1
|
Wang W, Wu F, Wu Z, Zhang M, Lu Q. The XIAP inhibitor AZD5582 improves the treatment effect of microwave ablation on hepatocellular carcinoma. Front Immunol 2025; 16:1482954. [PMID: 39917292 PMCID: PMC11798986 DOI: 10.3389/fimmu.2025.1482954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND AND PURPOSE Microwave ablation (MWA) is one of the first-line therapy recommended for early-stage hepatocellular carcinoma (HCC). However, the residual tumor, resulting from insufficient ablation, led to recurrence and metastasis of liver cancer. Novel combination strategies are urgently needed to enhance efficiency of MWA. METHODS We detected the expression of XIAP protein after ablation in primary liver cancer patients using immunohistochemistry. Then, we established in vitro and in vivo IMWA models to further detect XIAP expression. We established an in vitro IMWA model by heating HCC cell lines and, at the same time, applied the XIAP inhibitor AZD5582 and verified the proliferation, migration, and pro-apoptotic ability of the XIAP inhibitor on tumor cells using CCK8, colony formation assay, cell scratch assay, and flow cytometry flow. The IMWA model of C57BL/6 and NTG mice were established, and AZD5582 was used in combination to evaluate the inhibitory and pro-apoptotic effects of different treatment regimens on tumor growth and to detect the local immune infiltration of C57BL/6 tumors. Finally, AZD5582 drug toxicity was detected to confirm its feasibility. RESULTS XIAP protein expression is significantly increased in recurrent hepatocellular carcinoma tissues of patients who previously received microwave ablation therapy. In vitro experiments showed that the migration and proliferation ability of HCC cells was significantly reduced, and the level of apoptosis was increased after application of the XIAP inhibitor AZD5582. In vivo experiments further confirmed that ablation combined with the application of AZD5582 significantly reduced the proliferation ability of residual hepatocellular carcinoma. Concurrently, in C57 BL/6 mice with AZD5582 application, the level of local CD8+ T-cell infiltration in the tumor was increased, while the level of Foxp3+ regulatory T-cell infiltration was significantly reduced. The low toxicity of AZD5582 was further confirmed through hematological and pathological examinations of vital organs. These results provide new clues for hepatocellular carcinoma treatment, suggesting the potential role of XIAP inhibitors in hepatocellular carcinoma treatment and their impact in immunomodulation. CONCLUSIONS In this study, we found that the XIAP inhibitor AZD5582 modulates the immune microenvironment and inhibits the progression of post-ablation residual hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| | - Fuyuan Wu
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| | - Zhe Wu
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, China
| | - Mengfan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qiang Lu
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Heidarzadehpilehrood R, Pirhoushiaran M. Biomarker potential of competing endogenous RNA networks in Polycystic Ovary Syndrome (PCOS). Noncoding RNA Res 2024; 9:624-640. [PMID: 38571815 PMCID: PMC10988127 DOI: 10.1016/j.ncrna.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common condition affecting women of reproductive age globally. PCOS continues to be the largest contributing factor to female infertility despite significant progress in our knowledge of the molecular underpinnings and treatment of the condition. The fact that PCOS is a very diverse condition makes it one of the key reasons why we haven't been able to overcome it. Non-coding RNAs (ncRNAs) are implicated in the development of PCOS, according to growing evidence. However, it is unclear how the complex regulatory relationships between the many ncRNA types contribute to the growth of this malignancy. Competing endogenous RNA (ceRNA), a recently identified mechanism in the RNA world, suggests regulatory interactions between various RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). Recent studies on PCOS have shown that dysregulation of multiple ceRNA networks (ceRNETs) between these ncRNAs plays crucial roles in developing the defining characteristics of PCOS development. And it is believed that such a finding may open a new door for a deeper comprehension of PCOS's unexplored facets. In addition, it may be able to provide fresh biomarkers and effective therapy targets for PCOS. This review will go over the body of information that exists about the primary roles of ceRNETs before highlighting the developing involvement of several newly found ceRNETs in a number of PCOS characteristics.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
3
|
Chesnokov MS, Mamedova AR, Zhivotovsky B, Kopeina GS. A matter of new life and cell death: programmed cell death in the mammalian ovary. J Biomed Sci 2024; 31:31. [PMID: 38509545 PMCID: PMC10956231 DOI: 10.1186/s12929-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Aygun R Mamedova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Chen R, Wu X, Qiu H, Yang B, Chen Y, Chen X, Li Y, Yuan S, Liu D, Xiao L, Yu Y. Obesity-induced inflammatory miR-133a mediates apoptosis of granulosa cells and causes abnormal folliculogenesis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1234-1246. [PMID: 37337633 PMCID: PMC10448043 DOI: 10.3724/abbs.2023089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/15/2023] [Indexed: 06/21/2023] Open
Abstract
Obesity has been reported to promote disordered folliculogenesis, but the exact molecular mechanisms are still not fully understood. In this study, we find that miR-133a is involved in obesity-induced follicular development disorder. After feeding with a high-fat diet (HFD) and fructose water for nine weeks, the mouse body weight is significantly increased, accompanied by an inflammatory state and increased expression of miR-133a in the adipose tissues and ovaries as well as accelerated follicle depletion. Although miR-133a is increased in the fat and ovaries of HFD mice, the increased miR-133a in the HFD ovaries is not derived from exosome transferred from obese adipose tissues but is synthesized by ovarian follicular cells in response to HFD-induced inflammation. In vivo experiments show that intrabursal injection of miR-133a agomir induces a decrease in primordial follicles and an increase in antral follicles and atretic follicles, which is similar to HFD-induced abnormal folliculogenesis. Overexpression of miR-133a modestly promotes granulosa cell apoptosis by balancing the expression of anti-apoptotic proteins such as C1QL1 and XIAP and pro-apoptotic proteins such as PTEN. Overall, this study reveals the function of miR-133a in obesity-induced ovarian folliculogenesis dysfunction and sheds light on the etiology of female reproductive disorders.
Collapse
Affiliation(s)
- Ruizhi Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Xueqing Wu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Han Qiu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Baiming Yang
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yao Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Xiang Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yingshan Li
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional GenesCollege of Life SciencesSun Yat-Sen UniversityGuangzhou510275China
| | - Dan Liu
- Department of Women’s HealthCareAffiliated Foshan Women and Children’s HospitalSouthern Medical UniversityFoshan528000China
| | - Luanjuan Xiao
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yanhong Yu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| |
Collapse
|
5
|
Missio D, Fritzen A, Cupper Vieira C, Germano Ferst J, Farias Fiorenza M, Guedes de Andrade L, Martins de Menezes B, Tomazele Rovani M, Gazieira Gasperin B, Dias Gonçalves PB, Ferreira R. Increased β-hydroxybutyrate (BHBA) concentration affect follicular growth in cattle. Anim Reprod Sci 2022; 243:107033. [PMID: 35816934 DOI: 10.1016/j.anireprosci.2022.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/12/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Metabolic stress conditions caused by negative energy balance (NEB) have been associated with reduced fertility in cows. β-hydroxybutyrate (BHBA) is the main circulating ketone body, which accumulates within follicular fluid. The aim of this study was to evaluate the effects of BHBA on follicle growth and on ovulatory mechanisms in cattle. At 72 h after intrafollicular injection, there was a decrease in follicular diameter in BHBA group compared to control (P = 0.02). Furthermore, follicle growth rate was reduced post-treatment with BHBA in comparison to the control group (P < 0.03). The BHBA intrafollicular injection in follicles ≥ 12 mm, however, did not affect E2 and P4 concentrations in the follicular fluid. In addition, the relative abundance of genes involved in the ovulatory cascade (ADAM 17, AREG, EREG, PTGS2), steroidogenesis (CYP19A1, 3BHSD, STAR), cellular stress (SOD1, CAT, GPX1, HSPA5, XBP1s, XBP1u, ATF4, ATF6), monocarboxylic acid transporters (SLC16A1, SLC16A7) and apoptosis (XIAP) was similar between groups. In conclusion, the results of this study indicate that the increase in intrafollicular concentrations of BHBA affects follicular growth, but it does not compromise the ovulatory cascade and cellular homeostasis in bovine granulosa cells.
Collapse
Affiliation(s)
- Daniele Missio
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alexandro Fritzen
- Department of Animal Science, Santa Catarina State University, Chapecó, SC, Brazil
| | - Camila Cupper Vieira
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Juliana Germano Ferst
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Mariani Farias Fiorenza
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leonardo Guedes de Andrade
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bento Martins de Menezes
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Monique Tomazele Rovani
- Department of Animal Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Paulo Bayard Dias Gonçalves
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Chapecó, SC, Brazil.
| |
Collapse
|
6
|
Kim YY, Yun JW, Kim SW, Kim H, Kang BC, Ku SY. Synergistic Promoting Effects of X-Linked Inhibitor of Apoptosis Protein and Matrix on the In Vitro Follicular Maturation of Marmoset Follicles. Tissue Eng Regen Med 2022; 19:93-103. [PMID: 34741748 PMCID: PMC8782987 DOI: 10.1007/s13770-021-00387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND In vitro follicular maturation (IVFM) of ovarian follicles is an emerging option for fertility preservation. Many paracrine factors and two-dimensional or three-dimensional (3D) environments have been used for optimization. However, since most studies were conducted using the murine model, the physiological differences between mice and humans limit the interpretation and adaptation of the results. Marmoset monkey is a non-human primate (NHPs) with more similar reproductive physiology to humans. In this study, we attempted to establish a 3D matrix (Matrtigel)-based IVFM condition for marmoset ovarian follicles in combination with anti-apoptotic factor, X-linked inhibitor of apoptosis protein (XIAP). METHODS Marmoset follicles were isolated as individual follicles and cultured in a single drop with the addition of 0, 10, and 100 μg/mL of XIAP molecules. Matured oocytes and granulosa cells from mature follicles were collected and analyzed. The average number of isolated follicles was less than 100, and primordial and antral follicles were abundant in the ovaries. RESULTS IVFM of marmoset follicles in 3D matrix conditions with XIAP increased the rates of survival and in vitro follicle development. Furthermore, oocytes from the 3D cultures were successfully fertilized and developed in vitro. The addition of XIAP increased the secretion of estradiol and aromatase. Furthermore, expression of granulosa-specific genes, such as bone morphogenetic protein 15, Oct4, and follicle-stimulating hormone receptor were upregulated in the in vitro-matured follicles than in normal, well-grown, and atretic follicles. Apoptosis-related B-cell lymphoma-2 was highly expressed in the atretic follicles than in the XIAP-treated follicles, and higher caspase-3 was localized in the XIAP-treated follicles. CONCLUSION In this study, we attempted to establish a 3D-matrix-based marmoset IVFM condition and demonstrated the synergistic effects of XIAP. The use of a 3D matrix may be applied as an optimal culture condition for marmoset ovarian follicles.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, 327 Sosa-ro, Bucheon, 14662, Korea
| | - Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Byeong-Cheol Kang
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak ro, Jongno-gu, Seoul, 03080, Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
7
|
Lu X, Gao H, Zhu B, Lin G. Circular RNA circ_RANBP9 exacerbates polycystic ovary syndrome via microRNA-136-5p/ XIAP axis. Bioengineered 2021; 12:6748-6758. [PMID: 34546853 PMCID: PMC8806864 DOI: 10.1080/21655979.2021.1964157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disease that affects the health of many women. Circular RNAs (circRNAs) are associated with the occurrence and progression of PCOS. This study aimed to explore the function of circ_RANBP9 in PCOS. First, the circ_RANBP9 level was found to be increased in the plasma of patients with PCOS and ovarian granulosa cells (GCs) using Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR). In GCs, loss of circ_RANBP9 decelerated proliferation and accelerated apoptosis of KGN and COV434 cells, as determined by MTT assay, colony formation assay, and flow cytometry. Furthermore, bioinformatics analysis showed that circ_RANBP9 and XIAP can be targeted by the microRNA, miR-136-5p. Luciferase reporter assay and RNA pull-down assay further verified the interaction between miR-136-5p and circ_RANBP9 or XIAP. Importantly, knockdown of circ_RANBP9 suppressed proliferation and promoted apoptosis of KGN and COV434 cells, whereas inhibition of miR-136-5p reversed these effects. Additionally, XIAP abolished the repression of proliferation and acceleration of apoptosis induced by miR-136-5p. The promotion of apoptosis was accompanied by upregulation of caspase-3 and Bax, and downregulation of Bcl-2, as estimated by western blotting. In conclusion, silencing of circ_RANBP9 inhibited GC proliferation and facilitated apoptosis by mediating the miR-136-5p/XIAP pathway. These findings provide a new theoretical basis for screening and treatment of PCOS.
Collapse
Affiliation(s)
- Xiaohui Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Genetic Testing, Xiamen, Fujian, China
| | - Haijie Gao
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Bo Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Genetic Testing, Xiamen, Fujian, China
| | - Guilan Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Genetic Testing, Xiamen, Fujian, China
| |
Collapse
|
8
|
Chen M, Wu W, Liu D, Lv Y, Deng H, Gao S, Gu Y, Huang M, Guo X, Liu B, Zhao B, Pang Q. Evolution and Structure of API5 and Its Roles in Anti-Apoptosis. Protein Pept Lett 2021; 28:612-622. [PMID: 33319655 DOI: 10.2174/0929866527999201211195551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Apoptosis, also named programmed cell death, is a highly conserved physiological mechanism. Apoptosis plays crucial roles in many life processes, such as tissue development, organ formation, homeostasis maintenance, resistance against external aggression, and immune responses. Apoptosis is regulated by many genes, among which Apoptosis Inhibitor-5 (API5) is an effective inhibitor, though the structure of API5 is completely different from the other known Inhibitors of Apoptosis Proteins (IAPs). Due to its high expression in many types of tumors, API5 has received extensive attention, and may be an effective target for cancer treatment. In order to comprehensively and systematically understand the biological roles of API5, we summarized the evolution and structure of API5 and its roles in anti-apoptosis in this review.
Collapse
Affiliation(s)
- Meishan Chen
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Weiwei Wu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Dongwu Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yanhua Lv
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Sijia Gao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yaqi Gu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Mujie Huang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xiao Guo
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Baohua Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| |
Collapse
|
9
|
Annie L, Gurusubramanian G, Roy VK. Inhibition of visfatin by FK866 mitigates pathogenesis of cystic ovary in letrozole-induced hyperandrogenised mice. Life Sci 2021; 276:119409. [PMID: 33781825 DOI: 10.1016/j.lfs.2021.119409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome is a common reproductive disorder in the female of reproductive age, which is characterized by hyperandrogenism, insulin resistance, cystic ovary and infertility. The level of pro-inflammatory adipokine, visfatin is elevated in PCOS conditions in human and animal. In this study, letrozole induced hyperandrogenised PCOS mice model have been used to unravel the effects of visfatin inhibition. The results showed that letrozole induced hyperandrogenisation significantly (p < 0.05) elevates ovarian visfatin concentration from 66.03 ± 1.77 to 112.08 ± 3.7 ng/ml, and visfatin expression to 2.5 fold (p < 0.05) compared to control. Visfatin inhibition in PCOS by FK866 has significantly (p < 0.05) suppressed the secretion of androgens, androstenedione (from 0.329 ± 0.07 to 0.097 ± 0.01 ng/ml) and testosterone levels (from 0.045 ± 0.003 to 0.014 ± 0.0009 ng/ml). Ovarian histology showed that visfatin inhibition suppressed cyst formation and promotes corpus luteum formation. Visfatin inhibition has suppressed apoptosis and increases the expression of BCL2 along with increase in the proliferation (GCNA expression elevated). Visfatin inhibition has increased ovarian glucose content (from 167.05 ± 8.5 to 210 ± 7 mg/dl), along with increase in ovarian GLUT8 expression. In vitro study has also supported the in vivo findings where FK866 treatment significantly (p < 0.05) suppressed testosterone (control-3.84 ± 0.44 ng/ml, 1 nM FK866-2.02 ± 0.048 ng/ml, 10 nM FK866-1.74 ± 0.20 ng/ml) and androstenedione (control-4.68 ± 0.91 ng/ml, 1 nM FK866-3.38 ± 0.27 ng/ml, 10 nM FK866-4.55 ± 0.83 ng/ml) production from PCOS ovary. In conclusion, this is first report, which showed that visfatin inhibition by FK866 in hyperandrogenised mice ameliorates pathogenesis of PCOS. Thus, it may be suggested that visfatin inhibition could have a therapeutic potential in PCOS management along with other intervention.
Collapse
Affiliation(s)
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India.
| |
Collapse
|
10
|
Yang B, Damodaran S, Khemees TA, Filon MJ, Schultz A, Gawdzik J, Etheridge T, Malin D, Richards KA, Cryns VL, Jarrard DF. Synthetic Lethal Metabolic Targeting of Androgen-Deprived Prostate Cancer Cells with Metformin. Mol Cancer Ther 2020; 19:2278-2287. [DOI: 10.1158/1535-7163.mct-19-1141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
|
11
|
Intrafollicular injection of nonesterified fatty acids impaired dominant follicle growth in cattle. Anim Reprod Sci 2020; 219:106536. [PMID: 32828411 DOI: 10.1016/j.anireprosci.2020.106536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022]
Abstract
Dairy cows frequently undergo a state of negative energy balance (NEB) after parturition and some have impaired ovarian functions that result in delayed resumption of estrous cyclicity and development of follicles without ovulation occurring. During the postpartum period, cows undergo body-fat store losses, hormonal changes, fat mobilization and increases in nonesterified fatty acid (NEFAs) concentrations in blood and follicular fluid. The effect of NEFAs on follicular development and function of follicular cells, however, is not fully understood. The aim of this study, therefore, was to study the effect of an intrafollicular injection of a mixture of oleic, stearic and palmitic NEFAs on dominant follicle development and function of granulosa cells in cows that were not in a NEB state. Follicular size was less at 24 and 48 h after administration of NEFAs compared to that of control follicles injected with vehicle only. At 24 h after intrafollicular injection, the relative mRNA transcript abundance for proteins involved in steroidogenesis (CYP19A1, 3BHSD, STAR, FSHR), metabolism (GLUT1, GLUT3, INSR, IRS1, IRS2, SLC27A1, PPARG), and cell proliferation and apoptosis (CCND2; XIAP) in granulosa cells, as well as estradiol concentrations in follicular fluid were similar in control and NEFA-treated follicles. In conclusion, the results of this study indicate increased intrafollicular concentrations of NEFAs in cows that are not in a NEB state has a detrimental effect on follicle development. We propose intrafollicular injection is a useful approach to further investigate the local effects of NEFAs on the function of follicular cells.
Collapse
|
12
|
Seflek HN, Kalkan S, Cuce G, Kılınc I, Sozen ME. Effects of Nigella sativa oil on ovarian volume, oxidant systems, XIAP and NF-kB expression in an experimental model of diabetes. Biotech Histochem 2019; 94:325-333. [PMID: 30821520 DOI: 10.1080/10520295.2019.1566571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We investigated the effects of Nigella sativa oil on ovary volume, nuclear factor-kappaB (NF-κB), X-linked inhibitor of apoptosis protein (XIAP) expression, and serum malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant status (TAS) and total oxidant status (TOS) levels in diabetic rats. We divided 21 adult female rats into three groups: controls, diabetics and diabetics + N. sativa oil. The diabetics + N. sativa oil group was given 0.2 mg/kg/day N. sativa oil 6 days/week for 4 weeks. NF-κB and XIAP expression was assessed in ovarian sections using immunohistochemistry. The right and left ovary volumes were calculated using stereology. We also measured serum MDA, SOD, TAS and TOS levels. We found that N. sativa oil reduced hyperglycemia, but not to control levels. N. sativa oil also exhibited antioxidant properties as demonstrated by reduced serum TOS and MDA levels, and increased SOD and TAS levels compared to controls. We found no significant difference in total ovarian volume, XIAP or NF-κB expression among the groups, which may be due to the short study period. Our findings suggest that N. sativa oil may be useful for reducing blood glucose levels and elevated oxidant activity in diabetic patients.
Collapse
Affiliation(s)
- H N Seflek
- a Departments of Histology and Embryology, Necmettin Erbakan University Meram Medical Faculty , Konya , Turkey
| | - S Kalkan
- a Departments of Histology and Embryology, Necmettin Erbakan University Meram Medical Faculty , Konya , Turkey
| | - G Cuce
- a Departments of Histology and Embryology, Necmettin Erbakan University Meram Medical Faculty , Konya , Turkey
| | - I Kılınc
- b Department of Biochemistry, Necmettin Erbakan University Meram Medical Faculty , Konya , Turkey
| | - M E Sozen
- c Department of Histology and Embryology, Faculty of Medicine, Alanya Alaaddin Keykubat University , Antalya , Turkey
| |
Collapse
|
13
|
Leung DTH, Rainczuk A, Nguyen T, Stephens A, Silke J, Fuller PJ, Chu S. Targeting XIAP and PPARγ in Granulosa Cell Tumors Alters Metabolic Signaling. J Proteome Res 2019; 18:1691-1702. [DOI: 10.1021/acs.jproteome.8b00917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dilys T. H. Leung
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Adam Rainczuk
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Trang Nguyen
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Andrew Stephens
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Peter J. Fuller
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Simon Chu
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
14
|
Jin XJ, Cai PS, Zhu SP, Wang LJ, Zhu H. Negative correlation between X-linked inhibitors of apoptosis and second mitochondria-derived activator of caspase expression levels in cervical carcinoma and cervical intraepithelial neoplasia. Oncol Lett 2017; 14:5340-5346. [PMID: 29113168 PMCID: PMC5661384 DOI: 10.3892/ol.2017.6878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/13/2017] [Indexed: 11/25/2022] Open
Abstract
X-linked inhibitors of apoptosis (XIAP) and second mitochondria-derived activator of caspase (Smac) have been widely reported to serve roles in the development of cervical carcinoma. The present study analyzed the associations between the expression levels of XIAP and Smac in normal cervical epithelium, cervical intraepithelial neoplasia (CIN) and cervical carcinoma. Immunohistochemistry staining of formalin-fixed, paraffin-embedded tissue sections was performed in order to analyze the expression levels of XIAP and Smac in 15 cases of normal cervical tissues, 69 cases of CIN and 76 cases of cervical carcinoma. All the tissue samples were confirmed by pathological diagnosis. The association of XIAP and Smac expression levels was analyzed using one-way analysis of variance, χ2 tests and Spearman's ρ for the nonparametric bi-variant correlation analysis. Overall survival was determined using the log-rank test and Kaplan-Meier survival curves. The expression level of XIAP was increased in CIN and cervical carcinoma tissues compared with normal cervical tissues, whereas Smac demonstrated a converse expression pattern to XIAP in these tissues. The positive staining level of XIAP protein was increased in grade 3 CIN compared with that in grade 1–2 CIN, and was significantly higher in the less-differentiated tissue of cervical carcinoma compared with the well- or medium-differentiated tissues (P<0.05). The staining level was also significantly increased in cervical carcinoma with stage 2b-3 compared with tissues from stage 1–2a carcinoma (P<0.05). The expression levels of Smac were in opposition to these results. XIAP was associated with pelvic lymph node metastasis, whereas no association was identified with Smac expression. The expression level of XIAP was significantly and negatively associated with cell survival time in cervical carcinoma, whereas the expression level of Smac was significantly and positively associated with cell survival time in cervical carcinoma. Therefore, XIAP and Smac may participate in the development of cervical cancer. The expression levels of XIAP and Smac were significantly and inversely associated. This may be useful in early diagnosis, evaluation of surgery and chemotherapy and the prognosis of cervical carcinoma.
Collapse
Affiliation(s)
- Xue-Jing Jin
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Ping-Sheng Cai
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Shu-Pin Zhu
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Li-Jie Wang
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Hua Zhu
- Departments of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
15
|
XIAP Interacts with and Regulates the Activity of FAF1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1335-1348. [PMID: 28414080 DOI: 10.1016/j.bbamcr.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Cell death depends on the balance between the activities of pro- and anti-apoptotic factors. X-linked inhibitor of apoptosis protein (XIAP) plays an important role in the cytoprotective process by inhibiting the caspase cascade and regulating pro-survival signaling pathways. While searching for novel interacting partners of XIAP, we identified Fas-associated factor 1 (FAF1). Contrary to XIAP, FAF1 is a pro-apoptotic factor that also regulates several signaling pathways in which XIAP is involved. However, the functional relationship between FAF1 and XIAP is unknown. Here, we describe a new interaction between XIAP and FAF1 and describe the functional implications of their opposing roles in cell death and NF-κB signaling. Our results clearly demonstrate the interaction of XIAP with FAF1 and define the specific region of the interaction. We observed that XIAP is able to block FAF1-mediated cell death by interfering with the caspase cascade and directly interferes in NF-κB pathway inhibition by FAF1. Furthermore, we show that XIAP promotes ubiquitination of FAF1. Conversely, FAF1 does not interfere with the anti-apoptotic activity of XIAP, despite binding to the BIR domains of XIAP; however, FAF1 does attenuate XIAP-mediated NF-κB activation. Altered expression of both factors has been implicated in degenerative and cancerous processes; therefore, studying the balance between XIAP and FAF1 in these pathologies will aid in the development of novel therapies.
Collapse
|
16
|
Dong Z, Huang M, Liu Z, Xie P, Dong Y, Wu X, Qu Z, Shen B, Huang X, Zhang T, Li J, Liu J, Yanase T, Zhou C, Xu Y. Focused screening of mitochondrial metabolism reveals a crucial role for a tumor suppressor Hbp1 in ovarian reserve. Cell Death Differ 2016; 23:1602-1614. [PMID: 27206316 PMCID: PMC5041189 DOI: 10.1038/cdd.2016.47] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 01/23/2023] Open
Abstract
Granulosa cells (GCs) are tightly associated with fertility and the fate of ovarian follicles. Mitochondria are the central executers of apoptosis. However, the genetic basis underlying mitochondrial modulation in GCs during the ovarian development is poorly understood. Here, CRISPR/Cas9-mediated genetic screening was used to identify genes conferring mitochondrial metabolism in human GCs. The results uncovered roles for several tumor suppressors, including HBP1, in the augmentation of mitochondrial function. Focused analysis revealed that high-mobility group (HMG)-box transcription factor 1 (Hbp1) levels regulate mitochondrial biogenesis, which is associated with global changes in transcription including Tfam. The systemic or granulosa-specific but not oocyte-specific ablation of Hbp1 promoted follicle growth and oocyte production, and is associated with the reduced apoptotic signals in mouse GCs. Consistent with increased mitochondrial function and attenuated GC apoptosis, the regulation of Hbp1 conferred substantial protection of ovarian reserve. Thus, the results of the present study provide a critical target to understand the control of the reproductive lifespan.
Collapse
Affiliation(s)
- Z Dong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - M Huang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Z Liu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - P Xie
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Y Dong
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - X Wu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Z Qu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - B Shen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - X Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - T Zhang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - J Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - J Liu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - T Yanase
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - C Zhou
- Department of Biochemistry and Molecular Medicine and Comprehensive Cancer Center, Institute for Pediatric Regenerative Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Y Xu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Xia T, Fu Y, Li S, Ma R, Zhao Z, Wang B, Chao C. Bu Shen Tiao Chong recipe restores diminished ovary reserve through the BDNF pathway. J Assist Reprod Genet 2016; 33:795-805. [PMID: 27094194 PMCID: PMC4889480 DOI: 10.1007/s10815-016-0697-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/07/2016] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The purpose of this study was to explore the molecular pathway of BSTCR (Bu Shen Tiao Chong recipe) in retrieving diminished ovary reserve (DOR). METHODS The DOR model was established through injecting cyclophosphamide and the effect of BSTCR was examined under this background. RESULTS BSTCR was shown to restore depleted brain-derived neurotrophic factor (BDNF), CDC2, cyclin B, GSH1, and P38 levels as well as impaired oocyte maturation and the higher apoptosis induced in DOR. BSTCR also enhances the response of oocytes to in vitro fertilization, with higher implantation rate, birth rate, and placenta weight. CONCLUSION BSTCR might exert its beneficial role in oocyte maturation and restore DOR through regulating the BDNF pathway. And this pathway itself is probably through the consequence on several serum hormones such as FSH, E2, Inhibin B, etc.
Collapse
Affiliation(s)
- Tian Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China.
| | - Yu Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Shuang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Ruihong Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Zhimei Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Baojuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Chune Chao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| |
Collapse
|
18
|
Chan KA, Bernal AB, Vickers MH, Gohir W, Petrik JJ, Sloboda DM. Early life exposure to undernutrition induces ER stress, apoptosis, and reduced vascularization in ovaries of adult rat offspring. Biol Reprod 2015; 92:110. [PMID: 25810471 DOI: 10.1095/biolreprod.114.124149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022] Open
Abstract
Maternal nutritional restriction has been shown to induce impairments in a number of organ systems including the ovary. We have previously shown that maternal undernutrition induces fetal growth restriction and low birth weight, and results in an offspring ovarian phenotype characteristic of premature ovarian aging with reduced ovarian reserve. In the present study, we set out to investigate the underlying mechanisms that lead offspring of undernourished mothers to premature ovarian aging. Pregnant dams were randomized to 1) a standard diet throughout pregnancy and lactation (control), 2) a calorie-restricted (50% of control) diet during pregnancy, 3) a calorie-restricted (50% of control) diet during pregnancy and lactation, or 4) a calorie-restricted (50% of control) diet during lactation alone. The present study shows that early life undernutrition-induced reduction of adult ovarian follicles may be mediated by increased ovarian endoplasmic reticulum stress in a manner that increased follicular apoptosis but not autophagy. These changes were associated with a loss of ovarian vessel density and are consistent with an accelerated ovarian aging phenotype. Whether these changes are mediated specifically by a reduction in the local antioxidant environment is unclear, although our data suggest the possibility that ovarian melatonin may play a part in early life nutritional undernutrition and impaired offspring folliculogenesis.
Collapse
Affiliation(s)
- Kaitlyn A Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Angelica B Bernal
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, New Zealand
| | - Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jim J Petrik
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
DHA2, a synthesized derivative of bisbibenzyl, exerts antitumor activity against ovarian cancer through inhibition of XIAP and Akt/mTOR pathway. Food Chem Toxicol 2014; 69:163-74. [DOI: 10.1016/j.fct.2014.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/02/2014] [Accepted: 04/05/2014] [Indexed: 11/24/2022]
|
20
|
Ding N, Han Q, Li Q, Zhao X, Li J, Su J, Wang Q. Comprehensive analysis of Sichuan white geese (Anser cygnoides) transcriptome. Anim Sci J 2014; 85:650-9. [PMID: 24725216 DOI: 10.1111/asj.12197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Abstract
High-throughput RNA sequencing was performed for comprehensively analyzing the transcriptome of geese. A total of 28,803,759 bp of raw sequence data was generated by 454 GS Flx+. After removal of adaptor sequences, 28,730,361 bp remained and 117,279 reads were obtained, with an average length of 244 bases. Simultaneously, complementary DNA samples from two different reproductive stages of goose ovarian, hypothalamus and pituitary tissue were sequenced separately using Illumina MiSeq platform. A total of 12 688 673 148 bp of raw sequence data were generated by Illumina MiSeq. After removal of adaptor sequences, 8 198 126 562 bp remained and 60 382 786 clean reads were obtained, with an average length of 135 bases. Assembly of all the reads from both 454 Flx+ and Illumina platforms formed 56,839 contigs. The sequence size ranges from 38 to 28,206 bp in size, with an average size of 2584 bp and an N50 of 4624. The assembly produced a substantial number of large contigs: 35,545 (62.5%) were longer than 1 kb, of which 8850 (15.6%) were longer than 5 kb. The sequencing depth was 85 X on average. We performed comprehensive function annotations on unigenes including protein sequence similarity, gene ontology (GO) term classification, and Kyoto Encylcopedia of Genes and Genomes (KEGG) pathway enrichment. GO analysis showed that approximately 63% of the contigs had annotation information, among the 35,953 annotated isotigs in Nr database, 24,783 (68.9%) sequences were assigned with one or more GO terms. There were 14,634 (40.7%) isotigs for biological processes, 10,557(29.3%) isotigs for cellular component, 22,607 (62.9%) isotigs for molecular function. The result of KEGG pathway mapping 8926 sequences had the pathway annotation, and took part in 477 pathways. Additionally, 10,685 simple sequence repeat (SSR) markers were identified from the assembled sequences. The most frequent repeat motifs were trinucleotides, which accounted for 53.03% of all SSRs, followed by dinucleotides (39.9%), tetranucleotides (5.08%), pentanucleotides (1.68%) and hexanucleotides (0.32%). Transcriptome sequencing on mixture issue of the geese yielded substantial transcriptional sequences and potentially useful SSR markers which provide an important data source for geese research.
Collapse
Affiliation(s)
- Ning Ding
- Chongqing Academy of Animal Science, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Prenatal exposure to chromium induces early reproductive senescence by increasing germ cell apoptosis and advancing germ cell cyst breakdown in the F1 offspring. Dev Biol 2014; 388:22-34. [PMID: 24530425 DOI: 10.1016/j.ydbio.2014.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/21/2014] [Accepted: 02/04/2014] [Indexed: 01/19/2023]
Abstract
Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries such as chrome plating, welding, wood processing and tanneries. As one of the world's leading producers of chromium compounds, the U.S. is facing growing challenges in protecting human health against multiple adverse effects of CrVI. CrVI is rapidly converted to CrIII intracellularly, and can induce apoptosis through different mechanisms. Our previous studies demonstrated postnatal exposure to CrVI results in a delay or arrest in follicle development and puberty. Pregnant rats were treated with 25 ppm potassium dichromate (CrVI) from gestational day (GD) 9.5 to 14.5 through drinking water, placentae were removed on GD 20, and total Cr was estimated in the placentae; ovaries were removed from the F1 offspring on postnatal day (PND)-1 and various analyses were performed. Our results show that gestational exposure to CrVI resulted in (i) increased Cr concentration in the placenta, (ii) increased germ cell apoptosis by up-regulating p53/p27-Bax-caspase-3 proteins and by increasing p53-SOD-2 co-localization; (iii) accelerated germ cell cyst (GCC) breakdown; (iv) advanced primordial follicle assembly and primary follicle transition and (v) down regulation of p-AKT, p-ERK and XIAP. As a result of the above events, CrVI induced early reproductive senescence and decrease in litter size in F1 female progeny.
Collapse
|
22
|
Yang C, Novack DV. Anti-cancer IAP antagonists promote bone metastasis: a cautionary tale. J Bone Miner Metab 2013; 31:496-506. [PMID: 23740289 PMCID: PMC3962044 DOI: 10.1007/s00774-013-0479-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/03/2013] [Indexed: 12/30/2022]
Abstract
The bone microenvironment is complex, containing bone-forming osteoblasts, bone-resorbing osteoclasts, bone-maintaining osteocytes, hematopoietic lineage cells, as well as blood vessels, nerves, and stromal cells. Release of embedded growth factors from the bone matrix via osteoclast resorption has been shown to participate in the alteration of bone microenvironment to facilitate tumor metastasis to this organ. Many types of malignancies including solid tumors and leukemias are associated with elevated levels of inhibitor of apoptosis (IAP) proteins, and IAP antagonists represent an important emerging class of anti-cancer agents. IAPs exert anti-apoptotic roles by inhibiting caspases and upregulating pro-survival proteins, at least in part by activating classical NF-κB signaling. In addition, IAPs act as negative regulators in the alternative NF-κB pathway, so that IAP antagonists stimulate this pathway. The role of the classical NF-κB pathway in IAP antagonist-induced apoptosis has been extensively studied, whereas much less attention has been paid to the role of these agents in the alternative pathway. Thus far, several IAP antagonists have been tested in preclinical and early stage clinical trials, and have shown promise in sensitizing tumor cells to apoptosis without significant side effects. However, recent preclinical evidence suggests an increased risk of bone metastasis caused by IAP antagonists, along with potential for promoting osteoporosis. In this review, the connection between IAP antagonists, the alternative NF-κB pathway, osteoclasts, and bone metastasis are discussed. In light of these effects of IAP antagonists on the bone microenvironment, more attention should be paid to this and other host tissues as these drugs are developed further.
Collapse
Affiliation(s)
- Chang Yang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave, Box 8301, St. Louis, MO, 63110, USA,
| | | |
Collapse
|
23
|
Liu S, Zhang P, Chen Z, Liu M, Li X, Tang H. MicroRNA-7 downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical cancer cells. FEBS Lett 2013; 587:2247-53. [PMID: 23742934 DOI: 10.1016/j.febslet.2013.05.054] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 05/24/2013] [Accepted: 05/24/2013] [Indexed: 01/01/2023]
Abstract
Our study demonstrated the functions of microRNA-7 (miR-7) in cervical cancer. The overexpression of miR-7 in the cervical cancer cell lines HeLa and C-33A suppressed cell viability and promoted cell apoptosis, whereas the inhibition of miR-7 had opposite effects. Furthermore, an oncogene, X-linked inhibitor of apoptosis protein (XIAP), was identified as a new target of miR-7, and the ectopic expression of XIAP rescued the effects induced by miR-7 in HeLa and C-33A cells. These results indicate that miR-7 targeted and downregulated the oncogene XIAP to regulate the effect of miR-7 on apoptosis and malignant behaviors of HeLa and C-33A cells.
Collapse
Affiliation(s)
- Shang Liu
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | |
Collapse
|