(88)-3611-8000
| |
Collapse
|
13
|
FSH Regulates YAP-TEAD Transcriptional Activity in Bovine Granulosa Cells to Allow the Future Dominant Follicle to Exert Its Augmented Estrogenic Capacity. Int J Mol Sci 2022; 23:ijms232214160. [PMID: 36430640 PMCID: PMC9693326 DOI: 10.3390/ijms232214160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms that drive the granulosa cells' (GC) differentiation into a more estrogenic phenotype during follicular divergence and establishment of follicle dominance have not been completely elucidated. The main Hippo signaling effector, YAP, has, however, emerged as a potential key player to explain such complex processes. Studies using rat and bovine GC demonstrate that, in conditions where the expression of the classic YAP-TEAD target gene tissue growth factor (CTGF) is augmented, CYP19A1 expression and activity and, consequently, estradiol (E2) secretion are reduced. These findings led us to hypothesize that, during ovarian follicular divergence in cattle, FSH downregulates YAP-TEAD-dependent transcriptional activity in GC to allow the future dominant follicle to exert its augmented estrogenic capacity. To address this, we performed a series of experiments employing distinct bovine models. Our in vitro and ex vivo experiments indicated that indeed FSH downregulates, in a concentration-dependent manner, mRNA levels not only for CTGF but also for the other classic YAP-TEAD transcriptional target genes ANKRD1 and CYR61 by a mechanism that involves increased YAP phosphorylation. To better elucidate the functional importance of such FSH-induced YAP activity regulation, we then cultured GC in the presence of verteporfin (VP) or peptide 17 (P17), two pharmacological inhibitors known to interfere with YAP binding to TEADs. The results showed that both VP and P17 increased CYP19A1 basal mRNA levels in a concentration-dependent manner. Most interestingly, by using GC samples obtained in vivo from dominant vs. subordinate follicles, we found that mRNA levels for CTGF, CYR61, and ANKRD1 are higher in subordinate follicles following the follicular divergence. Taken together, our novel results demonstrate that YAP transcriptional activity is regulated in bovine granulosa cells to allow the increased estrogenic capacity of the selected dominant follicle.
Collapse
|
14
|
Effects of short-term in vitro heat stress on bovine preantral follicles. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Passos JRS, Guerreiro DD, Otávio KS, Dos Santos-Neto PC, Souza-Neves M, Cuadro F, Nuñez-Olivera R, Crispo M, Vasconcelos FR, Bezerra MJB, Silva RF, Lima LF, Figueiredo JR, Bustamante-Filho IC, Menchaca A, Moura AA. How in vitro maturation changes the proteome of ovine cumulus-oocyte complexes? Mol Reprod Dev 2022; 89:459-470. [PMID: 35901249 DOI: 10.1002/mrd.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
The present study evaluated the effects of in vitro maturation (IVM) on the proteome of cumulus-oocyte complexes (COCs) from ewes. Extracted COC proteins were analyzed by LC-MS/MS. Differences in protein abundances (p < 0.05) and functional enrichments in immature versus in vitro-matured COCs were evaluated using bioinformatics tools. There were 2550 proteins identified in the COCs, with 89 and 87 proteins exclusive to immature and mature COCs, respectively. IVM caused downregulation of 84 and upregulation of 34 proteins. Major upregulated proteins in mature COCs were dopey_N domain-containing protein, structural maintenance of chromosomes protein, ubiquitin-like modifier-activating enzyme 2. Main downregulated proteins in mature COCs were immunoglobulin heavy constant mu, inter-alpha-trypsin inhibitor heavy chain 2, alpha-2-macroglobulin. Proteins exclusive to mature COCs and upregulated after IVM related to immune response, complement cascade, vesicle-mediated transport, cell cycle, and extracellular matrix organization. Proteins of immature COCs and downregulated after IVM were linked to metabolic processes, immune response, and complement cascade. KEGG pathways and miRNA-regulated genes attributed to downregulated and mature COC proteins related to complement and coagulation cascades, metabolism, humoral response, and B cell-mediated immunity. Thus, IVM influenced the ovine COC proteome. This knowledge supports the future development of efficient IVM protocols for Ovis aries.
Collapse
Affiliation(s)
- José Renato S Passos
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Denise D Guerreiro
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Kamila S Otávio
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | - Marcela Souza-Neves
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - Federico Cuadro
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | | | - Martina Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fábio R Vasconcelos
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Julia B Bezerra
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Renato F Silva
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | - José Ricardo Figueiredo
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | | | - Alejo Menchaca
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay.,Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
| | - Arlindo A Moura
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
16
|
Sperm Physiological Response to Female Serum-Potential New Insights into the Reproductive Incompatibility Diagnostics. Int J Mol Sci 2022; 23:ijms23073428. [PMID: 35408797 PMCID: PMC8998597 DOI: 10.3390/ijms23073428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 12/10/2022] Open
Abstract
Infertility is assumed to arise exclusively from male- and female-dependent pathological factors. However, recent studies have indicated that reproductive failure may also result from the reproductive incompatibility of the partners. Selection against such incompatibilities likely occurs via female-derived reproductive secretions, including follicular fluid (FF), that mediate gamete-level mate choice towards the sperm of specific males. To facilitate potential development of diagnostic tests for human reproductive incompatibility, we examined whether sperm physiological response to female serum indicate male–female compatibility in the presence of FF. We performed a full-factorial experiment, in which the sperm of 10 males were treated with the FF and serum of 6 healthy females. We found that sperm motility and viability in both biofluids were highly similar and that in 70% of the males, sperm serum treatment predicted male–female compatibility. We also identified male human leucocyte antigen (HLA) alleles and female (FF and serum) anti-HLA antibodies and tested whether the number of allele–antibody matches predict sperm physiological response to female fluids. However, no association was found between measured sperm traits and the number of allele–antibody matches. Overall, the present results may open novel possibilities for the future development of reproductive incompatibility tests and may pave the way towards more accurate infertility diagnostics and treatments.
Collapse
|
17
|
Wang Z, Song Y, Sun S, Zhao C, Fu S, Xia C, Bai Y. Metabolite Comparison between Serum and Follicular Fluid of Dairy Cows with Inactive Ovaries Postpartum. Animals (Basel) 2022; 12:ani12030285. [PMID: 35158609 PMCID: PMC8833624 DOI: 10.3390/ani12030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although the milk production of dairy cows has increased rapidly in recent decades, the reproductive performance of dairy cows has gradually declined. In modern intensive dairy farms, prevention and treatment of inactive ovaries has become an important challenge of reproduction disorders during early lactation. Our aim is to screen out metabolites and metabolic pathways related to inactive ovaries through serum and follicular fluid metabolomics. We found that the changes in serum and follicular fluid were mainly enriched in nine metabolic pathways. In serum, these included d-glutamine and d-glutamate metabolism, alanine, aspartic and glutamate metabolism, arginine and proline metabolism, pentose and glucuronate interconversions, and glycerophospholipid metabolism. In follicular fluid, they were valine, leucine, and isoleucine biosynthesis; arachidonic acid metabolism; glycerophospholipid metabolism; starch and sucrose metabolism; phenylalanine metabolism; and pentose and glucuronate interconversion. The common metabolic pathways of disease-related serum and follicular fluid were pentose and glucuronate interconversions and glycerophospholipid metabolism. This research will provide a theoretical basis for exploring the causes of inactive ovaries and provide new ideas for the prevention and treatment of inactive ovaries in the future. Abstract Inactive ovaries (IO) accounts for 50% of ovarian disease in postpartum dairy cows, which seriously affects their reproductive efficiency. To investigate the metabolic changes in the serum and follicular fluid of dairy cows with IO during lactation, six estrus (E) cows and six IO cows at 50 to 55 days in milk were selected based on B ultrasonic detection and clinical manifestations. The differential metabolites in serum and follicular fluid between the E cows and IO cows were identified by ultra-high-pressure liquid chromatography–quadrupole time-of-flight mass spectrometry, combined with multidimensional statistical methods. The results showed that dairy cows with IO were in a subclinical ketosis status where beta-hydroxybutyrate (BHB) exceeded 1.20 mmol/L, 14 differential metabolites in the serum of IO cows included 10 increased metabolites and 4 decreased metabolites, and 14 differential metabolites in the follicular fluid of IO cows included 8 increased metabolites and 6 decreased metabolites. These differential metabolites mainly involved nine metabolic pathways. The common enrichment pathway of different metabolites in serum and follicular fluid were glycerophospholipid metabolism and pentose and glucuronate interconversions. In conclusion, there were significant differences in the differential metabolites and enrichment pathways between serum and follicular fluid of IO cows, implying that there were complex changes in blood metabolism and local follicular metabolism of IO cows, whose interactions need further investigation.
Collapse
Affiliation(s)
- Zhijie Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Yuxi Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Shuhan Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Shixin Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing 163319, China
- Correspondence: (C.X.); (Y.B.)
| | - Yunlong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
- Correspondence: (C.X.); (Y.B.)
| |
Collapse
|
18
|
Lu H, Ma L, Zhang Y, Feng Y, Zhang J, Wang S. Current Animal Model Systems for Ovarian Aging Research. Aging Dis 2022; 13:1183-1195. [PMID: 35855343 PMCID: PMC9286907 DOI: 10.14336/ad.2021.1209] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/07/2021] [Indexed: 11/15/2022] Open
Abstract
Ovarian aging leads to menopause, loss of fertility and other disorders in multiple organs, which brings great distress to women. For ethical reasons, it is impossible to use humans as direct study subjects for aging research. Therefore, biomedical researchers have employed different non-human organisms to study ovarian aging, including worms, fruit flies, fishes, amphibians, birds, mice, rats, cavies, rabbits, pigs, sheep, cows, horses, monkeys, and apes. Because each of these model organisms has its own features, multiple factors, such as size, anatomical structure, cost, ease of operation, fertility, generation time, lifespan, and gene heredity, should be carefully considered when selecting a model system to study ovarian aging. An appropriate model organism would help researchers explore the risk factors and elucidate molecular mechanisms underlying declined ovarian functions, which might be conducive to preventing or delaying the ovarian aging process. This article will offer an overview on several currently available and commonly used model organisms for ovarian aging research by comparing their pros and cons. In doing so, we hope to provide useful information for ovarian aging researchers.
Collapse
Affiliation(s)
- Huan Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Lingwei Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Yanzhi Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
- Correspondence should be addressed to: Dr. Shixuan Wang () and Dr. Jinjin Zhang (), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
- Correspondence should be addressed to: Dr. Shixuan Wang () and Dr. Jinjin Zhang (), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei, China
| |
Collapse
|
19
|
Alan E, Kulak Y. The immunoexpression patterns of fibroblast growth factors in the pregnant and postpartum rat ovary. Reprod Fertil Dev 2021; 33:817-830. [PMID: 34758897 DOI: 10.1071/rd21025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Fibroblast growth factors (FGFs) are polypeptides involved in the regulation of oogenesis and folliculogenesis by inducing ovarian mitogenic, homeostatic and angiogenic activity. This study was aimed at determining the localisation of FGF ligands (FGF1 and FGF2) and FGF receptor 2 (FGFR2) in the rat ovary by immunohistochemical analyses, at pregnancy and the postpartum period. During pregnancy and the postpartum period, positive FGF1 immunoreactions were observed in the nucleus and cytoplasm of germinative epithelial cells, granulosa cells of follicles in different developmental stages, theca interna cells, interstitial cells, luteal cells and atretic follicles. FGF2 immunoreactivity was strong in the cytoplasm of the endothelial cells and smooth muscle cells of the ovarian blood vessels and in the smooth muscle cells of the ovarian cortex and medulla. Strong FGFR2 immunoreactivity was observed in the stromal cells surrounding the blood vessels and rete ovarii. Immunoreaction intensity of the FGF1, FGF2 and FGFR2 had relatively similar abundances between the periods examined. Considering that FGFs act as local regulators in oogenesis, folliculogenesis, follicular atresia, ovulation, corpus luteum formation and regression and angiogenesis, this study supports the idea that FGFs may also be involved in these physiological functions in rat ovaries during pregnancy and postpartum period.
Collapse
Affiliation(s)
- Emel Alan
- Faculty of Veterinary Medicine, Department of Histology and Embryology, University of Erciyes, Kayseri, Turkey
| | - Yasin Kulak
- Republic of Turkey Ministry of Education, Kayseri, Turkey
| |
Collapse
|
20
|
Cheng J, Pan Y, Yang S, Wei Y, Lv Q, Xing Q, Zhang R, Sun L, Qin G, Shi D, Deng Y. Integration of transcriptomics and non-targeted metabolomics reveals the underlying mechanism of follicular atresia in Chinese buffalo. J Steroid Biochem Mol Biol 2021; 212:105944. [PMID: 34144152 DOI: 10.1016/j.jsbmb.2021.105944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/17/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
Follicular atresia is a complex physiological process, which results in the waste of follicles and oocytes from the ovary. Elucidating the physiological mechanism of follicular atresia will hopefully reverse the fate of follicles, thereby improve the reproductive efficiency of female animals. However, there are still many gaps to be filled during the follicular atresia process. In this study, we first comprehensively summarized and compared a variety of methods to classify Chinese buffalo follicles with different extent of atresia. Then follicular fluid and granulosa cells from the corresponding follicles with different extent of atresia were collected for non-targeted metabolomics and transcriptomics analysis, respectively. After the detection and analysis of 129 follicles, a reasonable classification standard was formed: on the basis of morphological classification, the relative concentrations of estradiol (E2) and progesterone (PROG) in the follicular fluid were determined, follicles with an estradiol-to-progesterone (E2/PROG) ratio >5 were classified as healthy follicles (HF), 1≤ E2/PROG ≤5 as early atretic follicles (EF) and E2/PROG <1 as late atretic follicles (LF). Correspondingly, follicles with granulosa cells apoptosis rate less than 15 % were divided into HF, 15%-25% were classified as EF and more than 25 % were classified as LF. The integration analysis of non-targeted metabolomics and transcriptomics highlights the following three aspects: (1) Atresia seriously damaged the lipid metabolism homeostasis of follicle, in which PPARγ play important roles. (2) Energy metabolism and nucleotide metabolism of atretic follicles were inhibited. (3) Bilirubin is involved in follicular atresia, and it may be the main force to prevent lipid peroxidation in follicular cells. In summary, results of this study provide new understanding of the molecular mechanisms of Chinese buffalo follicular atresia.
Collapse
Affiliation(s)
- Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China; Guangxi Key Laboratory of Buffalo Genetics, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Ministry of Agriculture, Nanning, PR China
| | - Yu Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Sufang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Yaochang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Qiao Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Qinghua Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Ruimen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Le Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Guangsheng Qin
- Guangxi Key Laboratory of Buffalo Genetics, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Ministry of Agriculture, Nanning, PR China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China.
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China.
| |
Collapse
|
21
|
Amoushahi M, Lykke-Hartmann K. Distinct Signaling Pathways Distinguish in vivo From in vitro Growth in Murine Ovarian Follicle Activation and Maturation. Front Cell Dev Biol 2021; 9:708076. [PMID: 34368158 PMCID: PMC8346253 DOI: 10.3389/fcell.2021.708076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
Women with cancer and low ovarian reserves face serious challenges in infertility treatment. Ovarian tissue cryopreservation is currently used for such patients to preserve fertility. One major challenge is the activation of dormant ovarian follicles, which is hampered by our limited biological understanding of molecular determinants that activate dormant follicles and help maintain healthy follicles during growth. Here, we investigated the transcriptomes of oocytes isolated from dormant (primordial) and activated (primary) follicles under in vivo and in vitro conditions. We compared the biological relevance of the initial molecular markers of mature metaphase II (MII) oocytes developed in vivo or in vitro. The expression levels of genes involved in the cell cycle, signal transduction, and Wnt signaling were highly enriched in oocytes from primary follicles and MII oocytes. Interestingly, we detected strong downregulation of the expression of genes involved in mitochondrial and reactive oxygen species (ROS) production in oocytes from primordial follicles, in contrast to oocytes from primary follicles and MII oocytes. Our results showed a dynamic pattern in mitochondrial and ROS production-related genes, emphasizing their important role(s) in primordial follicle activation and oocyte maturation. The transcriptome of MII oocytes showed a major divergence from that of oocytes of primordial and primary follicles.
Collapse
Affiliation(s)
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
22
|
Ovarian Telomerase and Female Fertility. Biomedicines 2021; 9:biomedicines9070842. [PMID: 34356906 PMCID: PMC8301802 DOI: 10.3390/biomedicines9070842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Women's fertility is characterized both quantitatively and qualitatively mainly by the pool of ovarian follicles. Monthly, gonadotropins cause an intense multiplication of granulosa cells surrounding the oocyte. This step of follicular development requires a high proliferation ability for these cells. Telomere length plays a crucial role in the mitotic index of human cells. Hence, disrupting telomere homeostasis could directly affect women's fertility. Strongly expressed in ovaries, telomerase is the most effective factor to limit telomeric attrition and preserve ovarian reserve. Considering these facts, two situations of infertility could be correlated with the length of telomeres and ovarian telomerase activity: PolyCystic Ovary Syndrome (PCOS), which is associated with a high density of small antral follicles, and Premature Ovarian Failure (POF), which is associated with a premature decrease in ovarian reserve. Several authors have studied this topic, expecting to find long telomeres and strong telomerase activity in PCOS and short telomeres and low telomerase activity in POF patients. Although the results of these studies are contradictory, telomere length and the ovarian telomerase impact in women's fertility disorders appear obvious. In this context, our research perspectives aimed to explore the stimulation of ovarian telomerase to limit the decrease in the follicular pool while avoiding an increase in cancer risk.
Collapse
|
23
|
Pan Y, Yang S, Cheng J, Lv Q, Xing Q, Zhang R, Liang J, Shi D, Deng Y. Whole-Transcriptome Analysis of LncRNAs Mediated ceRNA Regulation in Granulosa Cells Isolated From Healthy and Atresia Follicles of Chinese Buffalo. Front Vet Sci 2021; 8:680182. [PMID: 34336976 PMCID: PMC8316591 DOI: 10.3389/fvets.2021.680182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/09/2021] [Indexed: 01/08/2023] Open
Abstract
Granulosa cells (GCs) are the main supporting cells in follicles and play an important role in the regulation of oocyte maturation and follicular atresia. Accumulating evidence indicates that non-coding RNAs participate in regulation of the physiological function of GCs. However, whole-transcriptome analysis for GCs of buffalo has yet to be reported. In this study, healthy follicles (HFs) and atretic follicles (AFs) were defined according to the apoptosis rate of GCs and the hormone level in follicular fluid. GCs were collected from HFs and AFs (n = 15, 5 < n < 8 mm) for whole-transcriptome analysis using second-generation high-throughput sequencing. A total of 1,861 and 1,075 mRNAs, 159 and 24 miRNAs, and 123 and 100 lncRNAs, were upregulated and downregulated between HFs and AFs, respectively. Enrichment of functions and signaling pathways of these differentially expressed (DE) genes showed that most of DEmRNAs and targets of DEmiRNAs were annotated to the categories of ECM–receptor interaction and focal adhesion, as well as PI3K-AKT, mTOR, TGF-beta, Rap1, and estrogen signaling pathways. The competing endogenous RNA (CeRNA) network was also constructed based on the ceRNA theory which further revealed regulatory roles of these DERNAs in GCs of buffalo follicles. Finally, we validated that lnc4040 regulated the expression of Hif1a as miR-709 sponge in a ceRNA mechanism, suggesting their critical functions in GCs of buffalo follicles. These results show that lncRNAs are dynamically expressed in GCs of HFs and AFs, and interacting with target genes in a ceRNA manner, suggesting their critical functions in buffalo follicular development and atresia.
Collapse
Affiliation(s)
- Yu Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Sufang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qiao Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qinghua Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ruimen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Jingyuan Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
24
|
Xu L, Idrees M, Joo MD, Sidrat T, Wei Y, Song SH, Lee KL, Kong IK. Constitutive Expression of TERT Enhances β-Klotho Expression and Improves Age-Related Deterioration in Early Bovine Embryos. Int J Mol Sci 2021; 22:ijms22105327. [PMID: 34070219 PMCID: PMC8158768 DOI: 10.3390/ijms22105327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Age-associated decline in oocyte quality is one of the dominant factors of low fertility. Aging alters several key processes, such as telomere lengthening, cell senescence, and cellular longevity of granulosa cells surrounding oocyte. To investigate the age-dependent molecular changes, we examined the expression, localization, and correlation of telomerase reverse transcriptase (TERT) and β-Klotho (KLB) in bovine granulosa cells, oocytes, and early embryos during the aging process. Herein, cumulus-oocyte complexes (COCs) obtained from aged cows (>120 months) via ovum pick-up (OPU) showed reduced expression of β-Klotho and its co-receptor fibroblast growth factor receptor 1 (FGFR1). TERT plasmid injection into pronuclear zygotes not only markedly enhanced day-8 blastocysts’ development competence (39.1 ± 0.8%) compared to the control (31.1 ± 0.5%) and D-galactose (17.9 ± 1.0%) treatment groups but also enhanced KLB and FGFR1 expression. In addition, plasmid-injected zygotes displayed a considerable enhancement in blastocyst quality and implantation potential. Cycloastragenol (CAG), an extract of saponins, stimulates telomerase enzymes and enhances KLB expression and alleviates age-related deterioration in cultured primary bovine granulosa cells. In conclusion, telomerase activation or constitutive expression will increase KLB expression and activate the FGFR1/β-Klotho pathway in bovine granulosa cells and early embryos, inhibiting age-related malfunctioning.
Collapse
Affiliation(s)
- Lianguang Xu
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Tabinda Sidrat
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Yiran Wei
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Seok-Hwan Song
- The Kingkong Co., Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (S.-H.S.); (K.-L.L.)
| | - Kyeong-Lim Lee
- The Kingkong Co., Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (S.-H.S.); (K.-L.L.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
- The Kingkong Co., Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (S.-H.S.); (K.-L.L.)
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
25
|
Zhang T, BaSang WD, Chang W, Huo S, Ma X, Ju X, Yu S, Cui S. Dynamics of apoptosis-related gene expression during follicular development in yak. J Anim Physiol Anim Nutr (Berl) 2021; 105:1002-1013. [PMID: 33899975 DOI: 10.1111/jpn.13527] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
The potential reproduction power of domestic animals is limited by a complicated follicular atresia process. P53, caspase-9 (Casp9), Bax, Bcl-2 and Fas play a crucial role in the ovarian mitochondrion-dependent apoptosis and death receptor pathway. In accordance with this study, the expression levels of Casp9, Bax, Bcl-2 and Fas were analysed in ovaries and oviducts of yak by immunohistochemistry (IHC). P53 and the above in ovarian granulosa cells (GCs) from atretic (3-6 mm) to healthy follicles (6-8 mm) and in oviducts were examined from the luteal phase to the follicular phase during the oestrous circle by Western blot (WB) and real-time PCR (RT-PCR). Results demonstrated that typical classic apoptotic factors Casp9, Bax, Bcl-2 and Fas were expressed in the cytoplasm and zonal pellucida of oocytes, primordial follicles, primary follicles, ovarian surface epithelium, ovarian GCs, granular lutein cells, surface epithelia in oviduct uterotubal junction and oviduct ampulla during the luteal phase. RT-PCR and WB revealed that P53 and Fas significantly increased in GCs of atretic follicles. P53 and Casp9 increased in oviduct epithelium during the luteal phase, but Fas was unchanged. A contrary tendency was noted in Bcl-2 and Bax expression. Overall, P53 and Fas play an essential role in inducing GC apoptosis, and Bax, Bcl-2, Casp9 and P53 are involved in oviduct epithelial regeneration in yak.
Collapse
Affiliation(s)
- Taojie Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University College of Biological Sciences, Beijing, China.,Northwest Minzu University, life science and engineering college, Lanzhou, Gansu, China
| | - Wang-Dui BaSang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Institute of Veterinary and Animal Husbandry, Lhasa, China
| | - Weihua Chang
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production & Construction Group, College of Animal Science, Tarim University, Aral, China
| | - Shengdong Huo
- Northwest Minzu University, life science and engineering college, Lanzhou, Gansu, China
| | - Xingbin Ma
- Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Xianghong Ju
- Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Sijiu Yu
- Academic of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, China Agricultural University College of Biological Sciences, Beijing, China
| |
Collapse
|
26
|
Zhang X, Yu T, Guo X, Zhang R, Jia Y, Shang C, Wang A, Jin Y, Lin P. Ufmylation regulates granulosa cell apoptosis via ER stress but not oxidative stress during goat follicular atresia. Theriogenology 2021; 169:47-55. [PMID: 33933757 DOI: 10.1016/j.theriogenology.2021.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023]
Abstract
Follicular atresia is primarily caused by granulosa cell (GC) apoptosis, although the mechanisms are largely unknown. Ufmylation is a recently identified ubiquitin-like post-translational modifier that plays an important role in cell proliferation and apoptosis. The purpose of this study was to investigate the effects of Ufmylation on GC apoptosis during goat follicular atresia. Ubiquitin-fold modifier 1 (UFM1) and its target DDRGK domain containing 1 (DDRGK1) proteins were identified in granulosa cells (GCs) isolated from all stages of preantral follicles and from healthy (HF), early atretic (EF) and progressed atretic (PF) antral follicles. The expression levels were higher in GCs derived from antral atretic follicles than healthy follicles. Although the viability of GCs was not affected after overexpression of UFM1, siRNA-mediated UFM1 silencing significantly inhibited GC proliferation and induced apoptosis. Notably, components of the ufmylation pathway were significantly upregulated in GCs induced by the ER stress agent tunicamycin (Tm) and thapsigargin (Tg), but not affected by oxidative stress inducer H2O2. Furthermore, UFM1 silencing markedly increased the apoptosis of GCs upon Tg treatment by stimulating the ER stress-related gene expression. Our results provide evidence that UFM1 and its target DDRGK1 are expressed in the goat GCs during follicular development and atresia, and ufmylation may play an important role in the prevention of ER stress but not oxidative stress-induced GCs apoptosis.
Collapse
Affiliation(s)
- Xinyan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tong Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyan Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruixue Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanni Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunmei Shang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
27
|
Contreras-Solís I, Catalá M, Soto-Heras S, Roura M, Paramio MT, Izquierdo D. Effect of follicle size on hormonal status of follicular fluid, oocyte ATP content, and in vitro embryo production in prepubertal sheep. Domest Anim Endocrinol 2021; 75:106582. [PMID: 33238222 DOI: 10.1016/j.domaniend.2020.106582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
The aim of this study was to assess the effect of follicular size on estradiol (E2) and progesterone (P4) levels in intrafollicular fluid, ATP content in oocytes, and the embryo development rate in prepubertal sheep. Slaughterhouse ovaries were dissected to recover the follicles, which were classified according to the follicle diameter as <3 mm (n = 20) and ≥3 mm (n = 17). Then, follicular fluid was obtained and analyzed by radioimmunoassay to determine the E2 and P4 concentrations. Another group of ovaries was used to recover cumulus-oocyte complexes according to follicle size. In vitro maturation (IVM), in vitro fertilization (IVF), and embryo culture were performed using standard procedures, and ATP level was assessed at 0 and 24 h of IVM. Intrafollicular concentrations of E2 and P4 and E2:P4 ratio were higher in ≥3 mm (18.7 ± 5.9 ng/mL, 7.8 ± 1.2 ng/mL, and 3.6 ± 1.3, respectively) than <3 mm (1.8 ± 0.4 ng/mL, 2.6 ± 0.3 ng/mL and 0.9 ± 0.3, respectively) follicles. The rate of ATP increased during IVM and was higher in oocytes from ≥3 mm than <3 mm (22.4 ± 0.7 and 8.6 ± 2.2-fold change; respectively) follicles. After IVF, the blastocyst development was higher in oocytes recovered from ≥3 mm (11.1 ± 0.9%) than from <3 mm (6.5 ± 0.7%) follicles. These results indicate an improvement in the competence and development of oocytes from ≥3 mm follicles with a higher E2:P4 ratio. Thus, this ratio could be used as reference to design IVM medium and to enhance the in vitro embryo production in lambs.
Collapse
Affiliation(s)
- I Contreras-Solís
- Department of Veterinary Medicine, Sassary University, Sardinia, Italy
| | - M Catalá
- Departament de Ciència Animal i dels Aliments, Facultad De Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - S Soto-Heras
- Departament de Ciència Animal i dels Aliments, Facultad De Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Roura
- Departament de Ciència Animal i dels Aliments, Facultad De Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M T Paramio
- Departament de Ciència Animal i dels Aliments, Facultad De Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D Izquierdo
- Departament de Ciència Animal i dels Aliments, Facultad De Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Nemati A, Beyranvand F, Assadollahi V, Salahshoor MR, Alasvand M, Gholami MR. The effect of different concentrations of cerium oxide during pregnancy on ovarian follicle development in neonatal mice. Birth Defects Res 2020; 113:349-358. [PMID: 33283456 DOI: 10.1002/bdr2.1844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Cerium is a member of the rare metals group and widely used in drug delivery, gene therapy, molecular imaging and medicine. In this study, we investigated the effect of different doses of Cerium (IV) oxide (CeO2 ) during pregnancy on neonatal mice ovaries, as well as its effect on blood biochemical parameters. METHODS Thirty pregnant NMRI mice were divided into five groups: Control and 4 groups treated with CeO2 (10, 25, 80, 250 mg/kg.bw i.p) at the GD7 and GD14. The ovarian histological of neonatal (2 and 6 day-olds), as well as blood serum of neonates at 15-dpp were analyzed. RESULTS Count of ovarian primordial follicles in neonates at 2 dpp showed a significant decrease in the groups treated with 80 and 250 mg/kg.bw doses of CeO2 . There was also a significant decrease in ovarian primordial and primary follicles in neonates at 6-dpp at 250 mg/kg.bw doses of CeO2 in the control (P < 0.05). There was no significant difference in serum levels of malondialdehyde and total antioxidant capacity between the experimental and control groups. CONCLUSIONS Our results suggest that the effects of CeO2 on the ovarian tissue of neonatal mice during pregnancy may be dose-dependent.
Collapse
Affiliation(s)
- Afsaneh Nemati
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Beyranvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahideh Assadollahi
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Masoud Alasvand
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Gholami
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Bahmanpour S, Moradiyan E, Dehghani F, Zarei-Fard N. Chemoprotective effects of plasma derived from mice of different ages and genders on ovarian failure after cyclophosphamide treatment. J Ovarian Res 2020; 13:138. [PMID: 33239062 PMCID: PMC7690033 DOI: 10.1186/s13048-020-00735-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/03/2020] [Indexed: 11/12/2022] Open
Abstract
Background Premature ovarian failure is one of the major side effects of chemotherapy drugs. Blood plasma contains several factors that might lead to the repair of different tissues. Objective The chemoprotective effects of plasma derived from mice with different ages and genders were assessed on ovarian tissue in cyclophosphamide-treated mice. Methods Forty-two adult female mice were divided into six groups as follows: (A) control; (B) 0.9% sodium chloride as vehicle; (C) cyclophosphamide; (D) cyclophosphamide + young male blood plasma; (E) cyclophosphamide + old male blood plasma; (F) cyclophosphamide + young female blood plasma. Ovarian failure was induced by injecting cyclophosphamide. On the 1st day, three groups received simultaneous injections of 150 μL intraperitoneal and 70 μL intravenous plasma derived from mice of different ages and genders. Each plasma type (150 μL) was then injected intraperitoneally every other 3 days for 19 days. On day 21, the dissected ovaries were stained for stereological analysis. Also, estrogen and progesterone levels were measured. Results Cyclophosphamide had damaging effects on ovarian parameters and led to reduced hormone levels in comparison with the control group. However, treating with young female and, old male blood plasma, to a lesser degree, showed beneficial effects on the number of primordial follicles, pre-antral follicles, and granulosa cells. Also, these two treatments had protective effects on the volume of ovarian parameters as well as estrogen and progesterone levels in comparison with the cyclophosphamide group (P < 0.05). Conclusion Plasma derived from mice of different ages and genders can ameliorate premature ovarian failure against the adverse effects of cyclophosphamide.
Collapse
Affiliation(s)
- Soghra Bahmanpour
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, 7134845794, Iran
| | - Eisa Moradiyan
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, 7134845794, Iran
| | - Farzaneh Dehghani
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, 7134845794, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zarei-Fard
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, 7134845794, Iran.
| |
Collapse
|
30
|
He Y, Meng K, Wang X, Dong Z, Zhang Y, Quan F. Comparison of Bovine Small Antral Follicle Development in Two- and Three-Dimensional Culture Systems. AN ACAD BRAS CIENC 2020; 92:e20180935. [PMID: 33146258 DOI: 10.1590/0001-3765202020180935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
To compare the effects of two-(2D, microplate) and three-dimensional (3D, alginate) culture systems on the in vitro growth of small antral follicles in cattle, individual follicles were separately cultured in the two culture systems for 8 days. Half of the culture medium was replaced by fresh medium every 2 days; the former medium was used to assess the amount of follicular hormone secretion using ELISA. Individual follicle morphology, diameter, and survival rate were recorded every alternate day. The results showed that in 4 days, there was no significant difference between the two systems, except that the growth rate of follicles in 2D system was relatively faster. After 4 days, estradiol concentration in 3D system was higher than that in 2D system. However, progesterone concentration was lower than that in the 2D system. The survival rate and oocyte quality of follicles in 2D system were significantly lower than those in 3D system on day 8. The follicle diameter slightly increased (30-60 μm) in the entire process. Taken together, for in vitro culture of follicles within 4 days, the 2D culture system is more suitable. However, when the culture duration is >4 days, the 3D culture system is more suitable.
Collapse
Affiliation(s)
- Yuanyuan He
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Kai Meng
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Xiaomei Wang
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Zhihang Dong
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Yong Zhang
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Fusheng Quan
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| |
Collapse
|
31
|
Proteomic analysis of healthy and atretic porcine follicular granulosa cells. J Proteomics 2020; 232:104027. [PMID: 33130110 DOI: 10.1016/j.jprot.2020.104027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Follicular atresia is initiated with the apoptosis of granulosa cells (GCs) after birth in mammals. The molecular mechanisms underlying GC apoptosis during follicular selection are unclear at present. The objective of this study is to identify the proteins and pathways that may be involved in porcine follicular atresia. Proteins isolated from GCs collected from healthy and atretic follicles were detected by tandem mass tag (TMT) protein labeling and LC-MS/MS. A total of 4591 proteins in the healthy follicle granulosa cell (HFGC) and atretic follicle granulosa cell (AFGC) groups were identified, and 399 differentially abundant proteins were found between the HFGC and AFGC groups; of which 262 proteins were significantly up-regulated and 137 proteins were significantly down-regulated. Differential protein enrichment analysis showed that proteins involved in proteolysis, protein destabilization, phagocytosis, and engulfment were more abundant in the AFGC group. Also, these proteins were mainly involved in the lysosome, phagosome, autophagy, and apoptosis pathways. Specially, PTGFRN is potential important regulated protein in the development of the antral follicle, and down-regulation of PTGFRN in GCs may lead to follicular atresia. Our study shows that the identified proteins and their related signaling pathways may play crucial roles during health follicle develop to atretic follicle. SIGNIFICANCE: Follicular atresia during 'selection' reduces the reproductive potential of sows. In this study, we found 399 proteins differentially abundant. between the HFGC and AFGC groups. These results establish a foundation for elucidating the mechanism of follicular atresia in swine.
Collapse
|
32
|
Ultrastructure of Granulosa Cells of Bovine Ovarian Antral Follicles in Relation to Atresia. FOLIA VETERINARIA 2020. [DOI: 10.2478/fv-2020-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of this study was to describe the most common forms of ovarian follicle atresia in large antral follicles of cows and quantify the occurrence of different cell structures in each form. Atresia of antral follicles in ovaries was determined on the basis of ultrastructural images acquired by electron microscopy of ultrathin sections contrasted with uranyl acetate and lead citrate to visualize cell organelles. All forms of atresia in large follicles are accompanied by regressive changes of the granulosa cells. The initial form of atresia is characterized by enlarged intercellular spaces after the disruption of the gap junctions and desmosomes. Small collapsed cells with pyknotic nuclei, substantially reduced the cytoplasm and a higher incidence of lysosomes are located on the surface of the granulosa layer. The stratum granulosum wall collapses and the basal membrane is swollen with a rupture of the lamina basalis. Obliterative atresia is characterized by a multiplied loose connective tissue consisting of collagen fibers, fibroblasts, histiocytes, blood capillaries and sporadically granulocytes. The cystic form of atresia is characterized by small collapsed, pyknotic granulosa cells settled in one or two layers. In luteinization-associated atresia, granulosa cells are hypertrophied, their cytoplasm contains smooth endoplasmic reticulum and mitochondria with tubules. In conclusion, the initial atresia of large antral ovarian follicles is associated with processes of cell death, followed by multiplication of the loose connective tissue cells, its dystrophy and hyalinization of the collagen fibers. Ultrastructural examination could be used as a complementary method to improve histopathological diagnostics of cow reproductive organs in veterinary practice.
Collapse
|
33
|
Gargus ES, Jakubowski KL, Arenas GA, Miller SJ, Lee SSM, Woodruff TK. Ultrasound Shear Wave Velocity Varies Across Anatomical Region in Ex Vivo Bovine Ovaries. Tissue Eng Part A 2020; 26:720-732. [PMID: 32609070 DOI: 10.1089/ten.tea.2020.0037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physical properties of the ovarian extracellular matrix (ECM) regulate the function of ovarian cells, specifically the ability of the ovary to maintain a quiescent primordial follicle pool while allowing a subset of follicles to grow and mature in the estrous cycle. Design of a long-term, cycling artificial ovary has been hindered by the limited information regarding the mechanical properties of the ovary. In particular, differences in the mechanical properties of the two ovarian compartments, the cortex and medulla, have never been quantified. Shear wave (SW) ultrasound elastography is an imaging modality that enables assessment of material properties, such as the mechanical properties, based on the velocity of SWs, and visualization of internal anatomy, when coupled with B-mode ultrasound. We used SW ultrasound elastography to assess whole, ex vivo bovine ovaries. We demonstrated, for the first time, a difference in mechanical properties, as inferred from SW velocity, between the cortex and medulla, as measured along the length (cortex: 2.57 ± 0.53 m/s, medulla: 2.87 ± 0.77 m/s, p < 0.0001) and width (cortex: 2.99 ± 0.81 m/s, medulla: 3.24 ± 0.97 m/s, p < 0.05) and that the spatial distribution and magnitude of SW velocity vary between these two anatomical planes. This work contributes to a larger body of literature assessing the mechanical properties of the ovary and related cells and specialized ECMs and will enable the rational design of biomimetic tissue engineered models and durable bioprostheses. Impact Statement Shear wave (SW) ultrasound elastography can be used to simultaneously assess the material properties and tissue structures when accompanied with B-mode ultrasound. We report a quantitative difference in mechanical properties, as inferred from SW velocity, between the cortex and medulla, with SW velocity being 11.4% and 8.4% higher in the medulla than the cortex when measured along the length and width, respectively. This investigation into the spatial and temporal variation in SW velocity in bovine ovaries will encourage and improve design of more biomimetic scaffolds for ovarian tissue engineering.
Collapse
Affiliation(s)
- Emma S Gargus
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| | - Kristen L Jakubowski
- Department of Physical Therapy and Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA.,Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Gabriel A Arenas
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Scott J Miller
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sabrina S M Lee
- Department of Physical Therapy and Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
34
|
Montano Vizcarra DA, Pinto Silva Y, Bezerra Bruno J, Calado Brito DC, Dipaz Berrocal D, Mascena Silva L, Gaudencio dos Santos Morais ML, Alves BG, Alves KA, Weber Santos Cibin F, Figueiredo JR, Zelinski MB, Ribeiro Rodrigues AP. Use of synthetic polymers improves the quality of vitrified caprine preantral follicles in the ovarian tissue. Acta Histochem 2020; 122:151484. [PMID: 31902536 DOI: 10.1016/j.acthis.2019.151484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate whether the addition of synthetic polymers to the vitrification solution affected follicular morphology and development and the expression of Ki-67, Aquaporin 3 (AQP3) and cleaved Caspase-3 proteins in ovarian tissue of the caprine species. Caprine ovaries were fragmented and two fragments were immediately fixed (Fresh Control) for morphological evaluation, while other two were in vitro cultured for 7 days (Cultured Control) and fixed as well. The remaining fragments were distributed in two different vitrification groups: Vitrified and Vitrified/Cultured. Each group was composed of 4 different treatments: 1) Sucrose (SUC); 2) SuperCool X-1000 0.2 % (X-1000); 3) SuperCool Z-1000 0.4 % (Z-1000) or 4) with polyvinylpyrrolidone K-12 0.2 % (PVP). Also, Fresh Control, Cultured Control, SUC and X-1000 were destined to immunohistochemical detection of Ki-67, AQP3 and cleaved Caspase-3 proteins. Morphologically, the treatment with X-1000 showed no significant difference with the Fresh Control group and was superior to the other treatments. After the cleaved caspase-3 analysis, X-1000 showed the lowest percentages of strong immunostaining while Cultured Control showed the highest. Also, a positive correlation was found between the percentages of degenerated follicles and the percentages of strong staining intensity follicles. Regarding the AQP3 analysis, the highest percentages of strong AQP3 staining intensity were found in X-1000. In conclusion, we have demonstrated that the addition of the synthetic polymer SuperCool X-1000 to the vitrification solution improved the current vitrification protocol of caprine ovarian tissue.
Collapse
|
35
|
Ovarian mitochondrial dynamics and cell fate regulation in an androgen-induced rat model of polycystic ovarian syndrome. Sci Rep 2020; 10:1021. [PMID: 31974436 PMCID: PMC6978404 DOI: 10.1038/s41598-020-57672-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, we investigated in an androgenized rat model the involvement of autophagy and mitochondrial dynamics in granulosa cells in the pathogenesis of polycystic ovarian syndrome (PCOS) and its modulation by exogenous gonadotropin (eCG). We found 5α-dihydrotestosterone (DHT) treatment reduces ovarian length and weight with predominantly late antral and/or preovulatory stage follicles and no corpora lutea. DHT increased the population of large lysosomes (>50 micron) and macroautophagy, an event associated with granulosa cell apoptosis. Increased granulosa cell Dynamin Related Protein 1 (Drp1) content in the DHT group was accompanied by increased circular and constricted, but reduced rod-shaped, mitochondria. eCG eliminated all atypical follicles and increased the number of late antral and preovulatory follicles with less granulosa cell apoptosis. eCG-treated rats had a higher proportion of connected mitochondria, and in combination with DHT had a lower proportion of circular and constricted mitochondria than rats treated with DHT alone, suggesting that eCG induces mitochondrial fusion and attenuates fission in granulosa cells. In summary, we observed that DHT-induced up-regulation of Drp1 is associated with excessive mitochondrial fission, macroautophagy and apoptosis in granulosa cells at the antral stage of development in an androgenized rat model for PCOS, a response partially attenuated by exogenous gonadotropin.
Collapse
|
36
|
Heat stress impairs in vitro development of preantral follicles of cattle. Anim Reprod Sci 2020; 213:106277. [PMID: 31987328 DOI: 10.1016/j.anireprosci.2020.106277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/23/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Although detrimental effects of heat stress on antral follicle development have been well studied, long-term effects - affecting the preantral follicle pool - are still largely unknown. The goal of this study was to evaluate effects of heat stress on growth, viability, gene expression and ATP production of preantral follicles of cattle. Follicles at the primary, early secondary and secondary stages were isolated from cattle ovaries and individually cultured while imposing physiological (CON; 38.5 °C) or intermittent heat stress (HS; 38.5 °C for 16 h and 41 °C for 8 h daily) conditions for 7 days. Individual follicles were subjected to real-time qPCR for determination of relative abundance of BAX, HSPA1A and SOD1 mRNA transcripts and evaluated for ATP production. Treatment for 7 days with intermittent HS decreased viability (P = 0.01) and diameter (P = 0.03) of preantral follicles. Relative abundances of BAX and HSPA1A mRNA transcripts were greater in follicles of the CON and HS groups that became non-viable during culture (P < 0.05); relative abundance of SOD1 mRNA transcript, however, was only greater in non-viable follicles of the HS group (P < 0.05), but not non-viable follicles of the CON group (P = 0.3). The ATP production was not different between viable follicles of the CON and HS group (P = 0.86). In conclusion, all stages of growing preantral follicles of cattle were susceptible to negative effects of heat stress. Follicles at the secondary stage of development were most sensitive, followed by early secondary and primary follicles.
Collapse
|
37
|
Manov V, Planski V, Popov G. Histological characteristics of folliculogenesis in Murrah water buffaloes during the early postpubertal period. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.15547/bjvm.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A characteristic feature of water buffalo heifers is that they approach breeding maturity later than bovine heifers. From a physiological and endocrinological view, this is related to a later puberty, which affects the overall reproductive performance of water buffalo. The aim of this study was to highlight some morphological characteristics of the water buffalo (Bubalus bubalis) ovaries in the early postpubertal period. The results showed active ovaries of the examined specimens. Some of the follicles had no oocyte, but were with normal structure and physiological activity. Histology is a definitive method for examination of ovarian activity in water buffaloes. In some of the ovulating follicles the oocyte was absent during early puberty. The presence of corpora lutea confirmed the endocrine maturity of the hypothalamus-pituitary-gonadal endocrine axis in 11–14 months old heifers despite the absence of oocytes.
Collapse
|
38
|
Follicular structures of cows with cystic ovarian disease present altered expression of cytokines. ZYGOTE 2019; 27:285-298. [PMID: 31412964 DOI: 10.1017/s0967199419000285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ovulation is considered an inflammatory, cytokine-mediated event. Cytokines, which are recognized as growth factors with immunoregulatory properties, are involved in many cellular processes at the ovarian level. In this sense, cytokines affect fertility and are involved in the development of different ovarian disorders such as bovine cystic ovarian disease (COD). Because it has been previously demonstrated that ovarian cells represent both sources and targets of cytokines, the aim of this study was to examine the expression of several cytokines, including IL-1β, IL-1RA, IL-1RI, IL-1RII, IL-4 and IL-8, in ovarian follicular structures from cows with spontaneous COD. The protein expression of these cytokines was evaluated by immunohistochemistry. Additionally, IL-1β, IL-4 and IL-8 concentrations in follicular fluid (FF) and serum were determined by enzyme-linked immunosorbent assay (ELISA). In granulosa and theca cells, IL-1RI, IL-1RII, IL-1RA and IL-4 expression levels were higher in cystic follicles than in the control dominant follicles. The serum and FF concentrations of IL-1β and IL-4 showed no differences between groups, whereas IL-8 concentration was detected only in FF of cysts from cows with COD. The FF and serum concentrations of IL-1β and IL-8 showed no significant differences, whereas IL-4 concentration was higher in FF than in serum in both the control and COD groups. These results evidenced an altered expression of cytokines in ovaries of cows with COD that could contribute to the pathogenesis of this disease.
Collapse
|
39
|
Is the pre-antral ovarian follicle the 'holy grail'for female fertility preservation? Anim Reprod Sci 2019; 207:119-130. [PMID: 31208845 DOI: 10.1016/j.anireprosci.2019.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/18/2023]
Abstract
Fertility preservation is not only a concern for humans with compromised fertility after cancer treatment. The preservation of genetic material from endangered animal species or animals with important genetic traits will also greatly benefit from the development of alternative fertility preservation strategies. In humans, embryo cryopreservation and mature-oocyte cryopreservation are currently the only approved methods for fertility preservation. Ovarian tissue cryopreservation is specifically indicated for prepubertal girls and women whose cancer treatment cannot be postponed. The cryopreservation of pre-antral follicles (PAFs) is a safer alternative for cancer patients who are at risk of the reintroduction of malignant cells. As PAFs account for the vast majority of follicles in the ovarian cortex, they represent an untapped potential, which could be cultivated for reproduction, preservation, or research purposes. Vitrification is being used more and more as it seems to yield better results compared to slow freezing, although protocols still need to be optimized for each specific cell type and species. Several methods can be used to assess follicle quality, ranging from simple viability stains to more complex xenografting procedures. In vitro development of PAFs to the pre-ovulatory stage has not yet been achieved in humans and larger animals. However, in vitro culture systems for PAFs are under development and are expected to become available in the near future. This review will focus on recent developments in (human) fertility preservation strategies, which are often accomplished by the use of in vitro animal models due to ethical considerations and the scarcity of human research material.
Collapse
|
40
|
Son HN, Chi HNQ, Chung DC, Long LT. Morphological changes during replicative senescence in bovine ovarian granulosa cells. Cell Cycle 2019; 18:1490-1497. [PMID: 31131697 DOI: 10.1080/15384101.2019.1624108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The objective of this study was to evaluate replicative senescence of bovine granulosa cells (bGCs) during in vitro long-term culture. WST-1 assay analysis showed that bGCs proliferation was reduced from primary culture to 14th passage. The several bGCs from the 3rd passage and 7th passage exposed the weak activity of beta-galactosidase, while a strongly positive staining of beta-galactosidase was observed in bGCs from 14th passage. Flow cytometry analysis showed that bGCs were induced to cell cycle arrest at G0/G1 phase through in vitro expansion. TERT transcript expression of bGCs was downregulated from primary culture to 14th passage. The cell and nuclear area of bGCs were dramatically increased from 14th passage to 25th passage. The nucleocytoplasmic ratio of bGCs was dramatically reduced in 22th passage (4.32%) and 25th passage (2.45%), comparing to previous passages: primary culture (10.67%), 7th passage (9.21%), or 14th passage (10.33%). The number of microfilament bundle of bGCs was increased in 22nd passage (67.42 ± 17.76) and 25th passage (56.31 ± 22.45). The diameter of microfilament bundle of bGCs in 25th passage was dramatically increased to 1.88 ± 0.32 µm comparing to the primary culture (1.15 ± 0.03 µm). In this study, we also assessed the nuclear form factor which illustrates the level of nuclear circular form. A reduction of nuclear form factor was observed in bGCs during long-term in vitro expansion. The changes of nuclear form factor were correlated to other senescent characteristics, especially the nucleocytoplasmic ratio.
Collapse
Affiliation(s)
- Hoang Nghia Son
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| | - Ho Nguyen Quynh Chi
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| | - Doan Chinh Chung
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| | - Le Thanh Long
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| |
Collapse
|
41
|
Zhang J, Xu Y, Liu H, Pan Z. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reprod Biol Endocrinol 2019; 17:9. [PMID: 30630485 PMCID: PMC6329178 DOI: 10.1186/s12958-018-0450-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that posttranscriptionally regulate gene expression. In the past decade, studies on miRNAs in ovaries have revealed the key roles of miRNAs in ovarian development and function. In this review, we first introduce the development of follicular atresia research and then summarize genome-wide studies on the ovarian miRNA profiles of different mammalian species. Differentially expressed miRNA profiles during atresia and other biological processes are herein compared. In addition, current knowledge on confirmed functional miRNAs during the follicular atresia process, which is mostly indicated by granulosa cell (GC) apoptosis, is presented. The main miRNA families and clusters, including the let-7 family, miR-23-27-24 cluster, miR-183-96-182 cluster and miR-17-92 cluster, and related pathways that are involved in follicular atresia are thoroughly summarized. A deep understanding of the roles of miRNA networks will not only help elucidate the mechanisms of GC apoptosis, follicular development, atresia and their disorders but also offer new diagnostic and treatment strategies for infertility and other ovarian dysfunctions.
Collapse
Affiliation(s)
- Jinbi Zhang
- 0000 0000 9750 7019grid.27871.3bCollege of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210095 People’s Republic of China
| | - Yinxue Xu
- 0000 0000 9750 7019grid.27871.3bCollege of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210095 People’s Republic of China
| | - Honglin Liu
- 0000 0000 9750 7019grid.27871.3bCollege of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210095 People’s Republic of China
| | - Zengxiang Pan
- 0000 0000 9750 7019grid.27871.3bCollege of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
42
|
Gigante P, Berni M, Bussolati S, Grasselli F, Grolli S, Ramoni R, Basini G. Glyphosate affects swine ovarian and adipose stromal cell functions. Anim Reprod Sci 2018; 195:185-196. [PMID: 29843941 DOI: 10.1016/j.anireprosci.2018.05.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022]
Abstract
Although Glyphosate (GLY) is a widely used pesticide, its effects on ovarian function and stem cell differentiation are still largely unknown. Therefore, as a contribution on this subject, the present work reports an investigation of the in vitro effects of GLY on swine granulosa cells and adipose stromal cells (ASCs). The effect of GLY at different doses (0.2, 4 and 16 μg/mL) was evaluated on granulosa cells growth (BrDU incorporation and ATP production), steroidogenesis (17-β estradiol and progesterone secretion) and redox status (superoxide and nitric oxide production and non-enzymatic scavenging activity). GLY has been shown to inhibit cell growth, 17-β estradiol and non-enzymatic scavenging activity and to increase progesterone and nitric oxide secretion (P < 0.05). In addition, GLY significantly decreased the viability of ASCs (P < 0.001), and inhibited their adipogenic differentiation. These data indicate that GLY alters the main features of granulosa cells and ASCS thus suggesting that GLY could affect both reproductive function and adipose tissues homeostasis.
Collapse
Affiliation(s)
- Paolo Gigante
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Melissa Berni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Roberto Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy.
| |
Collapse
|
43
|
Makarevich AV, Földešiová M, Pivko J, Kubovičová E, Chrenek P. Histological characteristics of ovarian follicle atresia in dairy cows with different milk production. Anat Histol Embryol 2018; 47:510-516. [PMID: 30022512 DOI: 10.1111/ahe.12389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/19/2018] [Accepted: 06/25/2018] [Indexed: 11/28/2022]
Abstract
Follicle atresia in mammals is a universal phenomenon characteristic by degenerative morphological changes in granulosa and theca cells. The unfavourable effect of milk production in relation to fertility has been studied starting from the 70s of the last century; however, there is no unambiguous and persuasive data on association of ovarian atresia with milk yield of dairy cows. The aim of this study was to define histological signs of ovarian follicle atresia in dairy cows in relation to their milk production. The ovaries were recovered from slaughtered Holstein dairy cows assigned into two groups according to average level of annual milk production: Group 1 (n = 25)-low (≤8,000 kg/year) and Group 2 (n = 23)-high (≥8,000 kg/year). Atresia of antral follicles was evaluated on the basis of histopathological image (staining with basic fuchsine and toluidine blue) of nonovulated follicles, classified into five categories: an initial atresia, cystic atresia, obliterated atresia, atresia with luteinization of the granulosa and follicle structures of the fibrous body-corpus fibrosum. We found that the histopathological image of follicle atresia in groups of low-milk- or high-milk-producing cows is essentially similar. Prevalent form of atresia in follicles of all experimental cows was the formation of fibrous bodies and obliterated atresia. The occurrence of fibrous bodies was significantly higher (55.44%) in low-milk-producing cows compared with high-milk-producing cows (34.61%). In the same way, the higher incidence of obliterated atresia was recorded in ovarian follicles from cows with the lower milk production (36.96%) compared to the cows with the higher milk production (25.48%). In contrast, ovaries from lower milk-producing cows showed lower (p < 0.05) incidence of initial (p < 0.001) and cystic (p < 0.05) follicle atresia than ovaries from the higher milk-producing cows. Our results show that cows in the higher lactation group showed more initial and cystic atresia, what may adversely affect the fertility of dairy cows.
Collapse
Affiliation(s)
- Alexander V Makarevich
- NPPC, Research Institute for Animal Production Nitra, Lužianky-near-Nitra, Slovak Republic
| | - Martina Földešiová
- NPPC, Research Institute for Animal Production Nitra, Lužianky-near-Nitra, Slovak Republic
| | - Juraj Pivko
- NPPC, Research Institute for Animal Production Nitra, Lužianky-near-Nitra, Slovak Republic
| | - Elena Kubovičová
- NPPC, Research Institute for Animal Production Nitra, Lužianky-near-Nitra, Slovak Republic
| | - Peter Chrenek
- NPPC, Research Institute for Animal Production Nitra, Lužianky-near-Nitra, Slovak Republic.,Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
44
|
Rocha CD, Soares MM, de Cássia Antonino D, Júnior JM, Freitas Mohallem RF, Ribeiro Rodrigues AP, Figueiredo JR, Beletti ME, Jacomini JO, Alves BG, Alves KA. Positive effect of resveratrol against preantral follicles degeneration after ovarian tissue vitrification. Theriogenology 2018; 114:244-251. [DOI: 10.1016/j.theriogenology.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
|
45
|
Jimenez CR, de Azevedo JL, Ciro Alexandre Alves T, Penitente-Filho JM, Gonçalves WG. Sequential medium with GH and IGF-1 improved in vitro development of bovine preantral follicles enclosed in ovarian tissue. Reprod Domest Anim 2018; 53:1103-1113. [DOI: 10.1111/rda.13210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 04/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Carolina Rodriguez Jimenez
- Department of Animal Science, Laboratory of Physiology and Animal Reproduction; Federal University of Viçosa; Viçosa Brazil
| | - Jovana Luiza de Azevedo
- Department of Animal Science, Laboratory of Physiology and Animal Reproduction; Federal University of Viçosa; Viçosa Brazil
| | - Torres Ciro Alexandre Alves
- Department of Animal Science, Laboratory of Physiology and Animal Reproduction; Federal University of Viçosa; Viçosa Brazil
| | - Jurandy Mauro Penitente-Filho
- Department of Animal Science, Laboratory of Physiology and Animal Reproduction; Federal University of Viçosa; Viçosa Brazil
| | - Wagner Gonzaga Gonçalves
- Department of Biology, Laboratory of Cellular Ultrastructure; Federal University of Viçosa; Viçosa Brazil
| |
Collapse
|
46
|
Read CC, Willhelm G, Dyce PW. Connexin 43 coupling in bovine cumulus cells, during the follicular growth phase, and its relationship to in vitro embryo outcomes. Mol Reprod Dev 2018; 85:579-589. [PMID: 29697878 DOI: 10.1002/mrd.22993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
Gap junctional coupling between cumulus cells is required for oocytes to reach developmental competence. Multiple connexins, which form these gap junctions, have been found within the ovarian follicles of several species including bovine. The aim of this study was to determine the role of connexin 43 (CX43) and its relationship to embryo development, after in vitro fertilization (IVF). Cumulus-oocyte complexes (COCs) were obtained from abattoir sourced, mixed breed, bovine ovaries. COCs were isolated from follicles ranging from 2 to 5 mm in size, representing the preselected follicle pool. Immediately after isolation, two cumulus cell biopsies were collected and stored for analysis pending determination of developmental outcomes. Using in vitro procedures, COCs were individually matured, fertilized, and cultured to the blastocyst stage. Biopsies were grouped as originating from COCs that arrested at the two-cell stage (low developmental competence [LDC]) or having developed to the late morula/blastocyst stage (high developmental competence [HDC]), after IVF and embryo culture. The expression level of CX43 was found to be significantly higher in cumulus cells from COCs that had an HDC when compared with those that had an LDC. Moreover, the gap junctional intercellular coupling rate was significantly higher in cumulus from COCs deemed to have an HDC. Significantly higher expression of the cumulus health markers luteinizing hormone receptor and cytochrome p450 19A1 was found in the cumulus originating from oocytes with HDC, suggesting that this system may provide a mechanism for noninvasively testing for oocyte health in preselected bovine follicles.
Collapse
Affiliation(s)
- Casey C Read
- Department of Animal Sciences, College of Agriculture, Auburn University, Auburn, Alabama
| | - Gabby Willhelm
- Department of Animal Sciences, College of Agriculture, Auburn University, Auburn, Alabama
| | - Paul W Dyce
- Department of Animal Sciences, College of Agriculture, Auburn University, Auburn, Alabama
| |
Collapse
|
47
|
Moonmanee T, Navanukraw C, Yama P, Jitjumnong J. Uterine artery flow velocity waveform, arterial flow indices, follicular dynamics, and sex hormones during preovulatory period in synchronized ovulatory cycle of Bos indicus beef cows. Reprod Biol 2018; 18:99-108. [DOI: 10.1016/j.repbio.2018.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 11/15/2022]
|
48
|
Teh A, Izzati UZ, Mori K, Fuke N, Hirai T, Kitahara G, Yamaguchi R. Histological and immunohistochemical evaluation of granulosa cells during different stages of folliculogenesis in bovine ovaries. Reprod Domest Anim 2018; 53:569-581. [PMID: 29450927 DOI: 10.1111/rda.13132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023]
Abstract
Bovine granulosa cells (GC) vary in their morphological aspect during different stages of folliculogenesis. In this study, 10 morphologically normal bovine ovaries were collected to study the structural aspects of different stages of GC using intermediate filament protein antibodies including cytokeratin AE1/AE3 (AE1/AE3), vimentin, nectin-4 and desmin. Hormonal immunolocalization was assessed using the immunomarkers anti-Müllerian hormone (AMH) and inhibin alpha. In addition, tumour markers and proliferation markers using c-erbB-2 oncoprotein and proliferating cell nuclear antigen, respectively, were investigated. The immunolabelling of AE1/AE3 in GC was strongest in the early follicle stage and gradually decreased when reaching the Graafian follicle stage. Its immunolabelling increased again as the stage progressed from stage I to stage III. The immunolabelling of inhibin alpha was inversely proportional to that of AE1/AE3 in the developing ovarian follicles as their immunolabelling is opposite to each other during folliculogenesis. AMH was immunopositive in almost all GC stages in different intensities and percentages, except for some negative staining in the atretic IV follicles. The atretic IV follicle is a unique type of atretic follicle that shows Call-Exner body formation, which was mainly found in older cows in this study. The distinct patterns of immunoreactivity for various types of immunomarkers in the different GC stages will play an important role in diagnostic assistance of various follicle conditions, including cystic ovaries and GC tumours.
Collapse
Affiliation(s)
- App Teh
- Faculty of Agriculture, Department of Veterinary Pathology, University of Miyazaki, Miyazaki, Japan
| | - U Z Izzati
- Faculty of Agriculture, Department of Veterinary Pathology, University of Miyazaki, Miyazaki, Japan
| | - K Mori
- Faculty of Agriculture, Department of Veterinary Pathology, University of Miyazaki, Miyazaki, Japan
| | - N Fuke
- Faculty of Agriculture, Department of Veterinary Pathology, University of Miyazaki, Miyazaki, Japan
| | - T Hirai
- Faculty of Agriculture, Department of Veterinary Pathology, University of Miyazaki, Miyazaki, Japan
| | - G Kitahara
- Faculty of Agriculture, Laboratory of Theriogenology, University of Miyazaki, Miyazaki, Japan
| | - R Yamaguchi
- Faculty of Agriculture, Department of Veterinary Pathology, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
49
|
Abstract
Culture of granulosa cells has for long provided a useful tool to understand the molecular processes underlying ovarian follicle development. Among all species investigated, cattle have become an excellent model for in vitro studies on follicular biology, both because of their resemblance with humans in terms of follicular biology and the importance of reproductive failure as a cause of lost productivity in the dairy industry. In this chapter, we describe up-to-date methods for the harvesting of granulosa cells from bovine ovaries collected post-mortem, as well as procedures for both culturing granulosa cells in an undifferentiated state and inducing their luteinization in vitro, and for the efficient transfection of granulosa cells with oligonucleotide sequences for the purpose of investigating the function of specific genes in vitro.
Collapse
Affiliation(s)
- Bushra T Mohammed
- College of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - F Xavier Donadeu
- The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
50
|
Bahrami A, Miraie-Ashtiani SR, Sadeghi M, Najafi A, Ranjbar R. Dynamic modeling of folliculogenesis signaling pathways in the presence of miRNAs expression. J Ovarian Res 2017; 10:76. [PMID: 29258623 PMCID: PMC5735818 DOI: 10.1186/s13048-017-0371-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background TEK signaling plays a very important role in folliculogenesis. It activates Ras/ERK/MYC, PI3K/AKT/mTORC1 and ovarian steroidogenesis activation pathways. These are the main pathways for cell growth, differentiation, migration, adhesion, proliferation, survival and protein synthesis. Results TEK signaling on each of the two important pathways where levels of pERK, pMYC, pAkt, pMCL1 and pEIF4EBP1 are increased in dominant follicles and pMYC is decreased in dominant follicles. Over activation of ERK and MYC which are the main cell growth and proliferation and over activation of Akt, MCl1, mTORC1 and EIF4EBP1 which are the main cell survival and protein synthesis factors act as promoting factors for folliculogenesis. In case of over expression of hsa-miR-30d-3p and hsa-miR-451a, MYC activity level is considerably increased in subordinate follicles. Our simulation results show that in the presence of has-miR-548v and bta-miR-22-3p, downstream factors of pathways are inhibited. Conclusions Our work offers insight into the design of natural biological procedures and makes predictions that can guide further experimental studies on folliculogenesis pathways. Moreover, it defines a simple signal processing unit that may be useful for engineering synthetic biology and genes circuits to carry out cell-based computation. Electronic supplementary material The online version of this article (doi:10.1186/s13048-017-0371-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abolfazl Bahrami
- Department of Animal Science, University college of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Seyed Reza Miraie-Ashtiani
- Department of Animal Science, University college of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Mostafa Sadeghi
- Department of Animal Science, University college of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|