1
|
Liu H, Yang Q, Li G, Hung TC, Zuo J, Luan N, Liu X, Wu Q. Probiotic Lactobacillus rhamnosus modulates MCLR-induced oogenesis disorders in zebrafish: Evidence from the transcriptome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175532. [PMID: 39153614 DOI: 10.1016/j.scitotenv.2024.175532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Microcystin-LR (MCLR) produced by cyanobacterial blooms have received global attention. MCLR has been recognized as a reproductive toxin to fish and poses a threat to ecosystem stability. It has been proven that probiotic dietary management can improve reproductive performance of fish. It is worth paying attention to exploring whether probiotic management can alleviate the reproductive toxicity caused by MCLR. In this investigation, adult zebrafish were exposed to different doses of MCLR solution (0, 2.2, and 22 μg/L) with or without the Lactobacillus rhamnosus GG supplementation for a duration of 28 days. The results showed that female zebrafish spawning was reduced after exposure to MCLR, but this reduction was reversed when L. rhamnosus GG was added. To elucidate how L. rhamnosus GG mitigates reproductive toxicity caused by MCLR, we examined a series of indicators of MCLR accumulation, ovarian histology, hormones, and transcriptome levels. Our study showed that L. rhamnosus GG could alleviate oogenesis disorders and ultimately attenuate MCLR-induced reproductive toxicity by reducing MCLR accumulation in the gonads, modulating the expression of endocrine system and auto/paracrine factors. The transcriptome results revealed that single or combined exposure of MCLR and L. rhamnosus GG mainly affected the endocrine system, energy metabolism, and RNA degradation and translation. Overall, our results provide new insights for alleviating MCLR-induced reproductive toxicity and help promote healthy aquaculture.
Collapse
Affiliation(s)
- Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Luan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi, Hubei Province 435002, China
| |
Collapse
|
2
|
Torsabo D, Ishak SD, Noordin NM, Waiho K, Koh ICC, Yazed MA, Abol-Munafi AB. Optimizing reproductive performance in pangasius catfish broodstock: A review of dietary and molecular strategies. Vet Anim Sci 2024; 25:100375. [PMID: 39005967 PMCID: PMC11245938 DOI: 10.1016/j.vas.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Pangasius catfish, a significant player in the global whitefish market, encounters challenges in aquaculture production sustainability. Quality broodstock maintenance and seed production are impeded by growth, maturation, and fecundity issues. This review investigates the efficacy of strategic nutrient composition and molecular strategies in enhancing broodstock conditions and reproductive performance across various fish species. A notable knowledge gap for Pangasius catfish hampers aquaculture progress. The review assesses nutrient manipulation's impact on reproductive physiology, emphasizing pangasius broodstock. A systematic review analysis following PRISMA guidelines was conducted to identify research trends and hotspots quantitatively, revealing a focus on P. bocourti and fertilization techniques. Addressing this gap, the review offers insights into dietary nutrients manipulation and genetic tool utilization for improved seed production, contributing to pangasius catfish aquaculture sustainability.
Collapse
Affiliation(s)
- Donald Torsabo
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Department of Fisheries and Aquaculture, Joseph Sarwuan Tarka University, Makurdi, Makurdi, Benue State, Nigeria
| | - Sairatul Dahlianis Ishak
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Noordiyana Mat Noordin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Faculty of Fisheries and Food Science Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity and Conservation, College of Marine Sciences, Beibu Gulf University, Guangxi, China
- Center for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Ivan Chong Chu Koh
- Faculty of Fisheries and Food Science Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Muhammad Abduh Yazed
- Faculty of Fisheries and Food Science Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Ambok Bolong Abol-Munafi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
3
|
Lyu W, Li DF, Li SY, Hu H, Zhou JY, Wang L. Gut microbiota modulation: a narrative review on a novel strategy for prevention and alleviation of ovarian aging. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38835159 DOI: 10.1080/10408398.2024.2361306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The global rise in life expectancy corresponds with a delay in childbearing age among women. Ovaries, seen as the chronometers of female physiological aging, demonstrate features of sped up aging, evidenced by the steady decline in both the quality and quantity of ovarian follicles from birth. The multifaceted pathogenesis of ovarian aging has kindled intensive research interest from the biomedical and pharmaceutical sectors. Novel studies underscore the integral roles of gut microbiota in follicular development, lipid metabolism, and hormonal regulation, forging a nexus with ovarian aging. In this review, we outline the role of gut microbiota in ovarian function (follicular development, oocyte maturation, and ovulation), compile and present gut microbiota alterations associated with age-related ovarian aging. We also discuss potential strategies for alleviating ovarian aging from the perspective of gut microbiota, such as fecal microbiota transplantation and probiotics.
Collapse
Affiliation(s)
- Wei Lyu
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| | - De-Feng Li
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Shu-Ying Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Jian-Yun Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Ling Wang
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Ciji A, Akhtar MS, Tripathi PH, Dubey MK, Sharma P. Higher intake of β-glucan impairs reproduction in a female teleost, Tor putitora (Hamilton, 1822). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:589-603. [PMID: 38175337 DOI: 10.1007/s10695-023-01292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Although the immuno-modulatory and stress-relieving properties of β-glucan is well elucidated in humans and other animal models, including fish, its role as a dietary supplement on reproduction is extremely scarce. Therefore, in this study, adult female fish were fed one of four test diets having 0 (control), 0.5, 1, and 1.5% β-D-glucan for 130 days and its effect on reproductive performance, ovarian and liver histology, sex hormones, and transcript abundance of selected reproduction-related genes was assessed. Low dietary intake of β-glucan improved fertilization and hatching rates (p<0.05). The relative fecundity and percentage of spawning females were higher (non-significant) in 0.5% β-glucan-fed groups. Surprisingly, even after 130 days, spawning did not occur in 1.5% β-glucan-fed individuals. Irrespective of β-glucan intake, all the brooders recorded similar plasma 17β-estradiol and maturation-inducing hormone (p>0.05). Higher intake of β-glucan (1.5%) upregulated aromatase genes without a parallel increase in 17β-estradiol. However, plasma vitellogenin increased with increasing β-glucan up to 1.0% then declined at 1.5% (p<0.05). The fish that received control, 0.5, and 1.5% β-glucan recorded similar vitellogenin levels in their plasma. Significantly higher plasma cortisol was evidenced in 1.5% β-glucan fed brooders (p<0.05). Histologically, higher follicular atresia and leaking of yolk material was evidenced in 1.5% β-glucan-fed group. Liver histology revealed the highest nutrient/lipid accumulation in fish that received 1.0% and 1.5% β-glucan. This study demonstrated the stimulatory effect of β-glucan intake at a lower dose (0.5%) on reproduction. However, higher intake (1.5%) could perturb normal reproductive function in a fish model and caused an increased number of atretic follicles leading to spawning/reproductive failure.
Collapse
Affiliation(s)
- Alexander Ciji
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, Nainital, Uttarakhand, -263136, India
| | - M S Akhtar
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, Nainital, Uttarakhand, -263136, India.
| | - Priyanka H Tripathi
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, Nainital, Uttarakhand, -263136, India
| | - Maneesh Kumar Dubey
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, Nainital, Uttarakhand, -263136, India
| | - Prakash Sharma
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, Nainital, Uttarakhand, -263136, India
| |
Collapse
|
5
|
Garcias-Bonet N, Roik A, Tierney B, García FC, Villela HDM, Dungan AM, Quigley KM, Sweet M, Berg G, Gram L, Bourne DG, Ushijima B, Sogin M, Hoj L, Duarte G, Hirt H, Smalla K, Rosado AS, Carvalho S, Thurber RV, Ziegler M, Mason CE, van Oppen MJH, Voolstra CR, Peixoto RS. Horizon scanning the application of probiotics for wildlife. Trends Microbiol 2024; 32:252-269. [PMID: 37758552 DOI: 10.1016/j.tim.2023.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
The provision of probiotics benefits the health of a wide range of organisms, from humans to animals and plants. Probiotics can enhance stress resilience of endangered organisms, many of which are critically threatened by anthropogenic impacts. The use of so-called 'probiotics for wildlife' is a nascent application, and the field needs to reflect on standards for its development, testing, validation, risk assessment, and deployment. Here, we identify the main challenges of this emerging intervention and provide a roadmap to validate the effectiveness of wildlife probiotics. We cover the essential use of inert negative controls in trials and the investigation of the probiotic mechanisms of action. We also suggest alternative microbial therapies that could be tested in parallel with the probiotic application. Our recommendations align approaches used for humans, aquaculture, and plants to the emerging concept and use of probiotics for wildlife.
Collapse
Affiliation(s)
- Neus Garcias-Bonet
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Francisca C García
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Helena D M Villela
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ashley M Dungan
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kate M Quigley
- Minderoo Foundation, Perth, WA, Australia; James Cook University, Townsville, Australia
| | - Michael Sweet
- Aquatic Research Facility, Nature-based Solutions Research Centre, University of Derby, Derby, UK
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; University of Potsdam and Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Maggie Sogin
- Molecular Cell Biology, University of California, Merced, CA, USA
| | - Lone Hoj
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Gustavo Duarte
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; IMPG, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heribert Hirt
- Center for Desert Agriculture (CDA), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Alexandre S Rosado
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; WorldQuant Initiative on Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | | | - Raquel S Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
6
|
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Rehman A, Rashid A, Ekumah JN, Han X, Wang J, Ren X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024; 16:546. [PMID: 38398870 PMCID: PMC10893534 DOI: 10.3390/nu16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | | | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Mehak Gul
- Department of Internal Medicine, Sheikh Zayed Hospital, Lahore 54000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Jain A, Jain R, Jain SK. Assessment of Lactobacillus rhamnosus mediated protection against arsenic-induced toxicity in zebrafish: a qPCR-based analysis of Firmicutes and Bacteroidetes groups and embryonic development. Arch Microbiol 2023; 205:316. [PMID: 37608161 DOI: 10.1007/s00203-023-03647-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Arsenic poses a significant health risk worldwide, impacting the gut microbiota, reproductive health, and development. To address this issue, a cost-effective method like probiotic supplementation could be beneficial. However, the interplay between arsenic toxicity, probiotics, gut microbiota, and maternal transcript modulation remains unexplored. This study investigates the impact of Lactobacillus rhamnosus (L. rhamnosus) DSM 20021 on the proportions of Firmicutes and Bacteroidetes, as well as its effects on embryonic development in zebrafish induced by arsenic trioxide (As2O3). Adult zebrafish were exposed to both high and environmentally relevant concentrations of As2O3 (10, 50, and 500 ppb) for 1, 6, and 12 weeks. qPCR analysis revealed increased proportions of Firmicutes and Bacteroidetes in all As2O3-exposed and As2O3 + L. rhamnosus-exposed groups, while no significant changes were observed in groups exposed only to L. rhamnosus DSM 20021. The larvae, exposed to 500 ppb of As2O3 for 12 weeks, exhibited low growth, decreased survival rates, and morphological deformities. However, these adverse effects were reversed upon exposure to only L. rhamnosus DSM 20021. Furthermore, the expression of DVR1 and ABCC5, which are involved in defense against xenobiotics and embryo development, decreased significantly in As2O3 (500 ppb) and As2O3 (500 ppb) + L. rhamnosus-exposed groups, whereas ameliorative effects were observed in only L. rhamnosus DSM 20021-exposed groups.
Collapse
Affiliation(s)
- Abhishek Jain
- Department of Biotechnology, Dr. Harisingh Gour University, Sagar, 470003, M.P., India
| | - Roshni Jain
- Department of Biotechnology, Dr. Harisingh Gour University, Sagar, 470003, M.P., India
| | - Subodh Kumar Jain
- Department of Zoology, Dr. Harisingh Gour University, Sagar, 470003, M.P., India.
| |
Collapse
|
8
|
Hoseinifar SH, Maradonna F, Faheem M, Harikrishnan R, Devi G, Ringø E, Van Doan H, Ashouri G, Gioacchini G, Carnevali O. Sustainable Ornamental Fish Aquaculture: The Implication of Microbial Feed Additives. Animals (Basel) 2023; 13:ani13101583. [PMID: 37238012 DOI: 10.3390/ani13101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Ornamental fish trade represents an important economic sector with an export turnover that reached approximately 5 billion US dollars in 2018. Despite its high economic importance, this sector does not receive much attention. Ornamental fish husbandry still faces many challenges and losses caused by transport stress and handling and outbreak of diseases are still to be improved. This review will provide insights on ornamental fish diseases along with the measures used to avoid or limit their onset. Moreover, this review will discuss the role of different natural and sustainable microbial feed additives, particularly probiotics, prebiotics, and synbiotics on the health, reduction in transport stress, growth, and reproduction of farmed ornamental fish. Most importantly, this review aims to fill the informational gaps existing in advanced and sustainable practices in the ornamental fish production.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Mehwish Faheem
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti 621007, Tamil Nadu, India
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, N9019 Tromsø, Norway
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ghasem Ashouri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
9
|
Akbari Nargesi E, Falahatkar B. Dietary supplementation of multi-strain probiotic in male rainbow trout (Oncorhynchus mykiss) broodstock: Effects on feed efficiency, hemato-biochemical parameters, immune response, and semen quality. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:371-384. [PMID: 37002469 DOI: 10.1007/s10695-023-01181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/10/2023] [Indexed: 05/04/2023]
Abstract
The present study aimed to determine the effects of dietary probiotic supplementation on feed efficiency, physiological parameters, and semen quality of male rainbow trout (Oncorhynchus mykiss) broodstock. For this purpose, a total of 48 breeders with an average initial weight of 1366.1 ± 33.8 g were divided into 4 groups and 3 replicates. Fish were fed with diets containing 0 (control), 1 × 109 (P1), 2 × 109 (P2), and 4 × 109 (P3) CFU multi-strain probiotic kg-1 diet for 8 weeks. According to the results, P2 treatment significantly enhanced body weight increase, specific growth rate, and protein efficiency ratio and decreased feed conversion ratio. Moreover, the highest values of red blood cells count, hemoglobin, and hematocrit values were observed in P2 treatment (P < 0.05). The lowest levels of glucose, cholesterol, and triglyceride were found in P1, P2, and P3 treatments, respectively. Also, the highest levels of total protein and albumin were obtained in P2 and P1 treatments (P < 0.05). Based on the results, plasma enzymes contents were significantly decreased in P2 and P3 treatments. In terms of immune parameters, the complement component 3, complement component 4, and immunoglobulin M levels were increased in all probiotic-fed treatments (P < 0.05). For spermatological features, the highest spermatocrit value, sperm concentration, and motility time were observed in the P2 treatment (P < 0.05). Consequently, we conclude that multi-strain probiotics can be used as functional feed additives in male rainbow trout broodstock to enhance semen quality, improve physiological responses, and better feed efficiency.
Collapse
Affiliation(s)
- Erfan Akbari Nargesi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, P. O. Box 1144, Sowmeh Sara, Guilan, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, P. O. Box 1144, Sowmeh Sara, Guilan, Iran.
- Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Guilan, Iran.
| |
Collapse
|
10
|
Wu YR, Dong YH, Liu CJ, Tang XD, Zhang NN, Shen J, Wu Z, Li XR, Shao JY. Microbiological composition of follicular fluid in patients undergoing IVF and its association with infertility. Am J Reprod Immunol 2023; 89:e13652. [PMID: 36397134 DOI: 10.1111/aji.13652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
PROBLEM In recent years, the incidence of female infertility has risen sharply, which is affected by many factors. It was recognized that female reproductive tract microbes play a role in the process of female conception. If the reproductive tract microbes could solve a certain proportion of infertility, it would certainly reduce the pain and economic burden of many patients. The objective of this study was to investigate the microbial community composition of follicular fluid in infertile patients and its potential impact on infertility. METHOD OF STUDY Follicular fluid from 49 primary infertility and 52 secondary infertility patients was collected by a negative pressure needle, and the microbiota was analyzed by 16S rDNA sequencing. RESULTS It was found that Lactobacillus, especially L. crispatus, might have a positive effect on female pregnancy. Considering the presence or absence of male factors and different body mass indices, L. iners might inhibit female pregnancy. However, L. iners seemed to play a positive role in egg maturation, while Gardnerella and Cutibacterium acnes might have a negative effect on female pregnancy. CONCLUSIONS This study suggested the potential role of Lactobacillus in follicular fluid in improving female infertility and provided a theoretical basis for the future microbiological treatment of female infertility.
Collapse
Affiliation(s)
- Yue-Rong Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yong-Hong Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Dan Tang
- Gastroenterology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Gastroenterology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ning-Nan Zhang
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Shen
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ze Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jing-Yi Shao
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
11
|
Akbari Nargesi E, Falahatkar B. Effects of dietary supplementation of multi-strain probiotics on semen quality, seminal plasma compositions, and fertilization ability of rainbow trout (Oncorhynchus mykiss) broodstock spermatozoa. Theriogenology 2023; 202:1-9. [PMID: 36878033 DOI: 10.1016/j.theriogenology.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
The present experiment aims to study the effects of dietary multi-strain probiotics on semen quality, seminal plasma compositions, and fertilization ability of male rainbow trout. For this purpose, a total of 48 broodstocks with an average initial weight of 1366.1 ± 33.8 g were divided into 4 groups and 3 replicates. Fish were fed with diets containing 0 (control), 1 × 109 (P1), 2 × 109 (P2), and 4 × 109 (P3) CFU probiotic kg-1 diet for 12 weeks. Results showed that dietary supplementation of probiotics significantly increased plasma testosterone level, motility time of spermatozoa, sperm density, and spermatocrit value in P2 and P3 treatments and Na+ level in P2 treatment compared to the control group (P < 0.05). The activities of aspartate aminotransferase and lactate dehydrogenase had significantly decreased in the P2 treatment compared to the control group (P < 0.05). No considerable variations were observed between control fish and treatment groups (P > 0.05) in semen biochemical parameters, percentage of motile spermatozoa, osmolality, and pH of seminal plasma. Based on the results, the highest fertilization rate (97.2 ± 0.9%) and eyed egg survival (95.7 ± 1.6%) were observed in the P2 treatment, and those values showed remarkable differences with the control group (P < 0.05). The results indicated that multi-strain probiotics have potential efficacy on semen quality and fertilization ability of rainbow trout broodstock spermatozoa.
Collapse
Affiliation(s)
- Erfan Akbari Nargesi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, P. O. Box 1144, Guilan, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, P. O. Box 1144, Guilan, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Guilan, Iran.
| |
Collapse
|
12
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
13
|
Eissa ESH, Abd El-Hamed NNB, Ahmed NH, Badran MF. Improvement the Hatchery Seed Production Strategy on Embryonic Development and Larval Growth Performance and Development stages of Green Tiger Prawn, Penaeus semisulcatus Using Environmental Aspects. THALASSAS: AN INTERNATIONAL JOURNAL OF MARINE SCIENCES 2022; 38:1327-1338. [DOI: 10.1007/s41208-022-00463-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 07/02/2022] [Indexed: 09/02/2023]
Abstract
AbstractThis investigation aimed to improve the hatchery seed production strategy in terms of chronologies of embryonic and larval development as well as hatching, growth and survival rates, and rearing water quality of green tiger prawn, Penaeus semisulcatus by the integration effects of different water temperatures (23 °C, 26 °C, 29 °C, 32 °C) and probiotic as water additives. The best and shortest chronologies of embryonic development stages were in favor of 32 °C with probiotic. The best hatching rate was in favor of 29 °C with probiotics. The fastest larval development and greatest larval growth as total length until PL1 stage was promoted by 32 °C with probiotic but the best survival rate was recorded at 26 °C with probiotic followed by 29 °C with probiotic treatment. During larval development, the lowest value of NH4–N was recorded under the effect of 26 °C and probiotic. Therefore, probiotics as water additives at 29 and 32 °C water temperatures have a beneficial impact on the hatchery seed production strategy and quality of P. semisulcatus. Our findings could apply to rearing larvae in shrimp hatchery to decrease the chronology of embryonic and larval development, while increase the hatching rate, growth performance, and survival rates as well as improving the water quality.
Collapse
|
14
|
Wang N, Chen L, Yi K, Zhang B, Li C, Zhou X. The effects of microbiota on reproductive health: A review. Crit Rev Food Sci Nutr 2022; 64:1486-1507. [PMID: 36066460 DOI: 10.1080/10408398.2022.2117784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive issues are becoming an increasing global problem. There is increasing interest in the relationship between microbiota and reproductive health. Stable microbiota communities exist in the gut, reproductive tract, uterus, testes, and semen. Various effects (e.g., epigenetic modifications, nervous system, metabolism) of dysbiosis in the microbiota can impair gamete quality; interfere with zygote formation, embryo implantation, and embryo development; and increase disease susceptibility, thus adversely impacting reproductive capacity and pregnancy. The maintenance of a healthy microbiota can protect the host from pathogens, increase reproductive potential, and reduce the rates of adverse pregnancy outcomes. In conclusion, this review discusses microbiota in the male and female reproductive systems of multiple animal species. It explores the effects and mechanisms of microbiota on reproduction, factors that influence microbiota composition, and applications of microbiota in reproductive disorder treatment and detection. The findings support novel approaches for managing reproductive diseases through microbiota improvement and monitoring. In addition, it will stimulate further systematic explorations of microbiota-mediated effects on reproduction.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Yang G, Weng Y, Zhao Y, Wang D, Luo T, Jin Y. Transcriptomic and targeted metabolomic analysis revealed the toxic effects of prochloraz on larval zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153625. [PMID: 35124026 DOI: 10.1016/j.scitotenv.2022.153625] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Prochloraz (PCZ), an imidazole fungicide, has been extensively used in horticulture and agriculture to protect against pests and diseases. To investigate the potential toxicity of PCZ on aquatic organisms, larval zebrafish, as a model, were exposed to a series of concentrations (0, 20, 100, and 500 μg/L) of PCZ for 7 days. With transcriptomic analysis, we found that exposure to high dose PCZ could produce 76 downregulated and 345 upregulated differential expression genes (DEGs). Bioinformatics analysis revealed that most of the DEGs were characterized in the pathways of glycolipid metabolism, amino acid metabolism and oxidative stress in larval zebrafish. Targeted metabolomic analysis was conducted to verify the effects of PCZ on the levels of acyl-carnitines and some amino acids in larval zebrafish. In addition, biochemical indicators related to glycolipid metabolism were affected obviously, manifested as elevated triglyceride (TG) levels and decreased glucose (Glu) levels in whole larvae. The expression levels of genes associated with glycolipid metabolism were affected in larvae after exposure to PCZ (PK, GK, PEPckc, SREBP, ACO). Interestingly, we further confirmed that PCZ could induce oxidative stress by the changing enzyme activities (T-GSH, GSSG) and upregulating several related genes levels in larval zebrafish. Generally, our results revealed that the endpoints related to glycolipid metabolism, amino acid metabolism and oxidative stress were influenced by PCZ in larval zebrafish.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
16
|
Bates KA, Higgins C, Neiman M, King KC. Turning the tide on sex and the microbiota in aquatic animals. HYDROBIOLOGIA 2022; 850:3823-3835. [PMID: 37662671 PMCID: PMC10468917 DOI: 10.1007/s10750-022-04862-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 09/05/2023]
Abstract
Sex-based differences in animal microbiota are increasingly recognized as of biological importance. While most animal biomass is found in aquatic ecosystems and many water-dwelling species are of high economic and ecological value, biological sex is rarely included as an explanatory variable in studies of the aquatic animal microbiota. In this opinion piece, we argue for greater consideration of host sex in studying the microbiota of aquatic animals, emphasizing the many advancements that this information could provide in the life sciences, from the evolution of sex to aquaculture.
Collapse
Affiliation(s)
- Kieran A. Bates
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| | - Chelsea Higgins
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
- Department of Gender, Women’s, and Sexuality Studies, University of Iowa, Iowa City, IW 52245 USA
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| |
Collapse
|
17
|
Feng T, Liu Y. Microorganisms in the reproductive system and probiotic's regulatory effects on reproductive health. Comput Struct Biotechnol J 2022; 20:1541-1553. [PMID: 35465162 PMCID: PMC9010680 DOI: 10.1016/j.csbj.2022.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
The presence of microbial communities in the reproductive tract has been revealed, and this resident microbiota is involved in the maintenance of health. Intentional modulation via probiotics has been proposed as a possible strategy to enhance reproductive health and reduce the risk of diseases. The male seminal microbiota has been suggested as an important factor that influences a couple’s health, pregnancy outcomes, and offspring health. Probiotics have been reported to play a role in male fertility and to affect the health of mothers and offspring. While the female reproductive microbiota is more complicated and has been identified in both the upper and lower reproductive systems, they together contribute to health maintenance. Probiotics have shown regulatory effects on the female reproductive tract, thereby contributing to homeostasis of the tract and influencing the health of offspring. Further, through transmission of bacteria or through other indirect mechanisms, the parent’s reproductive microbiota and probiotic intervention influence infant gut colonization and immunity development, with potential health consequences. In vitro and in vivo studies have explored the mechanisms underlying the benefits of probiotic administration and intervention, and an array of positive results, such as modulation of microbiota composition, regulation of metabolism, promotion of the epithelial barrier, and improvement of immune function, have been observed. Herein, we review the state of the art in reproductive system microbiota and its role in health and reproduction, as well as the beneficial effects of probiotics on reproductive health and their contributions to the prevention of associated diseases.
Collapse
|
18
|
Zakariaee H, Sudagar M, Hosseini SS, Paknejad H, Baruah K. In vitro Selection of Synbiotics and in vivo Investigation of Growth Indices, Reproduction Performance, Survival, and Ovarian Cyp19α Gene Expression in Zebrafish Danio rerio. Front Microbiol 2021; 12:758758. [PMID: 34671338 PMCID: PMC8521104 DOI: 10.3389/fmicb.2021.758758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we tested the compatibility of two extracts from the plant Jerusalem artichokes and button mushrooms with two different Lactobacillus probiotics (Lactobacillus acidophilus; La and Lactobacillus delbrueckii subsp. Bulgaricus; Lb) to develop a synbiotic formulation to improve the growth, survival, and reproductive performances of farmed fishes. Initially, we employed in vitro approach to monitor the growth of the probiotic lactobacilli in the presence of the different doses of the plant-based prebiotics, with the aim of selecting interesting combination(s) for further verification under in vivo conditions using zebrafish as a model. Results from the in vitro screening assay in the broth showed that both the probiotic species showed a preference for 50% mushroom extract as a source of prebiotic. A synbiotic formulation, developed with the selected combination of L. acidophilus, L. bulgaricus, and 50% mushroom extract, showed a positive influence on the growth and reproductive performances of the zebrafish. Our findings also imply that the improvement in the reproductive indices was associated with the upregulation of a cyp19a gene. Overall results suggest that a combination of L. acidophilus, L. bulgaricus, and mushroom extract can be considered as a potential synbiotic for the successful production of aquaculture species.
Collapse
Affiliation(s)
- Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Sudagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Seyede Sedighe Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Aquaculture Nutraceuticals Research Group, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Seasonal Changes in the Distinct Taxonomy and Function of the Gut Microbiota in the Wild Ground Squirrel ( Spermophilus dauricus). Animals (Basel) 2021; 11:ani11092685. [PMID: 34573650 PMCID: PMC8469230 DOI: 10.3390/ani11092685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Seasonal breeding is a normal phenomenon in which animals adapt to natural selection and reproduce only in specific seasons. Large studies have reported that the gut microbiota is closely related to reproduction. The purpose of this study was to explore the distinct taxonomy and function of the gut microbiota in the breeding and non-breeding seasons of the wild ground squirrel (Spermophilus dauricus). The 16S rRNA gene sequencing technology was utilized to sequence the gut microbiota of the wild ground squirrel. PICRUSt analysis was also applied to predict the function of the gut microbiota. The results suggested that the main components of the gut microbiota in all samples were Firmicutes (61.8%), Bacteroidetes (32.4%), and Proteobacteria (3.7%). Microbial community composition analyses revealed significant differences between the breeding and non-breeding seasons. At the genus level, Alistipes, Mycoplasma, Anaerotruncus, and Odoribacter were more abundant in the non-breeding season, while Blautia and Streptococcus were more abundant in the breeding season. The results of a functional prediction suggested that the relative abundance of functional categories that were related to lipid metabolism, carbohydrate metabolism, and nucleotide metabolism increased in the breeding season. The relative abundance of energy metabolism, transcription, and signal transduction increased in the non-breeding season. Overall, this study found differences in the taxonomy and function of the gut microbiota of the wild ground squirrel between the breeding and non-breeding seasons, and laid the foundation for further studies on the relationship between the gut microbiota and seasonal breeding.
Collapse
|
20
|
Giommi C, Habibi HR, Candelma M, Carnevali O, Maradonna F. Probiotic Administration Mitigates Bisphenol A Reproductive Toxicity in Zebrafish. Int J Mol Sci 2021; 22:ijms22179314. [PMID: 34502222 PMCID: PMC8430984 DOI: 10.3390/ijms22179314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Although the use of bisphenol A (BPA) has been banned in a number of countries, its presence in the environment still creates health issues both for humans and wildlife. So far, BPA toxicity has been largely investigated on different biological processes, from reproduction to development, immune system, and metabolism. In zebrafish, Danio rerio, previous studies revealed the ability of environmentally relevant concentrations of this contaminant to significantly impair fertility via epigenetic modification. In addition, several studies demonstrated the ability of different probiotic strains to improve organism health. This study provides information on the role of the probiotic mixture SLAb51 to counteract adverse BPA effects on reproduction. A 28-day trial was set up with different experimental groups: BPA, exposed to 10 µg/L BPA; P, receiving a dietary supplementation of SLAb51 at a final concentration of 109 CFU/g; BPA+P exposed to 10 µg/L BPA and receiving SLAb51 at a final concentration of 109 CFU/g and a C group. Since oocyte growth and maturation represent key aspects for fertility in females, studies were performed on isolated class III (vitellogenic) and IV (in maturation) follicles and liver, with emphasis on the modulation of the different vitellogenin isoforms. In males, key signals regulating spermatogenesis were investigated. Results demonstrated that in fish exposed to the combination of BPA and probiotic, most of the transcripts were closer to C or P levels, supporting the hypothesis of SLAb51 to antagonize BPA toxicity. This study represents the first evidence related to the use of SLAb51 to improve reproduction and open new fields of investigation regarding its use to reduce endocrine disrupting compound impacts on health.
Collapse
Affiliation(s)
- Christian Giommi
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (M.C.)
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Michela Candelma
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (M.C.)
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (M.C.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Correspondence: (O.C.); (F.M.)
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (M.C.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Correspondence: (O.C.); (F.M.)
| |
Collapse
|
21
|
Hu C, Liu M, Tang L, Sun B, Huang Z, Chen L. Probiotic Lactobacillus rhamnosus modulates the impacts of perfluorobutanesulfonate on oocyte developmental rhythm of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145975. [PMID: 33639466 DOI: 10.1016/j.scitotenv.2021.145975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Potent interaction between probiotic bacteria and perfluorobutanesulfonate (PFBS), an aquatic pollutant of emerging concern, was previously reported on reproduction of zebrafish. However, the underlying mechanism is largely unexplored. In this regard, the present study continued to focus on the interactive modes between probiotics and PFBS. Adult zebrafish were exposed for 28 days to 0 and 10 μg/L PFBS with or without dietary supplementation of probiotic Lactobacillus rhamnosus. With the relevance to fecundity outcome, a suite of reproductive indices at transcriptional, hormonal, proteomic and histological levels of biological organization were measured herein. The fecundity monitoring results showed that probiotic additive shifted the impacts of PFBS on egg spawn, gradually approaching the control level. Based on ovary histological observation, oocyte growth was significantly promoted by probiotics or/and PFBS exposures, while the presence of probiotic bacteria partially antagonized the effects of PFBS on oocyte growth. The combination of probiotics and PFBS increased the concentration of maturation inducing hormones in ovary. Despite the enhanced hormonal signals, gene transcriptions of ovarian local auto/paracrine factors were consistently decreased in all exposure groups, suggesting the blocked transition from oocyte growth phase toward oocyte maturation phase. Ovary proteomic analysis found that PFBS exposure with or without probiotic bacteria mainly affected the RNA metabolic processes, although the addition of probiotics exerted extra influences on amino acid metabolism. Overall, the present study provided more mechanistic evidence about the interactive behavior between probiotic bacteria and PFBS pollutant. Feed additive of probiotic bacteria modulated the impacts of PFBS on egg production rhythm through oocyte growth and maturation phases.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
22
|
Probiotics in Fish Nutrition—Long-Standing Household Remedy or Native Nutraceuticals? WATER 2021. [DOI: 10.3390/w13101348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last decades, aquaculture production increased rapidly. The future development of the industry highly relies on the sustainable utilization of natural resources. The need for improving disease resistance, growth performance, food conversion, and product safety for human consumption has stimulated the application of probiotics in aquaculture. Probiotics increase growth and feed conversion, improve health status, raise disease resistance, decrease stress susceptibility, and improve general vigor. Currently, most probiotics still originate from terrestrial sources rather than fish. However, host-associated (autochthonous) probiotics are likely more persistent in the gastrointestinal tract of fish and may, therefore, exhibit longer-lasting effects on the host. Probiotic candidates are commonly screened in in vitro assays, but the transfer to in vivo assessment is often problematic. In conclusion, modulation of the host-associated microbiome by the use of complex probiotics is promising, but a solid understanding of the interactions involved is only in its infancy and requires further research. Probiotics could be used to explore novel ingredients such as chitin-rich insect meal, which cannot be digested by the fish host alone. Most importantly, probiotics offer the opportunity to improve stress and disease resistance, which is among the most pressing problems in aquaculture.
Collapse
|
23
|
Liu M, Tang L, Hu C, Sun B, Huang Z, Chen L. Interaction between probiotic additive and perfluorobutanesulfonate pollutant on offspring growth and health after parental exposure using zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112107. [PMID: 33667734 DOI: 10.1016/j.ecoenv.2021.112107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Perfluorobutanesulfonate (PFBS) pollutant and probiotic bacteria can interact to affect the reproductive outcomes of zebrafish. However, it is still unexplored how the growth and health of offspring are modulated by the combination of PFBS and probiotic. In the present study, adult zebrafish were exposed to 0 and 10 μg/L PFBS for 40 days, with or without dietary supplementation of probiotic Lactobacillus rhamnosus. After parental exposure, the development, growth and viability of offspring larvae were examined, with the integration of molecular clues across proteome fingerprint, growth hormone/insulin-like growth factor (GH/IGF) axis, calcium homeostasis, hypothalamic-pituitary-adrenal (HPA) axis and nutrient metabolism. Parental probiotic supplementation significantly increased the body weight and body length of offspring larvae. Despite the spiking of PFBS, larvae from the combined exposure group still had longer body length. RNA processing and ribosomal assembly pathways may underlie the enhancement of offspring growth by probiotic bacteria. However, the presence of PFBS remarkably increased the concentrations of cortisol hormone in offspring larvae as means to cope with the xenobiotic stress, which required more energy production. As evidenced by the proteomic analysis, the addition of probiotic bacteria likely alleviated the energy metabolism disorders of PFBS, thus allocating more energy for the larval offspring growth from the combined group. It was noteworthy that multiple molecular disturbances caused by PFBS were antagonized by probiotic additive. Overall, the present study elucidated the intergenerational interaction between PFBS and probiotic on offspring growth and health after parental exposure.
Collapse
Affiliation(s)
- Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
24
|
Arani MM, Salati AP, Keyvanshokooh S, Safari O. The effect of Pediococcus acidilactici on mucosal immune responses, growth, and reproductive performance in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:153-162. [PMID: 33242190 DOI: 10.1007/s10695-020-00903-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
A completely randomized experimental design carried out to investigate the effects of different levels of Pediococcus acidilactici (PA) including 0 (basal diet as a control diet), 1 × 106, 2 × 106, 4 × 106, and 8 × 106 colony-forming unit (CFU) per gram of the diet for 60 days on the mucosal immunity responses, growth, and reproductive performance, in zebrafish, Danio rerio (with mean weigh ± SE: 120 ± 10 mg). The obtained results revealed that the best growth and reproduction indices were related to the concentration of 4 × 106 CFU PA g-1 diet (P < 0.05). The maximum activities of mucosal immune responses including total protein, alternative complement system, IgM, and lysozyme were observed in the fish fed with 4 × 106 CFU PA g-1 diet (P < 0.05). Furthermore, the maximum alkaline phosphatase activity of skin mucus was recorded in the fish fed with 8 × 106 CFU PA g-1 diet (P < 0.05). Fish fed with 4 × 106 CFU PA g-1 diet had the highest villus length and width of the intestine (P < 0.05). Supplementing the diet with 4 × 106 CFU PA g-1 diet more significantly enhanced Cyp19a gene expression in comparison with this in other groups. Hence, PA with a concentration of 4 × 106 CFU g-1 diet can be considered as a proper level of probiotic for improving the health, growth, and reproductive performance of the D. rerio.
Collapse
Affiliation(s)
- Mojtaba Mohammadi Arani
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
- Agricultural Research, Educating and Extension Organization, Isfahan Agricultural and Natural Resources Research and Training Center, Isfahan, Iran
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Omid Safari
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
25
|
Maradonna F, Gioacchini G, Notarstefano V, Fontana CM, Citton F, Dalla Valle L, Giorgini E, Carnevali O. Knockout of the Glucocorticoid Receptor Impairs Reproduction in Female Zebrafish. Int J Mol Sci 2020; 21:E9073. [PMID: 33260663 PMCID: PMC7729492 DOI: 10.3390/ijms21239073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
The pleiotropic effects of glucocorticoids in metabolic, developmental, immune and stress response processes have been extensively investigated; conversely, their roles in reproduction are still less documented. It is well known that stress or long-lasting therapies can cause a strong increase in these hormones, negatively affecting reproduction. Moreover, the need of glucocorticoid (GC) homeostatic levels is highlighted by the reduced fertility reported in the zebrafish glucocorticoid receptor mutant (nr3c1ia30/ia30) line (hereafter named gr-/-). Starting from such evidence, in this study, we have investigated the role of glucocorticoid receptor (Gr) in the reproduction of female zebrafish. Key signals orchestrating the reproductive process at the brain, liver, and ovarian levels were analyzed using a multidisciplinary approach. An impairment of the kiss-GnRH system was observed at the central level in (gr-/-) mutants as compared to wild-type (wt) females while, in the liver, vitellogenin (vtg) mRNA transcription was not affected. Changes were instead observed in the ovary, particularly in maturing and fully grown follicles (classes III and IV), as documented by the mRNA levels of signals involved in oocyte maturation and ovulation. Follicles isolated from gr-/- females displayed a decreased level of signals involved in the acquisition of competence and maturation, causing a reduction in ovulation with respect to wt females. Fourier transform infrared imaging (FTIRI) analysis of gr-/- follicle cytoplasm showed major changes in macromolecule abundance and distribution with a clear alteration of oocyte composition. Finally, differences in the molecular structure of the zona radiata layer of gr-/- follicles are likely to contribute to the reduced fertilization rate observed in mutants.
Collapse
Affiliation(s)
- Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
- Biostructures and Biosystems National Institute—Interuniversity Consortium, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Camilla Maria Fontana
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Filippo Citton
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Luisa Dalla Valle
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
- Biostructures and Biosystems National Institute—Interuniversity Consortium, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| |
Collapse
|
26
|
Long Exposure to a Diet Supplemented with Antioxidant and Anti-Inflammatory Probiotics Improves Sperm Quality and Progeny Survival in the Zebrafish Model. Biomolecules 2019; 9:biom9080338. [PMID: 31382562 PMCID: PMC6724062 DOI: 10.3390/biom9080338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
The aim of the present experiment is to study the effects of oral ingestion of a mixture of two probiotic bacteria on sperm quality and progenies. Three homogeneous groups of juvenile zebrafish were created. Once having reached adulthood (3 months postfertilization; mpf), each group received different feeding regimens: a standard diet (control), a maltodextrin-supplemented diet (vehicle control), or a probiotic-supplemented diet (a mixture (1:1) of Lactobacillus rhamnosus CECT8361 and Bifidobacterium longum CECT7347). The feeding regime lasted 4.5 months. Growth parameters (weight and length) were determined at 3, 5, and 7.5 mpf. Sperm motility was evaluated using computer-assisted sperm analysis at 5 and 7.5 mpf. Progeny survival, hatching rate, and malformation rate were also evaluated. Results showed that probiotic-supplemented diet improved growth parameters compared with the standard diet. The highest percentage of motile spermatozoa was reported in the probiotic-fed group. Concomitantly, the percentage of fast sperm subpopulation was significantly lower in samples derived from control males. Furthermore, there was a significant difference in progeny survival between the probiotic-fed group and the control group at three developmental times (24 hours postfertilization (hpf), 5 days postfertilization (dpf) and 7 dpf). In conclusion, in zebrafish, prolonged ingestion of a mixture of Lactobacillus rhamnosus CECT8361 and Bifidobacterium longum CECT7347 has positive effects on growth, sperm quality, and progeny survival.
Collapse
|
27
|
Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front Microbiol 2019; 10:57. [PMID: 30804896 PMCID: PMC6378274 DOI: 10.3389/fmicb.2019.00057] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Resistance to antibiotics is escalating and threatening humans and animals worldwide. Different countries have legislated or promoted the ban of antibiotics as growth promoters in livestock and aquaculture to reduce this phenomenon. Therefore, to improve animal growth and reproduction performance and to control multiple bacterial infections, there is a potential to use probiotics as non-antibiotic growth promoters. Lactic acid bacteria (LAB) offer various advantages as potential probiotics and can be considered as alternatives to antibiotics during food-animal production. LAB are safe microorganisms with abilities to produce different inhibitory compounds such as bacteriocins, organic acids as lactic acid, hydrogen peroxide, diacetyl, and carbon dioxide. LAB can inhibit harmful microorganisms with their arsenal, or through competitive exclusion mechanism based on competition for binding sites and nutrients. LAB endowed with specific enzymatic functions (amylase, protease…) can improve nutrients acquisition as well as animal immune system stimulation. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to antibiotics in poultry, pigs, ruminants, and aquaculture production.
Collapse
Affiliation(s)
- Nuria Vieco-Saiz
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Yanath Belguesmia
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Ruth Raspoet
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Eric Auclair
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Frédérique Gancel
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Isabelle Kempf
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Djamel Drider
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| |
Collapse
|
28
|
|
29
|
Gioacchini G, Ciani E, Pessina A, Cecchini C, Silvi S, Rodiles A, Merrifield DL, Olivotto I, Carnevali O. Effects of Lactogen 13, a New Probiotic Preparation, on Gut Microbiota and Endocrine Signals Controlling Growth and Appetite of Oreochromis niloticus Juveniles. MICROBIAL ECOLOGY 2018; 76:1063-1074. [PMID: 29616281 DOI: 10.1007/s00248-018-1177-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
In the present study, Nile tilapia Oreochromis niloticus was used as experimental model to study the molecular effects of a new probiotic preparation, Lactogen 13 (Lactobacillus rhamnosus IMC 501® encapsulated with vegetable fat matrices by spray chilling and further indicated as probiotic microgranules), on growth and appetite during larval development. Probiotic microgranules were administered for 30 days to tilapia larvae starting from first feeding. Molecular analysis using high-throughput sequencing revealed that the probiotic could populate the gastrointestinal tract and modulate the microbial communities by significantly increasing the proportion of Lactobacillus as well as reducing the proportion of potential pathogens such as members of the Family Microbacteriaceae, Legionellaceae, and Weeksellaceae. Morphometric analysis evidenced that body weight and total length significantly increased after probiotic treatment. This increase coincided with the modulation of genes belonging to the insulin-like growth factors (igfs) system and genes involved on myogenesis, such as myogenin, and myogenic differentiation (myod). Alongside the improvement of growth, an increase of feed intake was evidenced at 40 days post-fertilization (dpf) in treated larvae. Gene codifying for signals belonging to the most prominent systems involved in appetite regulation, such as neuropeptide y (npy), agouti-related protein (agrp), leptin, and ghrelin were significantly modulated. These results support the hypothesis that gastrointestinal (GI) microbiota changes due to probiotic administration modulate growth and appetite control, activating the endocrine system of tilapia larvae.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elia Ciani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Andrea Pessina
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Cinzia Cecchini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Stefania Silvi
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Ana Rodiles
- Aquatic Animal Nutrition and Health Research Group, School of Biological and Marine Sciences, Plymouth University, Plymouth, PL4 8AA, UK
| | - Daniel L Merrifield
- Aquatic Animal Nutrition and Health Research Group, School of Biological and Marine Sciences, Plymouth University, Plymouth, PL4 8AA, UK
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
30
|
Nowosad J, Kucharczyk D, Targońska K. Enrichment of Zebrafish Danio rerio (Hamilton, 1822) Diet with Polyunsaturated Fatty Acids Improves Fecundity and Larvae Quality. Zebrafish 2017; 14:364-370. [DOI: 10.1089/zeb.2017.1416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Joanna Nowosad
- Department of Lake and River Fisheries, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dariusz Kucharczyk
- Department of Lake and River Fisheries, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Targońska
- Department of Lake and River Fisheries, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
31
|
Dextran production by Lactobacillus sakei MN1 coincides with reduced autoagglutination, biofilm formation and epithelial cell adhesion. Carbohydr Polym 2017; 168:22-31. [DOI: 10.1016/j.carbpol.2017.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/12/2017] [Accepted: 03/08/2017] [Indexed: 01/04/2023]
|
32
|
Kleppe L, Edvardsen RB, Furmanek T, Andersson E, Juanchich A, Wargelius A. bmp15l,figla,smc1bl, andlarp6lare preferentially expressed in germ cells in Atlantic salmon (Salmo salarL.). Mol Reprod Dev 2016; 84:76-87. [DOI: 10.1002/mrd.22755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/02/2016] [Indexed: 11/11/2022]
|
33
|
Davis DJ, Doerr HM, Grzelak AK, Busi SB, Jasarevic E, Ericsson AC, Bryda EC. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci Rep 2016; 6:33726. [PMID: 27641717 PMCID: PMC5027381 DOI: 10.1038/srep33726] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022] Open
Abstract
The consumption of probiotics has become increasingly popular as a means to try to improve health and well-being. Not only are probiotics considered beneficial to digestive health, but increasing evidence suggests direct and indirect interactions between gut microbiota (GM) and the central nervous system (CNS). Here, adult zebrafish were supplemented with Lactobacillus plantarum to determine the effects of probiotic treatment on structural and functional changes of the GM, as well as host neurological and behavioral changes. L. plantarum administration altered the β-diversity of the GM while leaving the major core architecture intact. These minor structural changes were accompanied by significant enrichment of several predicted metabolic pathways. In addition to GM modifications, L. plantarum treatment also significantly reduced anxiety-related behavior and altered GABAergic and serotonergic signaling in the brain. Lastly, L. plantarum supplementation provided protection against stress-induced dysbiosis of the GM. These results underscore the influence commensal microbes have on physiological function in the host, and demonstrate bidirectional communication between the GM and the host.
Collapse
Affiliation(s)
- Daniel J Davis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| | - Holly M Doerr
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| | - Agata K Grzelak
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| | - Susheel B Busi
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| | - Eldin Jasarevic
- Center for Host-Microbial Interactions, Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA.,University of Missouri Metagenomics Center (MUMC), University of Missouri, Columbia, MO 65201, USA
| | - Elizabeth C Bryda
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
34
|
Davis DJ, Bryda EC, Gillespie CH, Ericsson AC. Microbial modulation of behavior and stress responses in zebrafish larvae. Behav Brain Res 2016; 311:219-227. [PMID: 27217102 PMCID: PMC6423445 DOI: 10.1016/j.bbr.2016.05.040] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/07/2023]
Abstract
The influence of the microbiota on behavior and stress responses is poorly understood. Zebrafish larvae have unique characteristics that are advantageous for neuroimmune research, however, they are currently underutilized for such studies. Here, we used germ-free zebrafish to determine the effects of the microbiota on behavior and stress testing. The absence of a microbiota dramatically altered locomotor and anxiety-related behavior. Additionally, characteristic responses to an acute stressor were also obliterated in larvae lacking exposure to microbes. Lastly, treatment with the probiotic Lactobacillus plantarum was sufficient to attenuate anxiety-related behavior in conventionally-raised zebrafish larvae. These results underscore the importance of the microbiota in communicating to the CNS via the microbiome-gut-brain axis and set a foundation for using zebrafish larvae for neuroimmune research.
Collapse
Affiliation(s)
- Daniel J Davis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| | - Elizabeth C Bryda
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| | - Catherine H Gillespie
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA; University of Missouri Metagenomics Center (MUMC), University of Missouri, Columbia, MO65201, USA.
| |
Collapse
|
35
|
Affiliation(s)
- Gerwald Köhler
- a Department of Biochemistry & Microbiology; Oklahoma State University Center for Health Sciences; Tulsa , OK USA
| |
Collapse
|
36
|
Wang Y, Ren Z, Fu L, Su X. Two highly adhesive lactic acid bacteria strains are protective in zebrafish infected with Aeromonas hydrophila
by evocation of gut mucosal immunity. J Appl Microbiol 2016; 120:441-51. [DOI: 10.1111/jam.13002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Y. Wang
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou China
| | - Z. Ren
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou China
| | - L. Fu
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou China
| | - X. Su
- School of Marine Sciences; Ningbo University; Ningbo China
| |
Collapse
|
37
|
Wang W, Cao J, Li JR, Yang F, Li Z, Li LX. Comparative analysis of the gastrointestinal microbial communities of bar-headed goose (Anser indicus) in different breeding patterns by high-throughput sequencing. Microbiol Res 2015; 182:59-67. [PMID: 26686614 DOI: 10.1016/j.micres.2015.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/28/2015] [Accepted: 10/10/2015] [Indexed: 02/06/2023]
Abstract
The bar-headed goose is currently one of the most popular species for rare birds breeding in China. However, bar-headed geese in captivity display a reduced reproductive rate. The gut microbiome has been shown to influence host factors such as nutrient and energy metabolism, immune homeostasis and reproduction. It is therefore of great scientific and agriculture value to analyze the microbial communities associated with bar-headed geese in order to improve their reproductive rate. Here we describe the first comparative study of the gut microbial communities of bar-headed geese in three different breeding pattern groups by 16SrRNA sequences using the Illumina MiSeq platform. The results showed that Firmicutes predominated (58.33%) among wild bar-headed geese followed by Proteobacteria (30.67%), Actinobacteria (7.33%) and Bacteroidetes (3.33%). In semi-artificial breeding group, Firmicutes was also the most abundant bacteria (62.00%), followed by Bacteroidetes (28.67%), Proteobacteria (4.20%), Actinobacteria (3.27%) and Fusobacteria (1.51%). The microbial communities of artificial breeding group were dominated by Firmicutes (60.67%), Fusobacteria (29.67%) and Proteobacteria (9.33%). Wild bar-headed geese had a significant higher relative abundance of Proteobacteria and Actinobacteria, while semi-artificial breeding bar-headed geese had significantly more Bacteroidetes. The semi-artificial breeding group had the highest microbial community diversity and richness, followed by wild group, and then the artificial breeding group. The marked differences of genus level group-specific microbes create a baseline for future bar-headed goose microbiology research.
Collapse
Affiliation(s)
- Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China; Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Jian Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Ji-Rong Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China
| | - Zhuo Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China
| | - Lai-Xing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China.
| |
Collapse
|
38
|
Hai N. The use of probiotics in aquaculture. J Appl Microbiol 2015; 119:917-35. [DOI: 10.1111/jam.12886] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 01/09/2023]
Affiliation(s)
- N.V. Hai
- Sustainable Aquatic Resources and Biotechnology; Curtin University of Technology; Bentley WA Australia
| |
Collapse
|
39
|
Vílchez MC, Santangeli S, Maradonna F, Gioacchini G, Verdenelli C, Gallego V, Peñaranda DS, Tveiten H, Pérez L, Carnevali O, Asturiano JF. Effect of the probiotic Lactobacillus rhamnosus on the expression of genes involved in European eel spermatogenesis. Theriogenology 2015; 84:1321-31. [PMID: 26271165 DOI: 10.1016/j.theriogenology.2015.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 11/29/2022]
Abstract
Positive effects of probiotics on fish reproduction have been reported in several species. In the present study, 40 male European eels were weekly treated with recombinant hCG for 9 weeks and with three different concentrations (10(3), 10(5), and 10(6) CFU/mL) of probiotic Lactobacillus rhamnosus IMC 501 (Sinbyotec, Italy). The probiotics were daily added to the water from the sixth week of the hCG treatment. Males from the treated and control groups were sacrificed after 1, 2, and 3 weeks of probiotic treatment (seventh-ninth weeks of hCG treatment); at this point, sperm and testis samples were also collected. Sperm volume was estimated, and motility was analyzed by computer-assisted sperm analysis software. Alternations in transcription of specific genes involved in reproductive process such as activin, androgen receptors α and β (arα and arβ), progesterone receptor 1 (pr1), bone morphogenetic protein 15 (bmp15), and FSH receptor (fshr) were analyzed in the testis. After 2 weeks of probiotic treatment, sperm production and sperm motility parameters (percentage of motile cells and percentage of straight-swimming spermatozoa) were increased in the European eel treated with 10(5) CFU/mL compared to controls or to the other probiotic doses. These changes were associated with increases in messenger RNA expression of activin, arα, arβ, pr1, and fshr. Conversely, after 3 weeks, activin and pr1 expression decreased. No significant changes were observed on bmp15 expression throughout the duration of the treatment with 10(5) CFU/mL dose. The lowest and highest probiotic dose (10(3) and 10(6) CFU/mL, respectively) inhibited the transcription of all genes along all the experiment, except for arα and arβ after 1 week of probiotic treatment when compared to controls. The changes observed by transcriptomic analysis and the sperm parameters suggest that a treatment with L rhamnosus at 10(5) CFU/mL for 2 weeks could improve spermatogenesis process in Anguilla anguilla.
Collapse
Affiliation(s)
- M Carmen Vílchez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - Stefania Santangeli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cristina Verdenelli
- School of Bioscience and Biotechnology, University of Camerino, Camerino, Italy
| | - Victor Gallego
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - David S Peñaranda
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - Helge Tveiten
- Norwegian Institute of Fisheries and Aquaculture, Tromsø, Norway
| | - Luz Pérez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| | - Juan F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
40
|
Russo P, Iturria I, Mohedano ML, Caggianiello G, Rainieri S, Fiocco D, Angel Pardo M, López P, Spano G. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl Microbiol Biotechnol 2015; 99:3479-90. [PMID: 25586576 DOI: 10.1007/s00253-014-6351-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 12/21/2022]
Abstract
A critical feature of probiotic microorganisms is their ability to colonize the intestine of the host. Although the microbial potential to adhere to the human gut lumen has been investigated in in vitro models, there is still much to discover about their in vivo behaviour. Zebrafish is a vertebrate model that is being widely used to investigate various biological processes shared with humans. In this work, we report on the use of the zebrafish model to investigate the in vivo colonization ability of previously characterized probiotic lactic acid bacteria. Lactobacillus plantarum Lp90, L. plantarum B2 and Lactobacillus fermentum PBCC11.5 were fluorescently tagged by transfer of the pRCR12 plasmid, which encodes the mCherry protein and which was constructed in this work. The recombinant bacteria were used to infect germ-free zebrafish larvae. After removal of bacteria, the colonization ability of the strains was monitored until 3 days post-infection by using a fluorescence stereomicroscope. The results indicated differential adhesion capabilities among the strains. Interestingly, a displacement of bacteria from the medium to the posterior intestinal tract was observed as a function of time that suggested a transient colonization by probiotics. Based on fluorescence observation, L. plantarum strains exhibited a more robust adhesion capability. In conclusion, the use of pRCR12 plasmid for labelling Lactobacillus strains provides a powerful and very efficient tool to monitor the in vivo colonization in zebrafish larvae and to investigate the adhesion ability of probiotic microorganisms.
Collapse
|
41
|
Serão NVL, Matika O, Kemp RA, Harding JCS, Bishop SC, Plastow GS, Dekkers JCM. Genetic analysis of reproductive traits and antibody response in a PRRS outbreak herd. J Anim Sci 2014; 92:2905-21. [PMID: 24879764 DOI: 10.2527/jas.2014-7821] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant disease impacting pig production in North America, Europe, and Asia, causing reproductive losses such as increased rates of stillbirth and mummified piglets. The objective of this study was to explore the genetic basis of host response to the PRRS virus (PRRSV) in a commercial multiplier sow herd before and after a PRRS outbreak, using antibody response and reproductive traits. Reproductive data comprising number born alive (NBA), number alive at 24 h (NA24), number stillborn (NSB), number born mummified (NBM), proportion born dead (PBD), number born dead (NBD), number weaned (NW), and number of mortalities through weaning (MW) of 5,227 litters from 1,967 purebred Landrace sows were used along with a pedigree comprising 2,995 pigs. The PRRS outbreak date was estimated from rolling averages of farrowing traits and was used to split the data into a pre-PRRS phase and a PRRS phase. All 641 sows in the herd during the outbreak were blood sampled 46 d after the estimated outbreak date and were tested for anti-PRRSV IgG using ELISA (sample-to-positive [S/P] ratio). Genetic parameters of traits were estimated separately for the pre-PRRS and PRRS phase data sets. Sows were genotyped using the PorcineSNP60 BeadChip, and genome-wide association studies (GWAS) were performed using method Bayes B. Heritability estimates for reproductive traits ranged from 0.01 (NBM) to 0.12 (NSB) and from 0.01 (MW) to 0.12 (NBD) for the pre-PRRS and PRRS phases, respectively. S/P ratio had heritability (0.45) and strong genetic correlations with most traits, ranging from -0.72 (NBM) to 0.73 (NBA). In the pre-PRRS phase, regions associated with NSB and PBD explained 1.6% and 3% of the genetic variance, respectively. In the PRRS phase, regions associated with NBD, NSB, and S/P ratio explained 0.8%, 11%, and 50.6% of the genetic variance, respectively. For S/P ratio, 2 regions on SSC 7 (SSC7) separated by 100 Mb explained 40% of the genetic variation, including a region encompassing the major histocompatibility complex, which explained 25% of the genetic variance. These results indicate a significant genomic component associated with PRRSV antibody response and NSB in this data set. Also, the high heritability and genetic correlation estimates for S/P ratio during the PRRS phase suggest that S/P ratio could be used as an indicator of the impact of PRRS on reproductive traits.
Collapse
Affiliation(s)
- N V L Serão
- Department of Animal Science, Iowa State University, Ames 50011
| | - O Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - R A Kemp
- Genesus, Oakville, MB R0H 0Y0, Canada
| | - J C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A1, Canada
| | - S C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - G S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - J C M Dekkers
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
42
|
Gioacchini G, Dalla Valle L, Benato F, Fimia GM, Nardacci R, Ciccosanti F, Piacentini M, Borini A, Carnevali O. Interplay between autophagy and apoptosis in the development of Danio rerio follicles and the effects of a probiotic. Reprod Fertil Dev 2014. [PMID: 23195281 DOI: 10.1071/rd12187] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The present study investigated autophagic processes in Danio rerio preovulatory follicles (Stage III and IV). There were more autophagosomes, as revealed by electron microscopy, in follicles from females fed the probiotic Lactobacillus rhamnosus IMC 501. This was confirmed by increased expression of genes involved in the autophagic process, namely ambra1, becn1, lc3 and uvrag. In addition, preovulatory follicles from females fed the probiotic contained more microtubule-associated protein 1 light chain 3 isoform II (LC3-II) and less p62 protein. The increased autophagy in preovulatory follicles from females fed the probiotic was concomitant with a decrease in the apoptotic process in the ovary, as evidenced by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling analysis and confirmed by lower expression of genes involved in apoptosis (i.e., p53, bax, apaf and cas3) and higher expression as igfII and igf1r. The results of the present study provide preliminary evidence of the involvement of autophagy during follicle development in the zebrafish ovary. In addition, we have demonstrated for the first time that a functional food, such as L. rhamnosus IMC 501, can modulate the balance between apoptosis and autophagy that regulates ovary physiology in zebrafish by inhibiting follicular apoptosis and improving follicular survival.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gioacchini G, Giorgini E, Olivotto I, Maradonna F, Merrifield DL, Carnevali O. The influence of probiotics on zebrafish Danio rerio innate immunity and hepatic stress. Zebrafish 2014; 11:98-106. [PMID: 24564619 DOI: 10.1089/zeb.2013.0932] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, the effects of probiotic administration on zebrafish Danio rerio intestinal innate immunity and hepatic stress were evaluated. Zebrafish adults were treated for 10 days with the probiotic Lactobacillus rhamnosus IMC 501(®). To assess the effects at the molecular level, the mRNA levels of genes involved in the innate immune system, stress response, oxidative stress, and apoptosis were quantified by real-time polymerase chain reaction. An increase of biomarkers related to innate immune responses was observed in intestinal tissue from the probiotic-treated fish compared with the control fish. In addition, a decrease in the abundance of stress and apoptotic-related genes was observed in the liver of the probiotic-fed fish. Finally, imaging Fourier transform infrared analysis was conducted on liver sections and the data obtained confirmed that probiotic administration decreased oxidative stress levels, decreased DNA damage, and increased lipid saturation levels. Overall, the results show that probiotic administration may enhance zebrafish welfare by modulating the innate immune response and improving hepatic stress tolerance.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- 1 Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche , Ancona, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Qin C, Xu L, Yang Y, He S, Dai Y, Zhao H, Zhou Z. Comparison of fecundity and offspring immunity in zebrafish fed Lactobacillus rhamnosus CICC 6141 and Lactobacillus casei BL23. Reproduction 2014; 147:53-64. [DOI: 10.1530/rep-13-0141] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To increase the knowledge of probiotic effects on zebrafish (Danio rerio), we compare the effects of two probiotic strains, Lactobacillus rhamnosus CICC 6141 (a highly adhesive strain) and Lactobacillus casei BL23 (a weakly adhesive strain), on zebrafish reproduction and their offsprings' innate level of immunity to water-borne pathogens. During probiotics treatments from 7 to 28 days, both the Lactobacillus strains, and especially L. casei BL23, significantly increased fecundity in zebrafish: higher rates of egg ovulation, fertilization, and hatching were observed. Increased densities of both small and large vitellogenic follicles, seen in specimens fed either Lactobacillus strain, demonstrated accelerated oocyte maturation. Feeding either strain of Lactobacillus upregulated gene expression of leptin, kiss2, gnrh3, fsh, lh, lhcgr, and paqr8, which were regarded to enhance fecundity and encourage oocyte maturation. Concomitantly, the gene expression of bmp15 and tgfb1 was inhibited, which code for local factors that prevent oocyte maturation. The beneficial effects of the Lactobacillus strains on fecundity diminished after feeding of the probiotics was discontinued, even for the highly adhesive gut Lactobacillus strain. Administering L. rhamnosus CICC 6141 for 28 days was found to affect the innate immunity of offspring derived from their parents, as evinced by a lower level of alkaline phosphatase activity in early larval stages. This study highlights the effects of probiotics both upon the reproductive process and upon the offsprings' immunity during early developmental stages.
Collapse
|
45
|
Maradonna F, Gioacchini G, Falcinelli S, Bertotto D, Radaelli G, Olivotto I, Carnevali O. Probiotic supplementation promotes calcification in Danio rerio larvae: a molecular study. PLoS One 2013; 8:e83155. [PMID: 24358259 PMCID: PMC3866187 DOI: 10.1371/journal.pone.0083155] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/30/2013] [Indexed: 12/13/2022] Open
Abstract
A growing number of studies have been showing that dietary probiotics can exert beneficial health effects in both humans and animals. We previously demonstrated that dietary supplementation with Lactobacillus rhamnosus - a component of the human gut microflora - enhances reproduction, larval development, and the biomineralization process in Danio rerio (zebrafish). The aim of this study was to identify the pathways affected by L. rhamnosus during zebrafish larval development. Our morphological and histochemical findings show that L. rhamnosus accelerates bone deposition through stimulation of the expression of key genes involved in ossification, e.g. runt-related transcription factor 2 (runx2), Sp7 transcription factor (sp7), matrix Gla protein (mgp), and bone gamma-carboxyglutamate (gla) protein (bglap) as well as through inhibition of sclerostin (sost), a bone formation inhibitor. Western blot analysis of mitogen-activated protein kinase 1 and 3-(Mapk1 and Mapk3), which are involved in osteoblast and osteocyte differentiation, documented an increase in Mapk1 16 days post fertilization (dpf) and of Mapk3 23 dpf in individuals receiving L. rhamnosus supplementation. Interestingly, a reduction of sost detected in the same individuals suggests that the probiotic may help treat bone disorders.
Collapse
Affiliation(s)
- Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italia
| | - Giorgia Gioacchini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italia
| | - Silvia Falcinelli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italia
| | - Daniela Bertotto
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Legnaro (Padova), Italia
| | - Giuseppe Radaelli
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Legnaro (Padova), Italia
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italia
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italia
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italia
- * E-mail:
| |
Collapse
|
46
|
Standen BT, Rawling MD, Davies SJ, Castex M, Foey A, Gioacchini G, Carnevali O, Merrifield DL. Probiotic Pediococcus acidilactici modulates both localised intestinal- and peripheral-immunity in tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2013; 35:1097-1104. [PMID: 23871840 DOI: 10.1016/j.fsi.2013.07.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 06/02/2023]
Abstract
The application of probiotics in aquaculture has received concerted research efforts but the localised intestinal immunological response of fish to probiotic bacteria is poorly understood. Therefore, a study was conducted to evaluate the probiotic effect of Pediococcus acidilactici on Nile tilapia (Oreochromis niloticus) with specific emphasis on intestinal health and probiotic levels as well as system level responses such as growth performance, feed utilization and haemato-immunological parameters under non-challenged conditions. Fish (9.19 ± 0.04 g) were fed either a control diet or a P. acidilactici supplemented diet (at 2.81 × 10(6) CFU g(-)(1)) for six weeks. At the end of the study the probiotic was observed to populate the intestine, accounting for ca. 3% (1.59 × 10(5) CFU g(-)(1)) of the cultivable intestinal bacterial load. Real-time PCR indicated that the probiotic treatment may potentiate the immune-responsiveness of the intestine as up-regulation of the gene expression of the pro-inflammatory cytokine TNFα was observed in the probiotic fed fish (P < 0.05). Light microscopy observations revealed elevated intraepithelial leucocyte (IEL) levels in the intestine of P. acidilactici fed tilapia after six weeks (P < 0.05) of feeding and a trend towards elevated goblet cells was also observed after six weeks feeding (P = 0.08). Concomitantly at week six, along with elevated IELs and elevated TNFα mRNA levels in the intestine, an increased abundance of circulating neutrophils and monocytes were observed in fish fed the probiotic supplemented diet (P < 0.05). This haemopoietic expansion of innate immune cells could be reflective of an elevated state of immuno-readiness. Together these results suggest that the probiotic has a protective action on the intestinal mucosal cells, stimulating the innate immune response after feeding for a period of six weeks. These immunological modulations did not impair growth performance or the remaining haematological and zootechnical parameters compared to the control group (P > 0.05).
Collapse
Affiliation(s)
- B T Standen
- Aquaculture and Fish Nutrition Research Group, School of Biological Sciences, CARS, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Carnevali O, Avella MA, Gioacchini G. Effects of probiotic administration on zebrafish development and reproduction. Gen Comp Endocrinol 2013; 188:297-302. [PMID: 23500006 DOI: 10.1016/j.ygcen.2013.02.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 02/02/2023]
Abstract
As the consumption of probiotics increases worldwide, scientists focus on identifying bacterial strains able to improve human life quality and evidence the biological pathways affected by probiotic treatment. In this review, some recent observations on the effects of changes of microbiota on zebrafish metabolism were discussed. In addition, the effects of Lactobacillus rhamnosus - a component of the human gut microflora - as a diet supplement on Danio rerio were presented. When administered chronically, L. rhamnosus may affect larval development and the physiology of reproductive system in the zebrafish model. It was hypothesized exogenous L. rhamnosus accelerates larval growth and backbone development by acting on insulin-like growth factors-I (igfI) and -II (igfII), peroxisome proliferator activated receptors-α and -β, (pparα,β) vitamin D receptor-α (vdrα) and retinoic acid receptor-γ (rarγ). Gonadal differentiation was anticipated at 6weeks together with a higher expression of gnrh3 at the larval stage when L. rhamnosus was administered throughout development. Moreover, brood stock alimented with a L. rhamnosus-supplemented diet showed better reproductive performances as per follicles development, ovulated oocytes quantification and embryos quality. A plausible involvement of factors such as leptin, and kiss1 and 2 in the improvements was concluded. The observations made on the physiology of female reproduction were correlated with the gene expression of a gigantic number of factors as the aromatase cytochrome p 19 (cyp19a), the vitellogenin (vtg) and the α isoform of the E2 receptor (erα), luteinizing hormone receptor (lhr), 20-β hydroxysteroid dehydrogenase (20β-hsd), membrane progesterone receptors α and β, cyclin B, activinβA1, smad2, transforming growth factor β1 (tgfβ1), growth differentiation factor9 (gdf9) and bone morphogenetic protein15 (bmp15.) A model in which the exogenous L. rhamnosus in the digestive tract of zebrafish from the first days of life through sexual maturation positively influences the physiological performances of zebrafish was evidenced and a number of pathways that might be influenced by the presence of this human probiotic strain were proposed.
Collapse
Affiliation(s)
- O Carnevali
- Department of Life Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | | | | |
Collapse
|
48
|
Merikanto I, Laakso J, Kaitala V. Outside-host growth of pathogens attenuates epidemiological outbreaks. PLoS One 2012; 7:e50158. [PMID: 23226245 PMCID: PMC3511454 DOI: 10.1371/journal.pone.0050158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022] Open
Abstract
Opportunist saprotrophic pathogens differ from obligatory pathogens due to their capability in host-independent growth in environmental reservoirs. Thus, the outside-host environment potentially influences host-pathogen dynamics. Despite the socio-economical importance of these pathogens, theory on their dynamics is practically missing. We analyzed a novel epidemiological model that couples outside-host density-dependent growth to host-pathogen dynamics. Parameterization was based on columnaris disease, a major hazard in fresh water fish farms caused by saprotrophic Flavobacterium columnare. Stability analysis and numerical simulations revealed that the outside-host growth maintains high proportion of infected individuals, and under some conditions can drive host extinct. The model can show stable or cyclic dynamics, and the outside-host growth regulates the frequency and intensity of outbreaks. This result emerges because the density-dependence stabilizes dynamics. Our analysis demonstrates that coupling of outside-host growth and traditional host-pathogen dynamics has profound influence on disease prevalence and dynamics. This also has implications on the control of these diseases.
Collapse
Affiliation(s)
- Ilona Merikanto
- Department of Biosciences, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
49
|
Martínez Cruz P, Ibáñez AL, Monroy Hermosillo OA, Ramírez Saad HC. Use of probiotics in aquaculture. ISRN MICROBIOLOGY 2012; 2012:916845. [PMID: 23762761 PMCID: PMC3671701 DOI: 10.5402/2012/916845] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/29/2012] [Indexed: 11/23/2022]
Abstract
The growth of aquaculture as an industry has accelerated over the past decades; this has resulted in environmental damages and low productivity of various crops. The need for increased disease resistance, growth of aquatic organisms, and feed efficiency has brought about the use of probiotics in aquaculture practices. The first application of probiotics occurred in 1986, to test their ability to increase growth of hydrobionts (organisms that live in water). Later, probiotics were used to improve water quality and control of bacterial infections. Nowadays, there is documented evidence that probiotics can improve the digestibility of nutrients, increase tolerance to stress, and encourage reproduction. Currently, there are commercial probiotic products prepared from various bacterial species such as Bacillus sp., Lactobacillus sp., Enterococcus sp., Carnobacterium sp., and the yeast Saccharomyces cerevisiae among others, and their use is regulated by careful management recommendations. The present paper shows the current knowledge of the use of probiotics in aquaculture, its antecedents, and safety measures to be carried out and discusses the prospects for study in this field.
Collapse
Affiliation(s)
- Patricia Martínez Cruz
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, 04960 Mexico City, Mexico ; Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, 04960 Mexico City, Mexico
| | | | | | | |
Collapse
|
50
|
Avella MA, Place A, Du SJ, Williams E, Silvi S, Zohar Y, Carnevali O. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PLoS One 2012; 7:e45572. [PMID: 23029107 PMCID: PMC3447769 DOI: 10.1371/journal.pone.0045572] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/22/2012] [Indexed: 01/12/2023] Open
Abstract
Endogenous microbiota play essential roles in the host’s immune system, physiology, reproduction and nutrient metabolism. We hypothesized that a continuous administration of an exogenous probiotic might also influence the host’s development. Thus, we treated zebrafish from birth to sexual maturation (2-months treatment) with Lactobacillus rhamnosus, a probiotic species intended for human use. We monitored for the presence of L. rhamnosus during the entire treatment. Zebrafish at 6 days post fertilization (dpf) exhibited elevated gene expression levels for Insulin-like growth factors -I and -II, Peroxisome proliferator activated receptors -α and -β, VDR-α and RAR-γ when compared to untreated-10 days old zebrafish. Using a gonadotropin-releasing hormone 3 GFP transgenic zebrafish (GnRH3-GFP), higher GnRH3 expression was found at 6, 8 and 10 dpf upon L. rhamnosus treatment. The same larvae exhibited earlier backbone calcification and gonad maturation. Noteworthy in the gonad development was the presence of first testes differentiation at 3 weeks post fertilization in the treated zebrafish population -which normally occurs at 8 weeks- and a dramatic sex ratio modulation (93% females, 7% males in control vs. 55% females, 45% males in the treated group). We infer that administration of L. rhamnosus stimulated the IGF system, leading to a faster backbone calcification. Moreover we hypothesize a role for administration of L. rhamnosus on GnRH3 modulation during early larval development, which in turn affects gonadal development and sex differentiation. These findings suggest a significant role of the microbiota composition on the host organism development profile and open new perspectives in the study of probiotics usage and application.
Collapse
Affiliation(s)
- Matteo A. Avella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Allen Place
- Institute of Marine and Environmental Technology, University of Maryland, Center of Environmental Sciences, Baltimore, Maryland, United States of America
- * E-mail: (OC); (AP); (YZ)
| | - Shao-Jun Du
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ernest Williams
- Institute of Marine and Environmental Technology, University of Maryland, Center of Environmental Sciences, Baltimore, Maryland, United States of America
| | - Stefania Silvi
- School of Bioscience and Biotechnology, University of Camerino, Camerino, Italy
| | - Yonathan Zohar
- Institute of Marine and Environmental Technology & Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- * E-mail: (OC); (AP); (YZ)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- * E-mail: (OC); (AP); (YZ)
| |
Collapse
|