1
|
Sertorio MN, César H, de Souza EA, Mennitti LV, Santamarina AB, De Souza Mesquita LM, Jucá A, Casagrande BP, Estadella D, Aguiar O, Pisani LP. Parental High-Fat High-Sugar Diet Intake Programming Inflammatory and Oxidative Parameters of Reproductive Health in Male Offspring. Front Cell Dev Biol 2022; 10:867127. [PMID: 35832794 PMCID: PMC9271829 DOI: 10.3389/fcell.2022.867127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Parental nutrition can impact the health of future generations, programming the offspring for the development of diseases. The developing germ cells of the offspring could be damaged by the maternal or the paternal environment. The germ cells in development and their function could be affected by nutritional adversity and therefore, harm the health of subsequent generations. The paternal or maternal intake of high-fat diets has been shown to affect the reproductive health of male offspring, leading to imbalance in hypothalamic-pituitary-gonadal axis, testicular oxidative stress, low testosterone production, and changes in sperm count, viability, motility, and morphology. There is a need for studies that address the combined effects of diets with a high-fat and high-sugar (H) content by both progenitors on male reproduction. In this context, our study evaluated epigenetic parameters and the inflammatory response that could be associated to oxidative stress in testis and epididymis of adult offspring. 90 days-old male rats were divided according to the combination of the parental diet: CD (control paternal and maternal diet), HP (H paternal diet and control maternal diet), HM (H maternal diet and control paternal diet) and HPM (H paternal and maternal diet).We evaluated serum levels of testosterone and FSH; testicular gene expression of steroidogenic enzymes Star and Hsd17b3 and epigenetic markers Dnmt1, Dnmt3a, Dnmt3b, and Mecp2; testicular and epididymal levels of TNF-α, IL-6, IL-10, and IL-1β; testicular and epididymal activity of SOD, CAT, and GST; the oxidative markers MDA and CP; the daily sperm production, sperm transit time, and sperm morphology. Testicular epigenetic parameter, inflammatory response, oxidative balance, and daily sperm production of the offspring were affected by the maternal diet; paternal diet influenced serum testosterone levels, and lower daily sperm production was exacerbated by the interaction effect of both parental intake of high-fat high-sugar diet in the testis. There was isolated maternal and paternal effect in the antioxidant enzyme activity in the cauda epididymis, and an interaction effect of both parents in protein oxidative marker. Maternal effect could also be observed in cytokine production of cauda epididymis, and no morphological effects were observed in the sperm. The potential programming effects of isolated or combined intake of a high-fat high-sugar diet by the progenitors could be observed at a molecular level in the reproductive health of male offspring in early adulthood.
Collapse
Affiliation(s)
| | - Helena César
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Esther Alves de Souza
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Laís Vales Mennitti
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Aline Boveto Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | | | - Andréa Jucá
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Breno Picin Casagrande
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Odair Aguiar
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Luciana Pellegrini Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
- *Correspondence: Luciana Pellegrini Pisani,
| |
Collapse
|
2
|
Grzęda E, Matuszewska J, Ziarniak K, Gertig-Kolasa A, Krzyśko- Pieczka I, Skowrońska B, Sliwowska JH. Animal Foetal Models of Obesity and Diabetes - From Laboratory to Clinical Settings. Front Endocrinol (Lausanne) 2022; 13:785674. [PMID: 35197931 PMCID: PMC8858803 DOI: 10.3389/fendo.2022.785674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
The prenatal period, during which a fully formed newborn capable of surviving outside its mother's body is built from a single cell, is critical for human development. It is also the time when the foetus is particularly vulnerable to environmental factors, which may modulate the course of its development. Both epidemiological and animal studies have shown that foetal programming of physiological systems may alter the growth and function of organs and lead to pathology in adulthood. Nutrition is a particularly important environmental factor for the pregnant mother as it affects the condition of offspring. Numerous studies have shown that an unbalanced maternal metabolic status (under- or overnutrition) may cause long-lasting physiological and behavioural alterations, resulting in metabolic disorders, such as obesity and type 2 diabetes (T2DM). Various diets are used in laboratory settings in order to induce maternal obesity and metabolic disorders, and to alter the offspring development. The most popular models are: high-fat, high-sugar, high-fat-high-sugar, and cafeteria diets. Maternal undernutrition models are also used, which results in metabolic problems in offspring. Similarly to animal data, human studies have shown the influence of mothers' diets on the development of children. There is a strong link between the maternal diet and the birth weight, metabolic state, changes in the cardiovascular and central nervous system of the offspring. The mechanisms linking impaired foetal development and adult diseases remain under discussion. Epigenetic mechanisms are believed to play a major role in prenatal programming. Additionally, sexually dimorphic effects on offspring are observed. Therefore, further research on both sexes is necessary.
Collapse
Affiliation(s)
- Emilia Grzęda
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Julia Matuszewska
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Kamil Ziarniak
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
- Molecular and Cell Biology Unit, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Gertig-Kolasa
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Izabela Krzyśko- Pieczka
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Bogda Skowrońska
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Joanna H. Sliwowska
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Joanna H. Sliwowska,
| |
Collapse
|
3
|
Sertorio MN, Estadella D, Ribeiro DA, Pisani LP. Could parental high-fat intake program the reproductive health of male offspring? A review. Crit Rev Food Sci Nutr 2021; 63:2074-2081. [PMID: 34445915 DOI: 10.1080/10408398.2021.1970509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High-fat diet (HFD) intake can cause overweight and obesity and has become a global public health concern in recent years. Nutritional adversity at vulnerable windows of development can affect developing cells and their functions, including germ cells. Evidence shows that parental HFD intake prior to conception and/or during gestation and lactation could program the reproductive health of male offspring, ultimately resulting in impairment of the first as well as subsequent generations. In male offspring, adipose tissue and hypothalamic-pituitary-gonadal axis imbalance can impair the production of gonadotropins, leading to dysfunction of testosterone production and pubertal onset. The gonads can be directly impaired through oxidative stress, causing poor testosterone production and spermatogenesis; low sperm count, viability, and motility; and abnormal sperm morphology, which results in low sperm quality. Parental HFD intake could also be a risk factor for prostate hyperplasia and cancer in advanced age. It can impact the reproductive pattern of male offspring resulting in impairments in the subsequent generations. The investigation of semen quality must be extended to epidemiological and clinical studies of the male offspring of overweight and/or obese parents in order to improve the quality of human semen. This review addresses the effects of parental HFD intake on the reproductive parameters of male offspring and discusses the possible underlying mechanisms.
Collapse
Affiliation(s)
- Marcela Nascimento Sertorio
- Programa de Pós-graduação em Nutrição, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.,Departamento de Biociências, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Debora Estadella
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | |
Collapse
|
4
|
Sanches BDA, Leonel ECR, Maldarine JS, Tamarindo GH, Barquilha CN, Felisbino SL, Goés RM, Vilamaior PSL, Taboga SR. Telocytes are associated with tissue remodeling and angiogenesis during the postlactational involution of the mammary gland in gerbils. Cell Biol Int 2020; 44:2512-2523. [PMID: 32856745 DOI: 10.1002/cbin.11458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 07/05/2020] [Indexed: 01/19/2023]
Abstract
The postlactational involution of the mammary gland is a complex process. It involves the collapse of the alveoli and the remodeling of the extracellular matrix, which in turn implies a complex set of interrelations between the epithelial, stromal, and extracellular matrix elements. The telocytes, a new type of CD34-positive stromal cell that differs from fibroblasts in morphological terms and gene expression, were detected in the stroma of several tissues, including the mammary gland; however, their function remains elusive. The present study employed three-dimensional reconstructions and immunohistochemical, ultrastructural, and immunofluorescence techniques in histological sections of the mammary gland of the Mongolian gerbil during lactation and postlactational involution to evaluate the presence of telocytes and to investigate a possible function for these cells. By means of immunofluorescence assays for CD34 and c-kit, major markers of telocytes, and also through morphological and ultrastructural evidences, telocytes were observed to surround the mammary ducts and collapsing alveoli. It was also found that these cells are associated with matrix metalloproteinase 9, which indicates that telocytes can play a role in extracellular matrix digestion, as well as vascular endothelial growth factor, a factor that promotes angiogenesis. Together, these data indicate that telocytes are a distinct cell type in the mammary gland and, for the first time, show that these cells possibly play a role in tissue remodeling and angiogenesis during the postlactional involution of the mammary gland.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ellen C R Leonel
- Laboratory of Microscopy and Microanalysis, Department of Biology, University of Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Juliana S Maldarine
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Guilherme H Tamarindo
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Caroline N Barquilha
- Department of Structural and Functional Biology, Institute of Biosciences, University of Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Sérgio L Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, University of Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Rejane M Goés
- Laboratory of Microscopy and Microanalysis, Department of Biology, University of Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Laboratory of Microscopy and Microanalysis, Department of Biology, University of Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Sebastião R Taboga
- Laboratory of Microscopy and Microanalysis, Department of Biology, University of Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Youngson NA, Uddin GM, Das A, Martinez C, Connaughton HS, Whiting S, Yu J, Sinclair DA, Aitken RJ, Morris MJ. Impacts of obesity, maternal obesity and nicotinamide mononucleotide supplementation on sperm quality in mice. Reproduction 2020; 158:169-179. [PMID: 31226694 PMCID: PMC6589912 DOI: 10.1530/rep-18-0574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
Abstract
Male fertility and sperm quality are negatively impacted by obesity. Furthermore, recent evidence has shown that male offspring from obese rat mothers also have reduced sperm quality and fertility. Here, we extend work in this area by comparing the effects of both maternal obesity and offspring post-weaning diet-induced obesity, as well as their combination, on sperm quality in mice. We additionally tested whether administration of the NAD+-booster nicotinamide mononucleotide (NMN) can ameliorate the negative effects of obesity and maternal obesity on sperm quality. We previously showed that intraperitoneal (i.p.) injection of NMN can reduce the metabolic deficits induced by maternal obesity or post-weaning dietary obesity in mice. In this study, female mice were fed a high-fat diet (HFD) for 6 weeks until they were 18% heavier than a control diet group. Thereafter, HFD and control female mice were mated with control diet males, and male offspring were weaned into groups receiving control or HFD. At 30 weeks of age, mice received 500 mg/kg body weight NMN or vehicle PBS i.p. for 21 days. As expected, adiposity was increased by both maternal and post-weaning HFD but reduced by NMN supplementation. Post-weaning HFD reduced sperm count and motility, while maternal HFD increased offspring sperm DNA fragmentation and levels of aberrant sperm chromatin. There was no evidence that the combination of post-weaning and maternal HFD exacerbated the impacts in sperm quality suggesting that they impact spermatogenesis through different mechanisms. Surprisingly NMN reduced sperm count, vitality and increased sperm oxidative DNA damage, which was associated with increased NAD+ in testes. A subsequent experiment using oral NMN at 400 mg/kg body weight was not associated with reduced sperm viability, oxidative stress, mitochondrial dysfunction or increased NAD+ in testes, suggesting that the negative impacts on sperm could be dependent on dose or mode of administration.
Collapse
Affiliation(s)
- Neil A Youngson
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - G Mezbah Uddin
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Abhirup Das
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.,Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Blavatnik Institute,Harvard Medical School, Boston, Massachusetts, USA
| | - Carl Martinez
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Haley S Connaughton
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sara Whiting
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Josephine Yu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - David A Sinclair
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.,Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Blavatnik Institute,Harvard Medical School, Boston, Massachusetts, USA
| | - R John Aitken
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Christians JK, Lennie KI, Wild LK, Garcha R. Effects of high-fat diets on fetal growth in rodents: a systematic review. Reprod Biol Endocrinol 2019; 17:39. [PMID: 30992002 PMCID: PMC6469066 DOI: 10.1186/s12958-019-0482-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Maternal nutrition during pregnancy has life-long consequences for offspring. However, the effects of maternal overnutrition and/ or obesity on fetal growth remain poorly understood, e.g., it is not clear why birthweight is increased in some obese pregnancies but not in others. Maternal obesity is frequently studied using rodents on high-fat diets, but effects on fetal growth are inconsistent. The purpose of this review is to identify factors that contribute to reduced or increased fetal growth in rodent models of maternal overnutrition. METHODS We searched Web of Science and screened 2173 abstracts and 328 full texts for studies that fed mice or rats diets providing ~ 45% or ~ 60% calories from fat for 3 weeks or more prior to pregnancy. We identified 36 papers matching the search criteria that reported birthweight or fetal weight. RESULTS Studies that fed 45% fat diets to mice or 60% fat diets to rats generally did not show effects on fetal growth. Feeding a 45% fat diet to rats generally reduced birth and fetal weight. Feeding mice a 60% fat diet for 4-9 weeks prior to pregnancy tended to increase in fetal growth, whereas feeding this diet for a longer period tended to reduce fetal growth. CONCLUSIONS The high-fat diets used most often with rodents do not closely match Western diets and frequently reduce fetal growth, which is not a typical feature of obese human pregnancies. Adoption of standard protocols that more accurately mimic effects on fetal growth observed in obese human pregnancies will improve translational impact in this field.
Collapse
Affiliation(s)
- Julian K. Christians
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Kendra I. Lennie
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Lisa K. Wild
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Raajan Garcha
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
7
|
Xing JS, Bai ZM. Is testicular dysgenesis syndrome a genetic, endocrine, or environmental disease, or an unexplained reproductive disorder? Life Sci 2018; 194:120-129. [DOI: 10.1016/j.lfs.2017.11.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 11/29/2022]
|
8
|
Pinto-Fochi ME, Pytlowanciv EZ, Reame V, Rafacho A, Ribeiro DL, Taboga SR, Góes RM. A high-fat diet fed during different periods of life impairs steroidogenesis of rat Leydig cells. Reproduction 2016; 152:795-808. [PMID: 27679864 DOI: 10.1530/rep-16-0072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/27/2016] [Indexed: 01/22/2023]
Abstract
This study evaluated the impact of a high-fat diet (HFD) during different stages of rat life, associated or not with maternal obesity, on the content of sex steroid hormones and morphophysiology of Leydig cells. The following periods of development were examined: gestation (O1), gestation and lactation (O2), from weaning to adulthood (O3), from lactation to adulthood (O4), gestation to adulthood (O5), and after sexual maturation (O6). The HFD contained 20% unsaturated fat, whereas the control diet had 4% fat. Maternal obesity was induced by feeding HFD 15 weeks before mating. All HFD groups presented increased body weight, hyperinsulinemia and reduced insulin sensitivity. Except for O1, all HFD groups exhibited a higher adiposity index, hyperleptinemia, reduced testosterone and estradiol testicular levels, and decreased testicular 17β-HSD enzyme . Morphometrical analyses indicated atrophy of Leydig cells in the O2 group. Myelin vesicles were observed in the mitochondrial matrix of Leydig cells in O3, O4, O5 and O6, and autophagosomes containing mitochondria were found in O5 and O6. In conclusion, HFD feeding, before or after sexual maturation, reduces the functional capacity of rat Leydig cells. Maternal obesity associated with HFD during pregnancy/lactation prejudices Leydig cell steroidogenesis and induces its atrophy in adulthood, even if it is replaced by a conventional diet at later stages of life. Regardless of the life period of exposure to HFD, deregulation of leptin is the main factor related to steroidogenic impairment of Leydig cells, and, in groups exposed for longer periods (O3, O4, O5 and O6), this is worsened by structural damage and mitochondrial degeneration of these cells.
Collapse
Affiliation(s)
- Maria Etelvina Pinto-Fochi
- Department of BiologyInstitute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Eloísa Zanin Pytlowanciv
- Department of BiologyInstitute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil.,Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas, IB/UNICAMP, Campinas, São Paulo, Brazil
| | - Vanessa Reame
- Department of BiologyInstitute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Alex Rafacho
- Department of Physiological SciencesFederal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Daniele Lisboa Ribeiro
- Department of Histology- ICBIMFederal University of Uberlandia, Uberlândia, Minas Gerais, Brazil
| | - Sebastião Roberto Taboga
- Department of BiologyInstitute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil.,Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas, IB/UNICAMP, Campinas, São Paulo, Brazil
| | - Rejane Maira Góes
- Department of BiologyInstitute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil .,Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas, IB/UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Pytlowanciv EZ, Pinto-Fochi ME, Reame V, Gobbo MG, Ribeiro DL, Taboga SR, Góes RM. Differential ontogenetic exposure to obesogenic environment induces hyperproliferative status and nuclear receptors imbalance in the rat prostate at adulthood. Prostate 2016; 76:662-78. [PMID: 26847797 DOI: 10.1002/pros.23158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Experimental data indicate that high-fat diet (HFD) may alter proliferative activity and prostate health. However, the consequences of HFD exposure during different periods of ontogenetic development on prostate histophysiology remain to be elucidated. Herein, we compare the influence of obesogenic environment (OE) due to maternal obesity and HFD at different periods of life on proliferative activity and nuclear receptors frequency in the rat ventral prostate and a possible relationship with metabolic and hormonal alterations. METHODS Male Wistar rats (19 weeks old), treated with balanced chow (Control group-C; 3% high-fat, 3.5 Kcal/g), were compared with those exposed to HFD (20% high-fat, 4.9 kcal/g) during gestation (G-maternal obesity), gestation and lactation (GL), from post-weaning to adulthood (WA), from lactation to adulthood (LA) and from gestation to adulthood (GA). After the experimental period, the ventral prostate lobes were removed and analyzed with different methods. RESULTS Metabolic data indicated that G and GL rats became insulin resistant and WA, LA, and GA became insulin resistant and obese. There was a strong inverse correlation between serum testosterone (∼133% lower) and leptin levels (∼467% higher) in WA, LA, and GA groups. Estrogen serum levels increased in GA, and insulin levels increased in all groups, especially in WA (64.8×). OE-groups exhibited prostatic hypertrophy, since prostate weight increased ∼40% in G, GL, LA, and GA and 31% in WA. As indicated by immunohistochemistry, all HFD-groups except G exhibited an increase in epithelial cell proliferation (PCNA-positive) and a decrease in frequency of AR- and ERβ-positive epithelial cells; there was also an increment of ERα-positive stromal cells in comparison with control. Cells containing PPARγ increased in both epithelium and stroma of all OE groups and those expressing LXRα decreased, particularly in groups OE-exposed during gestation (G, GL and GA). CONCLUSIONS OE leads to prostate hypertrophy regardless of the period of development and, except when restricted to gestation, leads to a hyperproliferative status which was correlated to downregulation of AR and LXRα and upregulation of ERα and PPARγ signaling.
Collapse
Affiliation(s)
- Eloísa Zanin Pytlowanciv
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University-UNICAMP, Campinas, São Paulo, Brazil
| | - Maria Etelvina Pinto-Fochi
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Vanessa Reame
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University-UNICAMP, Campinas, São Paulo, Brazil
| | - Marina Guimarães Gobbo
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University-UNICAMP, Campinas, São Paulo, Brazil
| | - Daniele Lisboa Ribeiro
- Histology Sector, Institute of Biomedical Sciences, Federal University of Uberlândia-UFU, Uberlândia, MG, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Rejane Maira Góes
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Reame V, Pytlowanciv EZ, Ribeiro DL, Pissolato TF, Taboga SR, Góes RM, Pinto-Fochi ME. Obesogenic environment by excess of dietary fats in different phases of development reduces spermatic efficiency of wistar rats at adulthood: correlations with metabolic status. Biol Reprod 2014; 91:151. [PMID: 25339108 DOI: 10.1095/biolreprod.114.121962] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study compares the impact of obesogenic environment (OE) in six different periods of development on sperm parameters and the testicular structure of adult rats and their correlations with sex steroid and metabolic scenario. Wistar rats were exposed to OE during gestation (O1), during gestation/lactation (O2), from weaning to adulthood (O3), from lactation to adulthood (O4), from gestation to sexual maturity (O5), and after sexual maturation (O6). OE was induced by a 20% fat diet, and control groups were fed a balanced diet (4% fat). Serum leptin levels and adiposity index indicate that all groups were obese, except for O1. Three progressive levels of impaired metabolic status were observed: O1 presented insulin resistance, O2 were insulin resistant and obese, and groups O3, O4, and O5 were insulin resistant, obese, and diabetic. These three levels of metabolic damage were proportional to the increase of leptin and decreased circulating testosterone. The impairment in the daily sperm production (DSP) paralleled these three levels of metabolic and hormonal damage being marginal in O1, increasing in O2, and being higher in groups O3, O4, O5, and O6. None of the OE periods affected the sperm transit time in the epididymis, and the lower sperm reserves were caused mainly by impaired DSP. In conclusion, OE during sexual maturation markedly reduces the DSP at adulthood in the rat. A severe reduction in the DSP also occurs in OE exposure during gestation/lactation but not in gestation, indicating that breast-feeding is a critical period for spermatogenic impairment under obesogenic conditions.
Collapse
Affiliation(s)
- Vanessa Reame
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista, IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Eloísa Zanin Pytlowanciv
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista, IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Daniele Lisboa Ribeiro
- Department of Histology, Institute of Biomedical Sciences, Federal University of Uberlandia - UFU, Uberlândia, Minas Gerais, Brazil
| | - Thiago Feres Pissolato
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista, IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista, IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Rejane Maira Góes
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista, IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Maria Etelvina Pinto-Fochi
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista, IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Impact of maternal hyperlipidic hypercholesterolaemic diet on male reproductive organs and testosterone concentration in rabbits. J Dev Orig Health Dis 2014; 5:183-8. [DOI: 10.1017/s2040174414000087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The concept of Developmental Origins of Health and Disease initially stemmed from the developmental programming of metabolic diseases. Reproductive functions and fertility in adulthood may also be programmed during foetal development. We studied the impact of dietary-induced maternal hyperlipidaemia and hypercholesterolaemia (HH), administered at 10 weeks of age and throughout the gestation and lactation, on male reproductive functions of rabbit offspring. Male rabbits born to HH dams and fed a control diet had significantly lighter testes and epididymes compared with rabbits born to control dams at adulthood. No significant changes in sperm concentration, sperm DNA integrity and sperm membrane composition were observed, but serum-free testosterone concentrations were decreased in HH males. This study confirms the importance of maternal metabolic status for the development of male reproductive organs.
Collapse
|
12
|
Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays 2014; 36:359-71. [PMID: 24431278 PMCID: PMC4047566 DOI: 10.1002/bies.201300113] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle-related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non-coding RNAs are viable mechanistic candidates for a non-genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health-related effects in future generations.
Collapse
Affiliation(s)
- Adelheid Soubry
- Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|