1
|
Mion B, Madureira G, Spricigo JFW, King K, Van Winters B, LaMarre J, LeBlanc SJ, Steele MA, Ribeiro ES. Effects of source of supplementary trace minerals in pre- and postpartum diets on reproductive biology and performance in dairy cows. J Dairy Sci 2023:S0022-0302(23)00216-3. [PMID: 37164845 DOI: 10.3168/jds.2022-22784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/03/2023] [Indexed: 05/12/2023]
Abstract
Our objectives were to evaluate the effects of complete replacement of inorganic salts of trace minerals (STM) with organic trace minerals (OTM) in both pre- and postpartum diets on ovarian dynamics, estrous behavior measured by sensors, preimplantation conceptus development, and reproductive performance in dairy cows. Pregnant cows and heifers (n = 273) were blocked by parity and body condition score and randomly assigned to either STM or OTM diets at 45 ± 3 d before their expected calving. Pre- and postpartum diets were formulated to meet 100% of recommended levels of each trace mineral in both treatments, taking into consideration both basal and supplemental levels. The final target concentrations of Co, Cu, Mn, Se, and Zn were, respectively, 0.25, 13.7, 40.0, 0.3, and 40.0 mg/kg in the prepartum diet, and 0.25, 15.7, 40.0, 0.3, and 63.0 mg/kg in the postpartum diet. The STM group was supplemented with Co, Cu, Mn, and Zn sulfates and sodium selenite, while the OTM group was supplemented with Co, Cu, Mn, and Zn proteinates and selenized yeast. Treatments continued until 156 d in milk (DIM) and were assigned to individual cows using automatic feeding gates. Starting at 21 DIM, ultrasonography examinations of the ovaries were performed weekly to determine the presence of a corpus luteum and postpartum resumption of ovarian cyclicity. Cows were presynchronized with 2 injections of PGF2α at 42 and 56 DIM. Estrous behavior was monitored using electronic activity tags that indirectly measured walking activity. Cows detected in estrus after the second PGF2α were inseminated, and those not detected in estrus by 67 DIM were enrolled in a synchronization program. Cows that returned to estrus after artificial insemination (AI) were reinseminated. Pregnancy diagnosis was performed 33 d after AI, and nonpregnant cows were resynchronized. Transcript expression of interferon-stimulated genes in peripheral blood leukocytes was performed in a subgroup of cows (STM, n = 67; OTM, n = 73) on d 19 after AI. A different subgroup of cows (28 STM, 29 OTM) received uterine flushing 15 d after AI for recovery of conceptuses and uterine fluid for analyses of transcriptomics and metabolomics, respectively. In addition, dominant follicle diameter, luteal size and blood flow, and concentration of progesterone in plasma were measured on d 0, 7, and 15 relative to AI. After flushing, PGF2α was given and the dominant follicle was aspirated 2 d later to measure the concentration of trace minerals by mass spectrometry. Estrous behavior, size of the dominant follicle and corpus luteum, concentration of progesterone, time to pregnancy, and proportion of cows pregnant by 100 d of the breeding period did not differ between treatments. A greater proportion of cows supplemented with OTM had a corpus luteum detected before presynchronization (64.3 vs. 75.2%), and primiparous cows supplemented with OTM tended to resume cyclicity earlier than their STM counterparts. Cows supplemented with OTM had a greater concentration of Cu in follicular fluid than cows supplemented with STM (0.89 vs. 0.77 µg/mL, respectively). In pregnant multiparous cows, expression of receptor transporter protein 4 in peripheral blood leukocytes was 42% greater in the OTM group. Conceptuses of the 2 treatments had 589 differentially expressed transcripts, with many indicating advanced conceptus elongation and greater transcript expression of selenoproteins in the OTM group. In pregnant cows, 24 metabolites were more abundant in the uterine fluid of OTM, including spermidine, sucrose, and cholesterol. In conclusion, replacing STM with OTM caused modest improvements to resumption of ovarian cyclicity and important changes in preimplantation conceptus development, but it did not alter conception risk and pregnancy rate.
Collapse
Affiliation(s)
- B Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - G Madureira
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J F W Spricigo
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - K King
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - B Van Winters
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J LaMarre
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - S J LeBlanc
- Department of Population Medicine, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
2
|
Characterization of Glutathione Peroxidase 4 in Rat Oocytes, Preimplantation Embryos, and Selected Maternal Tissues during Early Development and Implantation. Int J Mol Sci 2021; 22:ijms22105174. [PMID: 34068371 PMCID: PMC8153280 DOI: 10.3390/ijms22105174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to describe glutathione peroxidase 4 (GPx4) in rat oocytes, preimplantation embryos, and female genital organs. After copulation, Sprague Dawley female rats were euthanized with anesthetic on the first (D1), third (D3), and fifth days of pregnancy (D5). Ovaries, oviducts, and uterine horns were removed, and oocytes and preimplantation embryos were obtained. Immunohistochemical, immunofluorescent, and Western blot methods were employed. Using immunofluorescence, we detected GPx4 in both the oocytes and preimplantation embryos. Whereas in the oocytes, GPx4 was homogeneously diffused, in the blastomeres, granules were formed, and in the blastocysts, even clusters were present mainly around the cell nuclei. Employing immunohistochemistry, we detected GPx4 inside the ovary in the corpus luteum, stroma, follicles, and blood vessels. In the oviduct, the enzyme was present in the epithelium, stroma, blood vessels, and smooth muscles. In the uterus, GPx4 was found in the endometrium, myometrium, blood vessels, and stroma. Moreover, we observed GPx4 positive granules in the uterine gland epithelium on D1 and D3 and cytoplasm of fibroblasts forming in the decidua on D5. Western blot showed the highest GPx4 levels in the uterus and the lowest levels in the ovary. Our results show that the GPx4 is necessary as early as in the preimplantation development of a new individual because we detected it in an unfertilized oocyte in a blastocyst and not only after implantation, as was previously thought.
Collapse
|
3
|
Wang ZN, Li H, Tang H, Zhang SJ, Pauline M, Bi CL. Short Communication: Effects of Dietary Selenium Supplementation on Selenium Deposition and Antioxidant Status in Postpartum Mice. Biol Trace Elem Res 2021; 199:1488-1492. [PMID: 32588333 DOI: 10.1007/s12011-020-02260-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the effects of dietary selenium during pregnancy on the selenium deposition and antioxidant enzymes in postpartum mouse serum, liver, and mammary gland. Eighty BALB/c pregnant mice were randomly divided into four groups: CG (Se-deficient basal diet, n = 20), LG (0.05 mg/kg Se-supplemented diet, n = 20), MG (0.1 mg/kg Se-supplemented diet, n = 20), and HG (0.2 mg/kg Se-supplemented diet, n = 20). Four days after parturition, all mice were euthanized. The selenium deposition and antioxidants enzymes in serum, liver, and mammary gland were detected. Results show that with increasing selenium supplementation, the selenium deposition and activation of T-AOC, T-SOD, and GSH-Px increased, meanwhile the concentration of MDA decreased in serum, liver, and mammary gland. Therefore, this study suggested selenium was mainly deposited in the liver, and dietary selenium during pregnancy might improve the antioxidant status in postpartum animals.
Collapse
Affiliation(s)
- Zhen-Nan Wang
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, 276005, Shandong Province, China
| | - Hui Li
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, 276005, Shandong Province, China
| | - He Tang
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, 276005, Shandong Province, China
| | - Shu-Jiu Zhang
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, 276005, Shandong Province, China
| | - Mirielle Pauline
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Chong-Liang Bi
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, 276005, Shandong Province, China.
| |
Collapse
|
4
|
Interspecific Variation in One-Carbon Metabolism within the Ovarian Follicle, Oocyte, and Preimplantation Embryo: Consequences for Epigenetic Programming of DNA Methylation. Int J Mol Sci 2021; 22:ijms22041838. [PMID: 33673278 PMCID: PMC7918761 DOI: 10.3390/ijms22041838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
One-carbon (1C) metabolism provides methyl groups for the synthesis and/or methylation of purines and pyrimidines, biogenic amines, proteins, and phospholipids. Our understanding of how 1C pathways operate, however, pertains mostly to the (rat) liver. Here we report that transcripts for all bar two genes (i.e., BHMT, MAT1A) encoding enzymes in the linked methionine-folate cycles are expressed in all cell types within the ovarian follicle, oocyte, and blastocyst in the cow, sheep, and pig; as well as in rat granulosa cells (GCs) and human KGN cells (a granulosa-like tumor cell line). Betaine-homocysteine methyltransferase (BHMT) protein was absent in bovine theca and GCs, as was activity of this enzyme in GCs. Mathematical modeling predicted that absence of this enzyme would lead to more volatile S-adenosylmethionine-mediated transmethylation in response to 1C substrate (e.g., methionine) or cofactor provision. We tested the sensitivity of bovine GCs to reduced methionine (from 50 to 10 µM) and observed a diminished flux of 1C units through the methionine cycle. We then used reduced-representation bisulfite sequencing to demonstrate that this reduction in methionine during bovine embryo culture leads to genome-wide alterations to DNA methylation in >1600 genes, including a cohort of imprinted genes linked to an abnormal fetal-overgrowth phenotype. Bovine ovarian and embryonic cells are acutely sensitive to methionine, but further experimentation is required to determine the significance of interspecific variation in BHMT expression.
Collapse
|
5
|
Qazi IH, Cao Y, Yang H, Angel C, Pan B, Zhou G, Han H. Impact of Dietary Selenium on Modulation of Expression of Several Non-Selenoprotein Genes Related to Key Ovarian Functions, Female Fertility, and Proteostasis: a Transcriptome-Based Analysis of the Aging Mice Ovaries. Biol Trace Elem Res 2021; 199:633-648. [PMID: 32430805 DOI: 10.1007/s12011-020-02192-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023]
Abstract
Female reproductive (ovarian) aging is characterized by a marked decline in quantity and quality of follicles and oocytes, as well as alterations in the surrounding ovarian stroma. In our previous report, we have shown that dietary selenium (Se) insufficiency and supplementation differentially impacted the reproductive efficiency in aging mice; however, the precise understanding of such modulation is still incomplete. In the present study, we sought to determine the impact of low (mildly low level) and moderately high (medium level) Se diets on expression profile of non-selenoprotein genes in the ovaries of aging mice. For this purpose, the aged mice were divided in two groups and fed either a low Se (Se-L; 0.08 mg Se/kg) diet or a moderately high Se (Se-M; 0.33 mg Se/kg) diet. RNA-seq analysis revealed that a total of 168 genes were differentially expressed between the two groups. From these, 72 and 96 differentially expressed genes (DEGs) were found to be upregulated and downregulated, respectively. Gene Ontology (GO) and pathways enrichment (KEGG) analyses revealed that these DEGs were enriched in several key GO terms and biological pathways including PI3K-Akt signaling pathway, steroid hormone biosynthesis, signaling pathways regulating pluripotency of stem cells, Hippo signaling pathway, ovarian steroidogenesis, and Wnt signaling pathway. Further filtering of RNA-seq data revealed that several DEGs such as Star, Hsd3b6, Scd1, Bmp7, Aqp8, Gas1, Fzd1, and Wwc1 were implicated in key ovarian- and fertility-related functions. In addition, some of the DEGs were related to ER homeostasis and/or proteostasis. These results highlight that dietary low and moderately high (medium level) Se diets, in addition to modulation of selenoproteins, can also have an impact on expression of several non-selenoprotein genes in the ovaries of aging mice. To sum up, these findings add more value to our understanding of Se modulation of ovarian functions and female fertility and will pave a way for the focused mechanistic and functional studies in this domain.
Collapse
Affiliation(s)
- Izhar Hyder Qazi
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210, Sindh, Pakistan
| | - Yutao Cao
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Christiana Angel
- Department of Veterinary Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210, Sindh, Pakistan
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Hongbing Han
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Dalto DB, da Silva CA. A survey of current levels of trace minerals and vitamins used in commercial diets by the Brazilian pork industry-a comparative study. Transl Anim Sci 2020; 4:txaa195. [PMID: 33409462 PMCID: PMC7759731 DOI: 10.1093/tas/txaa195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
This study identified the levels of trace minerals and vitamins used in commercial diets by the Brazilian pork industry and compared these levels against the Brazilian reference tables and those from the North American pork industry. Animal feed companies (n = 15) and cooperatives/agro-industries (n = 15) from the Brazilian pork sector participated in this study. Levels of vitamin A, D, E, and K, thiamine, riboflavin, niacin, pantothenic acid, pyridoxine, biotin, folic acid, vitamin B12, choline, vitamin C, cobalt, copper, chromium, iodine, iron, manganese, selenium, and zinc were collected. Data were compiled by feeding phase to determine descriptive statistics. Ratios were calculated comparing the observed levels to those from the Brazilian reference tables and those from the North American pork industry. Average levels of trace minerals and vitamins used by the Brazilian pork industry were between 40% and 240% higher than the recommendations of the Brazilian reference tables. Compared to the North American pork industry, Brazilian levels for trace minerals were overall higher but for water-soluble vitamins they were significantly lower. Large between-companies variations were observed for most of the studied nutrients, especially for water-soluble vitamins. In conclusion, the Brazilian pork industry adds a significant margin of safety for trace minerals and vitamins supplementation. The large between-companies variations, especially for water-soluble vitamins, reflect the limited knowledge available on precise levels of supplementation for trace nutrients for pigs.
Collapse
Affiliation(s)
- Danyel Bueno Dalto
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Caio Abércio da Silva
- Universidade Estadual de Londrina, Animal Science Department, Londrina, Paraná, Brazil
| |
Collapse
|
7
|
Parental Selenium Nutrition Affects the One-Carbon Metabolism and the Hepatic DNA Methylation Pattern of Rainbow Trout ( Oncorhynchus mykiss) in the Progeny. Life (Basel) 2020; 10:life10080121. [PMID: 32722369 PMCID: PMC7459646 DOI: 10.3390/life10080121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Selenium is an essential micronutrient and its metabolism is closely linked to the methionine cycle and transsulfuration pathway. The present study evaluated the effect of two different selenium supplements in the diet of rainbow trout (Onchorhynchus mykiss) broodstock on the one-carbon metabolism and the hepatic DNA methylation pattern in the progeny. Offspring of three parental groups of rainbow trout, fed either a control diet (NC, basal Se level: 0.3 mg/kg) or a diet supplemented with sodium selenite (SS, 0.8 mg Se/kg) or hydroxy-selenomethionine (SO, 0.7 mg Se/kg), were collected at swim-up fry stage. Our findings suggest that parental selenium nutrition impacted the methionine cycle with lower free methionine and S-adenosylmethionine (SAM) and higher methionine synthase (mtr) mRNA levels in both selenium-supplemented treatments. DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) identified differentially methylated cytosines (DMCs) in offspring livers. These DMCs were related to 6535 differentially methylated genes in SS:NC, 6890 in SO:NC and 7428 in SO:SS, respectively. Genes with the highest methylation difference relate, among others, to the neuronal or signal transmitting and immune system which represent potential targets for future studies.
Collapse
|
8
|
Zheng Y, Dai W, Hu X, Hong Z. Effects of dietary glycine selenium nanoparticles on loin quality, tissue selenium retention, and serum antioxidation in finishing pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Yang H, Qazi IH, Pan B, Angel C, Guo S, Yang J, Zhang Y, Ming Z, Zeng C, Meng Q, Han H, Zhou G. Dietary Selenium Supplementation Ameliorates Female Reproductive Efficiency in Aging Mice. Antioxidants (Basel) 2019; 8:antiox8120634. [PMID: 31835711 PMCID: PMC6969897 DOI: 10.3390/antiox8120634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Female reproductive (ovarian) aging is distinctively characterized by a markedly reduced reproductive function due to a remarkable decline in quality and quantity of follicles and oocytes. Selenium (Se) has been implicated in playing many important biological roles in male fertility and reproduction; however, its potential roles in female reproduction, particularly in aging subjects, remain poorly elucidated. Therefore, in the current study we used a murine model of female reproductive aging and elucidated how different Se-levels might affect the reproductive efficiency in aging females. Our results showed that at the end of an 8-week dietary trial, whole-blood Se concentration and blood total antioxidant capacity (TAOC) were significantly reduced in Se-deficient (0.08 mg Se/kg; Se-D) mice, whereas both of these biomarkers were significantly higher in inorganic (0.33 mg/kg; ISe-S) and organic (0.33 mg/kg; OSe-S) Se-supplemented groups. Similarly, compared to the Se-D group, Se supplementation significantly ameliorated the maintenance of follicles and reduced the rate of apoptosis in ovaries. Meanwhile, the rate of in vitro-produced embryos resulting from germinal vesicle (GV) oocytes was also significantly improved in Se-supplemented (ISe-S and OSe-S) groups compared to the Se-D mice, in which none of the embryos developed to the hatched blastocyst stage. RT-qPCR results revealed that mRNA expression of Gpx1, Gpx3, Gpx4, Selenof, p21, and Bcl-2 genes in ovaries of aging mice was differentially modulated by dietary Se levels. A considerably higher mRNA expression of Gpx1, Gpx3, Gpx4, and Selenof was observed in Se-supplemented groups compared to the Se-D group. Similarly, mRNA expression of Bcl-2 and p21 was significantly lower in Se-supplemented groups. Immunohistochemical assay also revealed a significantly higher expression of GPX4 in Se-supplemented mice. Our results reasonably indicate that Se deficiency (or marginal levels) can negatively impact the fertility and reproduction in females, particularly those of an advancing age, and that the Se supplementation (inorganic and organic) can substantiate ovarian function and overall reproductive efficiency in aging females.
Collapse
Affiliation(s)
- Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Christiana Angel
- Department of Veterinary Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Shichao Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Jingyu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Zhang Ming
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, China;
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (H.H.); (G.Z.); Tel.: +86-10-6273-2681 (H.H.); +86-159-081-89189 (G.Z.)
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
- Correspondence: (H.H.); (G.Z.); Tel.: +86-10-6273-2681 (H.H.); +86-159-081-89189 (G.Z.)
| |
Collapse
|
10
|
Olszak-Wąsik K, Bednarska-Czerwińska A, Olejek A, Tukiendorf A. From "Every Day" Hormonal to Oxidative Stress Biomarkers in Blood and Follicular Fluid, to Embryo Quality and Pregnancy Success? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1092415. [PMID: 31885768 PMCID: PMC6899329 DOI: 10.1155/2019/1092415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/29/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Oxidative stress appears to be involved in oocyte growth and maturation that when impaired results in poor embryo quality and lower potential to implant. The biochemical microenvironment of the oocyte (follicular fluid (FF)) consists of hormones and other various substances regulating the balance between oxidants and antioxidants. AIM The aim of this study was to examine the possible impact of selected biomarkers ("every day," hormonal biomarkers, enzymatic and nonenzymatic antioxidants, and also oxidative stress markers) in serum and FF, on embryo quality and pregnancy success in infertile women undergoing infertility treatment. METHODS All 53 patients, mean age 34.7 ± 4.1 years, with serum AMH level ≥ 0.7 ng/mL, were diagnosed with idiopathic infertility. They were stimulated in short antagonist protocol, followed by in vitro fertilization (IVF-ICSI intracytoplasmatic sperm injection) and a single embryo transfer. Follicular fluid was aspirated from the first mature follicle. In statistical analyses the R software was used, then all data was assessed with the Shapiro-Wilk test, logistic regression, and later the receiver operating characteristic (ROC) curve was applied using "pROC" R package. RESULTS We did not observe any correlation between AMH and embryo quality and pregnancy rate. Statistically significant results were only found for biomarkers examined in follicular fluid. Greater levels of GPX in FF were associated with the increased chance of producing a high quality embryo (the optimal cut-off concentration was established at over 450 lU/L.) Regarding pregnancy success, increasing levels of GR (cut-off at 21 IU/L), CuZnSOD (cut-off at 9NU/mL), and GST (cut-off at 2.5 IU/L) resulted in lower chances of a successful pregnancy. CONCLUSION Our results indicate that FF markers may have some advantages in predicting embryo quality and pregnancy over AMH. The GPX system seems to be mostly related to embryo quality and pregnancy.
Collapse
Affiliation(s)
- Katarzyna Olszak-Wąsik
- Department of Gynecology, Obstetrics and Oncological Gynecology, Silesian Medical University, Batorego 15, 41-902 Bytom, Katowice, Poland
- GynCentrum Clinic, Żelazna 1, 40-851 Katowice, Poland
| | | | - Anita Olejek
- Department of Gynecology, Obstetrics and Oncological Gynecology, Silesian Medical University, Batorego 15, 41-902 Bytom, Katowice, Poland
| | - Andrzej Tukiendorf
- Department of Public Health, Wrocław Medical University, Bartla 5, 51-618 Wrocław, Poland
| |
Collapse
|
11
|
Selenium, Selenoproteins, and Female Reproduction: A Review. Molecules 2018; 23:molecules23123053. [PMID: 30469536 PMCID: PMC6321086 DOI: 10.3390/molecules23123053] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 01/31/2023] Open
Abstract
Selenium (Se) is an essential micronutrient that has several important functions in animal and human health. The biological functions of Se are carried out by selenoproteins (encoded by twenty-five genes in human and twenty-four in mice), which are reportedly present in all three domains of life. As a component of selenoproteins, Se has structural and enzymatic functions; in the latter context it is best recognized for its catalytic and antioxidant activities. In this review, we highlight the biological functions of Se and selenoproteins followed by an elaborated review of the relationship between Se and female reproductive function. Data pertaining to Se status and female fertility and reproduction are sparse, with most such studies focusing on the role of Se in pregnancy. Only recently has some light been shed on its potential role in ovarian physiology. The exact underlying molecular and biochemical mechanisms through which Se or selenoproteins modulate female reproduction are largely unknown; their role in human pregnancy and related complications is not yet sufficiently understood. Properly powered, randomized, controlled trials (intervention vs. control) in populations of relatively low Se status will be essential to clarify their role. In the meantime, studies elucidating the potential effect of Se supplementation and selenoproteins (i.e., GPX1, SELENOP, and SELENOS) in ovarian function and overall female reproductive efficiency would be of great value.
Collapse
|
12
|
Gene ontology analysis of expanded porcine blastocysts from gilts fed organic or inorganic selenium combined with pyridoxine. BMC Genomics 2018; 19:836. [PMID: 30463510 PMCID: PMC6249785 DOI: 10.1186/s12864-018-5237-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/09/2018] [Indexed: 11/12/2022] Open
Abstract
Background Gene ontology analysis using the microarray database generated in a previous study by this laboratory was used to further evaluate how maternal dietary supplementation with pyridoxine combined with different sources of selenium (Se) affected global gene expression of expanded porcine blastocysts. Data were generated from 18 gilts randomly assigned to one of three experimental diets (n = 6 per treatment): i) basal diet without supplemental Se or pyridoxine (CONT); ii) CONT + 0.3 mg/kg of Na-selenite and 10 mg/kg of HCl-pyridoxine (MSeB610); and iii) CONT + 0.3 mg/kg of Se-enriched yeast and 10 mg/kg of HCl-pyridoxine (OSeB610). All gilts were inseminated at their fifth post-pubertal estrus and euthanized 5 days later for embryo harvesting. Differential gene expression between MSeB610 vs CONT, OSeB610 vs CONT and OSeB610 vs MSeB610 was performed using a porcine embryo-specific microarray. Results There were 559, 2458, and 1547 differentially expressed genes for MSeB610 vs CONT, OSeB610 vs CONT and OSeB610 vs MSeB610, respectively. MSeB610 vs CONT stimulated 13 biological processes with a strict effect on RNA binding and translation initiation. OSeB610 vs CONT and OSeB610 vs MSeB610 impacted 188 and 66 biological processes, respectively, with very similar effects on genome stability, ceramide biosynthesis, protein trafficking and epigenetic events. The stimulation of genes related with these processes was confirmed by quantitative real-time RT-PCR. Conclusions Gene expression of embryos from OSeB610 supplemented gilts was more impacted than those from MSeB610 supplemented gilts. Whereas maternal OSeB610 supplementation influenced crucial aspects of embryo development, maternal MSeB610 supplementation was restricted to binding activity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5237-1) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Malevu TD, Sochor J, Baron M, Melcova M, Zidkova J, Kizek R. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species-A Critical Review. Int J Mol Sci 2017; 18:E2209. [PMID: 29065468 PMCID: PMC5666889 DOI: 10.3390/ijms18102209] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022] Open
Abstract
Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Sylvie Skalickova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB107GJ, UK.
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | | | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jarmila Zidkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
14
|
Dalto DB, Lapointe J, Matte JJ. Assessment of antioxidative and selenium status by seleno-dependent glutathione peroxidase activity in different blood fractions using a pig model: issues for clinical nutrition and research. J Anim Physiol Anim Nutr (Berl) 2017; 102:184-193. [PMID: 28304104 DOI: 10.1111/jpn.12677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/18/2016] [Indexed: 01/11/2023]
Abstract
Blood seleno-dependent glutathione peroxidase (SeGPX) activity is widely used as a metabolic indicator of systemic antioxidative status despite inconsistent responses in the literature. This study aimed to compare SeGPX activity profiles in different blood fractions, expressed with different reference units, and assess their impact on interpretation of results. Two studies on selenium (Se) metabolism in gilts, including long-term and peri-oestrus SeGPX activity profiles, were submitted to analysis of variance with double repeated measures, after data set standardization. Differences between studies were experimental period (three post-pubertal oestrus or five post-pubertal oestrus +30 days of gestation) and sample type (whole blood or blood plasma). No difference was observed between whole-blood long-term profiles (three oestrus) for SeGPX activity/mg haemoglobin (SeGPXhb) vs. SeGPX activity/ml whole blood (SeGPXwb; p = 0.29). No long-term difference was observed in whole blood between profiles according to dietary Se provision (basal and dietary Se-supplemented groups; p ≥ 0.12). Blood plasma long-term profiles (five oestrus + 30 days gestation) for SeGPX/mg blood plasma protein (SeGPXpro) were different from SeGPX/ml blood plasma (SeGPXpla) according or not to Se provision (p ≤ 0.007 and p < 0.001 respectively). However, regardless of Se provision (p ≥ 0.80), when excluding gestation from the model, blood plasma profiles were similar. During the peri-oestrus period (day -4 to +3), regardless of Se provision, SeGPX activity profiles differed according to reference units in both studies (p < 0.001). However, considering Se provision, similar profiles were observed in whole blood and blood plasma (p ≥ 0.27) for basal Se groups, whereas in Se-supplemented groups they differed for both sample types (p ≤ 0.02). In conclusion, reference units influence interpretation of SeGPX activity according to physiological state. During oxidative stress periods, this effect depends upon dietary Se provision.
Collapse
Affiliation(s)
- D B Dalto
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - J Lapointe
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - J-J Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| |
Collapse
|
15
|
Aboelenain M, Balboula AZ, Kawahara M, El-Monem Montaser A, Zaabel SM, Kim SW, Nagano M, Takahashi M. Pyridoxine supplementation during oocyte maturation improves the development and quality of bovine preimplantation embryos. Theriogenology 2017; 91:127-133. [PMID: 28215677 DOI: 10.1016/j.theriogenology.2016.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 01/19/2023]
Abstract
Recently, inhibition of cathepsin B (CTSB) activity during in vitro maturation (IVM) and culture (IVC) improved the developmental competence and quality of bovine oocytes and embryos. E-64 is a widely used inhibitor to inhibit CTSB activity, however, E-64 inhibits not only CTSB activity but also the activities of other proteases including cathepsin L (CTSL), papain, calpain, and trypsin. Pyridoxine, the catalytically active form of vitamin B6, plays a crucial role in several cellular processes and has the ability to inhibit CTSB activity. However, whether pyridoxine has an improving effect during IVM of bovine oocytes is still unknown. In this study, we investigated the effect of pyridoxine supplementation during IVM on the developmental competence of bovine oocytes and the quality of the produced blastocysts. Supplementation of pyridoxine to the maturation medium significantly decreased the activity of CTSB in both bovine cumulus cells and oocytes. Moreover, pyridoxine improved both the blastocyst and hatched blastocyst rates. In addition, the presence of pyridoxine during IVM also significantly improved the quality of the produced embryos by increasing the total cell number as well as decreasing the CTSB mRNA expression and apoptotic rate. These results indicate that pyridoxine is a promising tool to improve the developmental competence of bovine oocytes and subsequent embryo quality.
Collapse
Affiliation(s)
- Mansour Aboelenain
- Laboratory of Animal Breeding and Reproduction, Department of Animal Science, Graduate School of Agriculture, Hokkaido University, Hokkaido, 060-8589, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Zaky Balboula
- Laboratory of Animal Breeding and Reproduction, Department of Animal Science, Graduate School of Agriculture, Hokkaido University, Hokkaido, 060-8589, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction, Department of Animal Science, Graduate School of Agriculture, Hokkaido University, Hokkaido, 060-8589, Japan
| | - Abd El-Monem Montaser
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Samy Moawad Zaabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Sung-Woo Kim
- National Institute of Animal Science, Animal Genetic Resources Research Center, Namwon, 55717, South Korea
| | - Masashi Nagano
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Masashi Takahashi
- Laboratory of Animal Breeding and Reproduction, Department of Animal Science, Graduate School of Agriculture, Hokkaido University, Hokkaido, 060-8589, Japan.
| |
Collapse
|
16
|
Dalto DB, Matte JJ. Pyridoxine (Vitamin B₆) and the Glutathione Peroxidase System; a Link between One-Carbon Metabolism and Antioxidation. Nutrients 2017; 9:nu9030189. [PMID: 28245568 PMCID: PMC5372852 DOI: 10.3390/nu9030189] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022] Open
Abstract
Vitamin B6 (B6) has a central role in the metabolism of amino acids, which includes important interactions with endogenous redox reactions through its effects on the glutathione peroxidase (GPX) system. In fact, B6-dependent enzymes catalyse most reactions of the transsulfuration pathway, driving homocysteine to cysteine and further into GPX proteins. Considering that mammals metabolize sulfur- and seleno-amino acids similarly, B6 plays an important role in the fate of sulfur-homocysteine and its seleno counterpart between transsulfuration and one-carbon metabolism, especially under oxidative stress conditions. This is particularly important in reproduction because ovarian metabolism may generate an excess of reactive oxygen species (ROS) during the peri-estrus period, which may impair ovulatory functions and early embryo development. Later in gestation, placentation raises embryo oxygen tension and may induce a higher expression of ROS markers and eventually embryo losses. Interestingly, the metabolic accumulation of ROS up-regulates the flow of one-carbon units to transsulfuration and down-regulates remethylation. However, in embryos, the transsulfuration pathway is not functional, making the understanding of the interplay between these two pathways particularly crucial. In this review, the importance of the maternal metabolic status of B6 for the flow of one-carbon units towards both maternal and embryonic GPX systems is discussed. Additionally, B6 effects on GPX activity and gene expression in dams, as well as embryo development, are presented in a pig model under different oxidative stress conditions.
Collapse
Affiliation(s)
- Danyel Bueno Dalto
- Sherbrooke Research Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada.
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Jean-Jacques Matte
- Sherbrooke Research Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada.
| |
Collapse
|
17
|
Dalto DB, Audet I, Lapointe J, Matte JJ. The importance of pyridoxine for the impact of the dietary selenium sources on redox balance, embryo development, and reproductive performance in gilts. J Trace Elem Med Biol 2016; 34:79-89. [PMID: 26854249 DOI: 10.1016/j.jtemb.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 11/18/2022]
Abstract
This study aimed to determine the effects of dietary pyridoxine and selenium (Se) on embryo development, reproductive performance and redox system in gilts. Eighty-four gilts were fed one of five diets: CONT) basal diet; MSeB60) CONT+0.3mg/kg of Na-selenite; MSeB610) diet 2+10mg/kg of HCl-pyridoxine; OSeB60) CONT+0.3mg/kg of Se-enriched yeast; and OSeB610) diet 4+10mg/kg of HCl-pyridoxine. Blood samples were collected for long-term (each estrus and slaughter) and peri-estrus (fourth estrus d -4 to d +3) profiles. At slaughter (gestation d 30), organs and embryos were collected. For long-term and peri-estrus profiles, Se level and source affected (P<0.01) blood Se concentration whereas B6 level increased (P<0.01) erythrocyte pyridoxal-5-phosphate concentration. A B6 level (P<0.05) effect was observed on long-term plasma Se-dependent glutathione peroxidase (Se-GPX) activity whereas peri-estrus Se-GPX was minimum on d -1 (P<0.01). Selenium level increased sows' organs and embryo Se concentration (P<0.01). Selenium source tended to enhance embryo Se content (P=0.06). Within-litter embryo Se content was increased by B6 level (P<0.01). Selenium level tended to affect Se-GPX and total GPX activities in organs mitochondria (P=0.09 and 0.07, respectively). Selenium source affected kidney ATP synthesis (P=0.05). In conclusion, B6 level affected the Se-GPX activity on a long-term basis, whereas the basal level of Se was adequate during the peri-estrus period. Embryo quality was not improved by dietary Se, and B6 impaired within-litter homogeneity.
Collapse
Affiliation(s)
- Danyel Bueno Dalto
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada; Department of Animal Science, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil.
| | - Isabelle Audet
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada.
| | - Jérôme Lapointe
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada.
| | - J Jacques Matte
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada.
| |
Collapse
|
18
|
|
19
|
Application of transcriptomic analyses to reproductive studies in contemporary commercial sows. Theriogenology 2016; 85:145-51. [DOI: 10.1016/j.theriogenology.2015.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
|