1
|
Mahgoub NA, El-Sherbiny DA, El-Demerdash E. Can vildagliptin protect against radiation-induced premature ovarian failure? Insights into the AMPK and AKT signaling pathways. BMC Pharmacol Toxicol 2025; 26:81. [PMID: 40221811 PMCID: PMC11994011 DOI: 10.1186/s40360-025-00903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Among the detrimental side effects caused by radiotherapy in young females is the ovarian damage, eventually causing premature ovarian failure (POF). While many signaling pathways contribute to the pathogenesis of POF, to date no sufficient data exist on the AMPK and AKT signaling pathways in irradiated ovaries. Both AMPK and AKT play crucial roles in the process of folliculogenesis. Vildagliptin (vilda) is a dipeptidyl peptidase-4 inhibitor with modulatory effect on both AMPK and AKT. Therefore, our study aimed to investigate the biochemical changes that occur in the AMPK/AKT signaling pathway, and the effect of co-administration of vildagliptin in radiation-induced POF. METHODS Female Sprague-dawley rats were randomly divided into four groups: control, radiation, radiation + vilda, or vilda alone groups. Vilda was administered orally once/day, and on the 10th day of the experiment, radiation and radiation + vilda group rats were subjected to 3.2 Gy of whole-body gamma irradiation. Behavioral activity was assessed on the 13th day of the experiment. On day 14 of the experiment, all rats were euthanized. Serum samples were collected, and ovaries were dissected for histological and biochemical analyses. RESULTS Irradiation of female rats resulted in increased locomotor hyperactivity, impaired memory, and ovarian damage as evidenced by the marked histopathological deterioration. Additionally, irradiation led to a significant decrease in body weight gain, gonadosomatic index, and serum estradiol level. Further, it caused a significant increase in serum AMH, phosphorylated AMPK, phosphorylated AKT, cytoplasmic Nrf2 expression and phosphorylated CREB levels. Co-administration of vilda exhibited neuroprotective effects, preserved the ovarian histological architecture but failed to preserve the primordial follicle pool in irradiated rats. CONCLUSION In conclusion, AMPK/AKT signaling pathway is upregulated in radiation-induced POF. It possibly contributes to POF pathogenesis by accelerating the activation of primordial follicles, hence leading to their premature depletion. Coadministration of vilda can protect the ovaries and temporarily preserve its endocrine function; however, it does not sustain the ovarian reproductive capacity due to the early depletion of the pool of primordial follicles. Women undergoing radiotherapy should be cautious with the use of AKT-activating drugs.
Collapse
Affiliation(s)
- Nada A Mahgoub
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | - Doaa A El-Sherbiny
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt.
- Preclinical & Translational Research Center, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt.
| |
Collapse
|
2
|
Mu L, Wang G, Yang X, Liang J, Tong H, Li L, Geng K, Bo Y, Hu X, Yang R, Xu X, Zhang Y, Zhang H. Physiological premature aging of ovarian blood vessels leads to decline in fertility in middle-aged mice. Nat Commun 2025; 16:72. [PMID: 39747922 PMCID: PMC11695630 DOI: 10.1038/s41467-024-55509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Ovarian function declines significantly as females enter middle-age, but the mechanisms underlying this decline remain unclear. Here, we utilize whole-organ imaging to observe a notable decrease in ovarian blood vessel (oBV) density and angiogenesis intensity of middle-aged mice. This leads to a diminished blood supply to the ovaries, resulting in inadequate development and maturation of ovarian follicles. Utilizing genetic-modified mouse models, we demonstrate that granulosa cell secreted VEGFA governs ovarian angiogenesis, but the physiological decline in oBV is not attributed to VEGFA insufficiency. Instead, through single-cell sequencing, we identify the aging of the ovarian vascular endothelium as the primary factor contributing to oBV decline. Consequently, the administration of salidroside, a natural compound that is functional to reverse oBV aging and promote ovarian angiogenesis, significantly enhances ovarian blood supply and improve fertility in older females. Our findings highlight that enhancing oBV function is a promising strategy to boost fertility in females.
Collapse
Affiliation(s)
- Lu Mu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ge Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuebing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jing Liang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huan Tong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lingyu Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kaiying Geng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingnan Bo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xindi Hu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruobing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueqiang Xu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Duan H, Wang F, Wang K, Yang S, Zhang R, Xue C, Zhang L, Ma X, Du X, Kang J, Zhang Y, Zhao X, Hu J, Xiao L. Quercetin ameliorates oxidative stress-induced apoptosis of granulosa cells in dairy cow follicular cysts by activating autophagy via the SIRT1/ROS/AMPK signaling pathway. J Anim Sci Biotechnol 2024; 15:119. [PMID: 39232832 PMCID: PMC11375867 DOI: 10.1186/s40104-024-01078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/14/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Follicular cysts contribute significantly to reproductive loss in high-yield dairy cows. This results from the death of follicular granulosa cells (GCs) caused by oxidative stress. Quercetin is known to have significant antioxidant and anti-apoptotic effects. However, the effect of quercetin on follicular cysts has yet been elucidated. Therefore, this study aimed to explore the anti-oxidant and anti-apoptosis effects and potential molecular mechanisms of quercetin in H2O2-induced primary cow GCs and 3-nitropropionic acid (3-NPA)-induced mouse model of oxidative stress and thus treat ovarian cysts in dairy cows. RESULTS In this study, compared with estrus cows, cows with follicular cysts showed heightened levels of oxidative stress and increased follicular cell apoptosis, while autophagy levels were reduced. A model of oxidative stress was induced in vitro by H2O2 and showed significant increases in apoptosis together with reduced autophagy. These effects were significantly ameliorated by quercetin. Effects similar to those of quercetin were observed after treatment of cells with the reactive oxygen species (ROS) inhibitor N-acetylcysteine (NAC). Further investigations using chloroquine (autophagy inhibitor), rapamycin (autophagy activator), selisistat (SIRT1 inhibitor), and compound C (AMPK inhibitor) showed that chloroquine counteracted the effects of quercetin on oxidative stress-induced apoptosis, while rapamycin had the same effect as quercetin. In addition, the SIRT1/AMPK pathway inhibitors antagonized quercetin-mediated mitigation of the effects of oxidative stress on increased apoptosis and reduced autophagy. Consistent with the results in vitro, in mouse ovarian oxidative stress model induced by 3-NPA, quercetin activated autophagy through the SIRT1/AMPK signaling pathway, while alleviating oxidative stress damage and inhibiting apoptosis in mouse ovaries. CONCLUSIONS These findings indicate that quercetin can inhibit apoptosis in GCs and restore ovarian function by activating autophagy through the SIRT1/ROS/AMPK signaling pathway, suggesting a new direction for the treatment of ovarian follicular cysts in high-yield dairy cows.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Fang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Ke Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Institute of Animal Husbandry and Veterinary, Pingliang, 744000, Gansu, China
| | - Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Rong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Chen Xue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Xianghong Du
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Jian Kang
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, 510640, Guangdong, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China.
| | - Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
4
|
Madsen JF, Ernst EH, Amoushahi M, Dueholm M, Ernst E, Lykke-Hartmann K. Dorsomorphin inhibits AMPK, upregulates Wnt and Foxo genes and promotes the activation of dormant follicles. Commun Biol 2024; 7:747. [PMID: 38902324 PMCID: PMC11190264 DOI: 10.1038/s42003-024-06418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
AMPK is a well-known energy sensor regulating cellular metabolism. Metabolic disorders such as obesity and diabetes are considered detrimental factors that reduce fecundity. Here, we show that pharmacologically induced in vitro activation (by metformin) or inhibition (by dorsomorphin) of the AMPK pathway inhibits or promotes activation of ovarian primordial follicles in cultured murine ovaries and human ovarian cortical chips. In mice, activation of primordial follicles in dorsomorphin in vitro-treated ovaries reduces AMPK activation and upregulates Wnt and FOXO genes, which, interestingly, is associated with decreased phosphorylation of β-catenin. The dorsomorphin-treated ovaries remain of high quality, with no detectable difference in reactive oxygen species production, apoptosis or mitochondrial cytochrome c oxidase activity, suggesting safe activation. Subsequent maturation of in vitro-treated follicles, using a 3D alginate cell culture system, results in mature metaphase eggs with protruding polar bodies. These findings demonstrate that the AMPK pathway can safely regulate primordial follicles by modulating Wnt and FOXO genes, and reduce β-catenin phosphorylation.
Collapse
Affiliation(s)
- Julie Feld Madsen
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Emil Hagen Ernst
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, DK-8000, Aarhus C, Denmark
- Department of Gynaecology and Obstetrics, Gødstrup Hospital, DK-7400, Herning, Denmark
| | | | - Margit Dueholm
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, DK-8000, Aarhus C, Denmark
| | - Erik Ernst
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
- Fertility Clinic Regional Hospital Horsens, DK-8700, Horsens, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark.
- Department of Clinical Genetics, Aarhus University Hospital, DK-8200, Aarhus N, Denmark.
| |
Collapse
|
5
|
Duan H, Yang S, Yang S, Zeng J, Yan Z, Zhang L, Ma X, Dong W, Zhang Y, Zhao X, Hu J, Xiao L. The mechanism of curcumin to protect mouse ovaries from oxidative damage by regulating AMPK/mTOR mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155468. [PMID: 38471315 DOI: 10.1016/j.phymed.2024.155468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Oxidative stress is considered the main cause of granulosa cell apoptosis in ovarian disease. Curcumin has various biological roles, but its potential role in protecting granulosa cells from oxidative damage remains unidentified. PURPOSE The study revealed the protective effect of curcumin on granulosa cell survival under oxidative stress, and explored its mode of action. STUDY DESIGN The protective effect of curcumin on oxidative stress-induced ovarian cell apoptosis was evaluated in vivo and in vitro, and the role of autophagy and AMPK/mTOR signaling pathway in this process was also demonstrated. METHODS First, mice were injected to 3-nitropropionic acid (3-NPA, 20 mg/kg/day) for 14 consecutive days to establish the ovarian oxidative stress model, at same time, curcumin (50, 100, 200 mg/kg/day) was given orally. Thereafter, functional changes, cell apoptosis, and autophagy in ovarian tissue were evaluated by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, western blotting, TUNEL assays, and transmission electron microscopy. Finally, oxidative stress model of granulosa cells was established with H2O2in vitro and treated with curcumin. The underlying mechanisms of curcumin to protect the apoptosis under oxidative stress in vitro were determined using western blotting and TUNEL assays. RESULTS In our study, after curcumin treatment, the mouse ovarian function disorder under 3-nitropropionic acid-induced oxidative stress recovered significantly, and ovarian cell apoptosis decreased. H2O2 induced granulosa cell apoptosis in vitro, and curcumin antagonized this process. Autophagy contributes to tissue and cell survival under stress. We therefore examined the role of autophagy in this process. According to the in vivo and in vitro results, curcumin restored autophagy under oxidative stress. The autophagy inhibitor (chloroquine) exhibited the same effect as curcumin, whereas the autophagy activator (rapamycin) antagonized the effect of curcumin. In addition, the study found that the AMPK/mTOR pathway plays a crucial role in curcumin- mediated autophagy to protect against oxidative stress-induced apoptosis. CONCLUSION Our findings for the first time systematically revealed a new mechanism through which curcumin protects ovarian granulosa cells from oxidative stress-induced damage through AMPK/mTOR-mediated autophagy and suggested that it can be a new therapeutic direction for female ovarian diseases.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China.
| | - Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Animal Science and Technology College, Beijing University of Agriculture, 102206, Beijing, China.
| |
Collapse
|
6
|
Han C, Zeng Q, He L, Luan Z, Liu R, Zhang G, Liu W. Advances in the mechanisms related to follicle loss after frozen-thawed ovarian tissue transplantation. Transpl Immunol 2023; 81:101935. [PMID: 37739235 DOI: 10.1016/j.trim.2023.101935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/04/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Ovaries are important reproductive and endocrine organs in women. Ovarian tissue cryopreservation and transplantation technology can not only solve the fertility problems of patients, but also may improve female endocrine problems. This is particularly important for patients in urgent need of radiotherapy and chemotherapy, and for women with prepubertal malignant tumors. However, follicle loss after freeze-thawing is a key challenge for effective ovarian tissue transplantation and leads to poor transplant outcomes. Therefore, it is crucial to elucidate the mechanisms underlying follicle loss after transplantation. This paper reviews current research on the mechanisms of follicle loss after frozen-thawed ovarian tissue transplantation, including the activation, apoptosis, and pyroptosis mechanisms of primordialfollicles. Further, it highlights the requirement of more experimental studies for improving ovarian tissue transplantation methods.
Collapse
Affiliation(s)
- Changli Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610041, China; Key Laboratory of Reproductive Medicine, Sichuan Maternal and Child Health Hospital/Women and Children's Hospital Affiliated to Chengdu Medical College, Chengdu 610045, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Maternal and Child Health Hospital/Women and Children's Hospital Affiliated to Chengdu Medical College, Chengdu 610045, China
| | - Libing He
- Key Laboratory of Reproductive Medicine, Sichuan Maternal and Child Health Hospital/Women and Children's Hospital Affiliated to Chengdu Medical College, Chengdu 610045, China
| | - Zonghui Luan
- Key Laboratory of Reproductive Medicine, Sichuan Maternal and Child Health Hospital/Women and Children's Hospital Affiliated to Chengdu Medical College, Chengdu 610045, China
| | - Ruyue Liu
- Key Laboratory of Reproductive Medicine, Sichuan Maternal and Child Health Hospital/Women and Children's Hospital Affiliated to Chengdu Medical College, Chengdu 610045, China
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Maternal and Child Health Hospital/Women and Children's Hospital Affiliated to Chengdu Medical College, Chengdu 610045, China.
| | - Weixin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610041, China; Key Laboratory of Reproductive Medicine, Sichuan Maternal and Child Health Hospital/Women and Children's Hospital Affiliated to Chengdu Medical College, Chengdu 610045, China.
| |
Collapse
|
7
|
Liu L, Hao M, Zhang J, Chen Z, Zhou J, Wang C, Zhang H, Wang J. FSHR-mTOR-HIF1 signaling alleviates mouse follicles from AMPK-induced atresia. Cell Rep 2023; 42:113158. [PMID: 37733588 DOI: 10.1016/j.celrep.2023.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The majority of activated ovarian follicles undergo atresia during reproductive life in mammals, and only a small number of follicles are ovulated. Though hormone treatment has been widely used to promote folliculogenesis, the molecular mechanism behind follicle selection and atresia remains under debate due to inconsistency among investigation models. Using a high-throughput molecular pathology strategy, we depicted a transcriptional atlas of mouse follicular granulosa cells (GCs) under physiological condition and obtained molecular signatures in healthy and atresia GCs during development. Functional results revealed hypoxia-inducible factor 1 (HIF1) as a major effector downstream of follicle-stimulating hormone (FSH), and HIF1 activation is essential for follicle growth. Energy shortage leads to prevalent AMP-activated protein kinase (AMPK) activation and drives follicular atresia. FSHR-mTOR-HIF1 signaling helps follicles escape from the atresia fate, while energy stress persists. Our work provides a comprehensive understanding of the molecular network behind follicle selection and atresia under physiological condition.
Collapse
Affiliation(s)
- Longping Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School, Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials, Digital Medical Devices, Beijing 100081, P.R. China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Dong L, Teh DBL, Kennedy BK, Huang Z. Unraveling female reproductive senescence to enhance healthy longevity. Cell Res 2023; 33:11-29. [PMID: 36588114 PMCID: PMC9810745 DOI: 10.1038/s41422-022-00718-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/19/2022] [Indexed: 01/03/2023] Open
Abstract
In a society where women often want successful careers and equal opportunities to men, the early nature of ovarian aging often forces women to make difficult life choices between career and family development. Fertility in women begins to decline after the age of 37 years and it is rare for pregnancies to occur after 45. This reproductive decline in women is inevitable and culminates in menopause, which is a major driver of age-related diseases. In a world where biomedical advances are leading to modifiable biological outcomes, it is time to focus on mitigating female reproductive senescence to maintain fertility and preserve age-related hormonal functions, with the goal of providing increased life choices and enhancing healthspan. To date, reproductive longevity research remains an understudied field. More needs to be done to unravel the biology of the ovarian follicles, which are the functional units of reproductive lifespan and are comprised of cell types including the oocyte (female gamete) and a group of specialized supporting somatic cells. Biological attempts to maintain the quality and quantity of follicles in animal models through manipulating pathways involved in aging can potentially prolong female reproductive lifespan and healthspan. Here, we summarize the molecular events driving ovarian aging and menopause and the interventional strategies to offset these events. Developing solutions to female reproductive senescence will open doors to discover ways to enhance true healthy longevity for both men and women.
Collapse
Affiliation(s)
- Lu Dong
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel Boon Loong Teh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brian Keith Kennedy
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Zhongwei Huang
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore.
| |
Collapse
|
9
|
Arjoune A, Sirard MA. The genomic response of human granulosa cells (KGN) to melatonin and specific agonists/antagonists to the melatonin receptors. Sci Rep 2022; 12:17539. [PMID: 36266374 PMCID: PMC9584952 DOI: 10.1038/s41598-022-21162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
Melatonin is a known modulator of follicle development; it acts through several molecular cascades via binding to its two specific receptors MT1 and MT2. Even though it is believed that melatonin can modulate granulosa cell (GC) functions, there is still limited knowledge of how it can act in human GC through MT1 and MT2 and which one is more implicated in the effects of melatonin on the metabolic processes in the dominant follicle. To better characterize the roles of these receptors on the effects of melatonin on follicular development, human granulosa-like tumor cells (KGN) were treated with specific melatonin receptor agonists and antagonists, and gene expression was analyzed with RNA-seq technology. Following appropriate normalization and the application of a fold change cut-off of 1.5 (FC 1.5, p ≤ 0.05) for each treatment, lists of the principal differentially expressed genes (DEGs) are generated. Analysis of major upstream regulators suggested that the MT1 receptor may be involved in the melatonin antiproliferative effect by reprogramming the metabolism of human GC by activating the PKB signaling pathway. Our data suggest that melatonin may act complementary through both MT1 and MT2 receptors to modulate human GC steroidogenesis, proliferation, and differentiation. However, MT2 receptors may be the ones implicated in transducing the effects of melatonin on the prevention of GC luteinization and follicle atresia at the antral follicular stage through stimulating the PKA pathway.
Collapse
Affiliation(s)
- Asma Arjoune
- grid.23856.3a0000 0004 1936 8390Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de L’agriculture et de l’alimentation, Département des Sciences animales, Université Laval, Québec, QC G1V 0A6 Canada ,grid.419508.10000 0001 2295 3249Department of Animal Production, National Agronomic Institute of Tunisia, University of Carthage, 43 Avenue Charles Nicolle, 1082 Mahrajène, Tunisia
| | - Marc-André Sirard
- grid.23856.3a0000 0004 1936 8390Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de L’agriculture et de l’alimentation, Département des Sciences animales, Université Laval, Québec, QC G1V 0A6 Canada
| |
Collapse
|
10
|
Wang L, Cen S, Shi X, Zhang H, Wu L, Tian X, Ma W, Li X, Ma X. Molecular characterization and functional analysis of Esr1 and Esr2 in gonads of Chinese soft-shelled turtle (Pelodiscus sinensis). J Steroid Biochem Mol Biol 2022; 222:106147. [PMID: 35714971 DOI: 10.1016/j.jsbmb.2022.106147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 11/20/2022]
Abstract
Estrogens and their receptors play crucial roles in regulating the gonadal development of vertebrates. To clarify the roles of estrogen receptors in the gonadal development of turtles, estrogen receptors (Esr1 and Esr2) in Chinese soft-shelled turtle (Pelodiscus sinensis) were identified and characterized, and their function in gonads was investigated by intraperitoneal injection of agonist propylpyrazoletriol (PPT) and diarylpropionitrile (DPN), and antagonist ICI 182,780 (ICI). Ps-Esr1 encoded a 588 amino acid protein and Ps-Esr2 encoded a 556 amino acid protein. The two receptors contained classic domains, including the DNA-binding domain and ligand-binding domain, and amino acid sequences showed high homology with other turtles. Ps-Esr1 showed the highest expression in the testis, followed by the ovary and liver. However, Ps-Esr2 showed the highest expression in the ovary, followed by the brain and testis. Ps-Esr1 expression showed an up-regulation trend in gonadal differentiation. Histomorphometric analysis showed that the number of follicles increased in female juvenile turtles treated with DPN or PPT. In addition, Tsc2, GnRH, and Fshβ were up-regulated in ovaries of turtles treated with agonists, while Sycp3 and Picalm were up-regulated in testes of turtles treated with agonists. Treatment with the antagonist decreased the number of sperm in matured turtles. Stra8, Scyp3, Dmc1, Picalm, Evl, Boule, and Cdk1 were up-regulated in testis after antagonist treatment. The results indicated that Esr1 might play an important role in gonadal differentiation, and the two estrogen receptors might be involved in the spermatogenesis of the turtle. These results could provide a reference for further research on the function of the estrogen signal in male vertebrates.
Collapse
Affiliation(s)
- Luming Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Shuangshuang Cen
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xi Shi
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Haoran Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Limin Wu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xue Tian
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Wenge Ma
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
11
|
Comparison of MicroRNA Profiles in Extracellular Vesicles from Small and Large Goat Follicular Fluid. Animals (Basel) 2021; 11:ani11113190. [PMID: 34827922 PMCID: PMC8614480 DOI: 10.3390/ani11113190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Ovarian follicular development is associated with ovulation and is further related to litter size in goats. Extracellular vesicles (EVs) derived from miRNAs within follicular fluid undergo dynamic changes, and, together with follicle growth, may be considered as potential regulators of follicular development. However, the function and changes in EVs remain ambiguous. Here, we identified miRNA changes in EVs from small to large goat follicular fluid. Using bioinformatics tools, we demonstrated the existence of differentially expressed miRNAs in EVs from follicles of different sizes that are responsible for an altered biological effect. This study contributes to a better understanding of follicular development in goats. Abstract Extracellular vesicles (EVs), which exist in the follicular fluid of ruminant ovaries, are considered as cargo carriers for the transfer of biomolecules to recipient cells. However, the functions and changes in EVs in antral follicles remain ambiguous. In the present study, we isolated and characterized EVs from goat follicular fluid by means of differential ultracentrifugation and Western blotting of marker proteins. Bioinformatics tools were used to detect miRNA expression levels in EVs. Different miRNA expression patterns of EVs exist in small to large follicles. Thirteen differentially expressed miRNAs (seven upregulated and six downregulated) were identified and used for analysis. A total of 1948 predicted target genes of 13 miRNAs were mapped to signaling pathways, and three significantly enriched pathways (FoxO, MAPK, and PI3K-AKT signaling pathways) were involved in follicular development, as revealed by KEGG enrichment analysis. Our findings suggest that EVs in follicular fluid play biofunctional roles during follicular development in goats.
Collapse
|
12
|
Devos M, Grosbois J, Demeestere I. Interaction between PI3K/AKT and Hippo pathways during in vitro follicular activation and response to fragmentation and chemotherapy exposure using a mouse immature ovary model. Biol Reprod 2021; 102:717-729. [PMID: 31786608 DOI: 10.1093/biolre/ioz215] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Understanding and control of the massive and accelerated follicular growth that occurs during in vitro culture of ovarian tissue is a crucial step toward the development of efficient culture systems that offer an attractive alternative to ovarian tissue transplantation for fertility restoration in cancer survivors. One outstanding question focuses on processes that occur prior to cryopreservation, such as tissue sectioning or chemotherapeutic treatment, might exacerbate this follicular activation. Although the PI3K/AKT/mTOR pathway is well known as a major trigger of physiological and chemotherapy-induced follicular activation, studies have shown that disruption of Hippo pathway due to ovarian fragmentation acts as an additional stimulator. This study aimed to characterize the possible interactions between these pathways using post-natal day 3 mouse ovaries cultured for 4 or 48 h. Morphology, gene transcription, and protein levels were assessed to investigate the impact of sectioning or chemotherapy exposure (4-hydroperoxycyclophosphamide [4HC], 3 and 20 μM). The effect of an mTORC1 inhibitor, Everolimus, alone or as a 4HC co-treatment to prevent follicle activation was evaluated. The results showed that organ removal from its physiological environment was as effective as sectioning for disruption of Hippo pathway and induction of follicle activation. Both PI3K/AKT/mTOR and Hippo pathways were involved in chemotherapy-induced follicular activation and responded to fragmentation. Surprisingly, Everolimus was able to prevent the activation of both pathways during chemotherapy exposure, suggesting cross-talk between them. This study underscores the major involvement of PI3K/AKT/mTOR and Hippo pathways in in vitro follicle activation and provides evidence that both can be regulated using mTORC1 inhibitor.
Collapse
Affiliation(s)
- Melody Devos
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - Johanne Grosbois
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium.,Fertility Clinic, CUB-Erasme, Brussels, Belgium
| |
Collapse
|
13
|
Current Understandings of Core Pathways for the Activation of Mammalian Primordial Follicles. Cells 2021; 10:cells10061491. [PMID: 34199299 PMCID: PMC8231864 DOI: 10.3390/cells10061491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
The mammalian ovary has two main functions-producing mature oocytes for fertilization and secreting hormones for maintaining the ovarian endocrine functions. Both functions are vital for female reproduction. Primordial follicles are composed of flattened pre-granulosa cells and a primary oocyte, and activation of primordial follicles is the first step in follicular development and is the key factor in determining the reproductive capacity of females. The recent identification of the phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway as the key controller for follicular activation has made the study of primordial follicle activation a hot research topic in the field of reproduction. This review systematically summarizes the roles of the PI3K/PTEN signaling pathway in primordial follicle activation and discusses how the pathway interacts with various other molecular networks to control follicular activation. Studies on the activation of primordial follicles have led to the development of methods for the in vitro activation of primordial follicles as a treatment for infertility in women with premature ovarian insufficiency or poor ovarian response, and these are also discussed along with some practical applications of our current knowledge of follicular activation.
Collapse
|
14
|
Brivanib alaninate inhibited dengue virus proliferation through VEGFR2/AMPK pathway. Pharmacol Res 2021; 170:105721. [PMID: 34116207 DOI: 10.1016/j.phrs.2021.105721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/16/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022]
Abstract
Dengue virus (DENV) is the most prevalent arthropod-borne viral disease of humans and has a major impact on global public health. There is no clinically approved drugs for DENV infection. Since intracellular VEGFR2 is increased in DENV infected patients, we thus hypothesized that VEGFR2 participated DENV proliferation and its inhibitors could be served as antivirals against DENV. Actually our results showed that VEGFR2 was induced by DENV infection. Also the agonist of VEGFR2, VEGF-A, promoted DENV proliferation. Therefore, we screened the inhibitors of VEGFR2 and found that brivanib alaninate (brivanib) showed the best anti-DENV ability with the lowest cellular cytotoxicity. Mechanically, our results indicated VEGFR2 directly interacted with PTP1B to dephosphorylate AMPK to provide lipid environment for viral replication. However, this effect could be inhibited by brivanib, which significantly reversed the reduction of AMPK phosphorylation caused by DENV infection, thus improving the cellular lipid environment. Moreover, the antiviral effect of brivanib could be reversed by AMPK inhibitor, Compound C. In addition, oral administration of brivianib (20-50 mg/kg/day) clearly improved the survival rate of DENV2 infection, and this effect was abolished in accompanied with Compound C (10mg/kg/day). Collectively, our study disclosed the mechanism of VEGFR2 in DENV2 and evaluated the antiviral ability of brivanib, which deserved more attention for clinical usage in DENV infection.
Collapse
|
15
|
Estienne A, Bongrani A, Ramé C, Kurowska P, Błaszczyk K, Rak A, Ducluzeau PH, Froment P, Dupont J. Energy sensors and reproductive hypothalamo-pituitary ovarian axis (HPO) in female mammals: Role of mTOR (mammalian target of rapamycin), AMPK (AMP-activated protein kinase) and SIRT1 (Sirtuin 1). Mol Cell Endocrinol 2021; 521:111113. [PMID: 33301839 DOI: 10.1016/j.mce.2020.111113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
In female, energy metabolism influences reproductive function by modulating the Hypothalamic Pituitary Ovarian axis including the hypothalamic GnRH neuronal network, the pituitary gonadotropin secretion and the ovarian follicle growth and steroidogenesis. Several hormones and neuropeptides or metabolites are important signals between energy balance and reproduction. These energy sensors mediate their action on reproductive cells through specific kinases or signaling pathways. This review focuses on the role of three main enzymes-specifically, mTOR, AMPK, and SIRT1 at the hypothalamic pituitary and ovarian axis in normal female fertility and then we discuss their possible involvement in some women reproductive disorders known to be associated with metabolic complications, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF).
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Alice Bongrani
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Klaudia Błaszczyk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Pierre-Henri Ducluzeau
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France.
| |
Collapse
|
16
|
Yang W, Wang L, Wang F, Yuan S. Roles of AMP-Activated Protein Kinase (AMPK) in Mammalian Reproduction. Front Cell Dev Biol 2020; 8:593005. [PMID: 33330475 PMCID: PMC7710906 DOI: 10.3389/fcell.2020.593005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
Reproduction is an energy demanding function and only take place in case of sufficient available energy status in mammals. Metabolic diseases such as anorexia nervosa are clinically associated with reduced fertility. AMP-activated protein kinase (AMPK), as a major regulator of cellular energy homeostasis, is activated in limited energy reserves to ensure the orderly progress of various physiological activities. In recent years, mounting evidence shows that AMPK is involved in the regulation of reproductive function through multiple mechanisms. AMPK is likely to be a metabolic sensor integrating central and peripheral signals. In this review, we aim to explore the preclinical studies published in the last decade that investigate the role of AMP-activated protein kinase in the reproductive field, and its role as a target for drug therapy of reproductive system-related diseases. We also emphasized the emerging roles of AMPK in transcriptional regulation of reproduction processes and metabolisms, which are tightly related to the energy state and fertility of an organism.
Collapse
Affiliation(s)
- Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Follicle inhibition at the primordial stage without increasing apoptosis, with a combination of everolimus, verapamil. Mol Biol Rep 2020; 47:8711-8726. [PMID: 33079326 DOI: 10.1007/s11033-020-05917-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to test whether inhibition of ovarian primordial follicles and subsequent activation can be achieved by transient mTOR inhibition. In this preclinical investigation, forty-five female immature Wistar rats were randomized in 5 groups. The control group received subcutaneous saline injections. The other groups received Everolimus, Everolimus plus Verapamil, Everolimus plus Fisetin, and Fisetin alone. Primary and secondary outcomes were measured in the left ovary after a treatment period of 8 weeks. Ten days later, animals received 35 IU FSH for 4 days and 35 IU of hCG on the 5th day. The same parameters were examined in the right ovary. AMH, estradiol, and progesterone levels were assessed at the end of both interventions. Significantly, more primordial and less atretic follicles were observed in the Everolimus plus Verapamil group. AMH and progesterone levels were substantially lower in the Everolimus group. Interestingly, after ovarian stimulation higher levels of AMH and progesterone were observed in the Everolimus plus Verapamil group. Immunoblot analysis of ovarian extracts revealed that the administration of Everolimus led to a significant reduction in the mTORC1-mediated phosphorylation of the 70-kDa ribosomal protein S6 kinase 1. This decrease was reversed in the presence of FSH after stopping drug administration. The expression of the anti-apoptotic molecule Bcl2 as well as of LC3-II and ATG12 was increased after removal of the Everolimus plus Verapamil combination, indicating reduced apoptosis and increased autophagy, whereas the levels of the proliferation marker PCNA in the granulosa cells were elevated, consistent with initiation of follicular growth.Thus, the combination of Everolimus plus Verapamil is capable of increasing the number of competent primordial follicles while reducing atresia.
Collapse
|
18
|
Lu T, Zou X, Liu G, Deng M, Sun B, Guo Y, Liu D, Li Y. A Preliminary Study on the Characteristics of microRNAs in Ovarian Stroma and Follicles of Chuanzhong Black Goat during Estrus. Genes (Basel) 2020; 11:genes11090970. [PMID: 32825655 PMCID: PMC7564575 DOI: 10.3390/genes11090970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
microRNAs (miRNAs) play a significant role in ovarian follicular maturity, but miRNA expression patterns in ovarian stroma (OS), large follicles (LF), and small follicles (SF) have been rarely explored. We herein aimed to identify miRNAs, their target genes and signaling pathways, as well as their interaction networks in OS, LF, and SF of Chuanzhong black goats at the estrus phase using small RNA-sequencing. We found that the miRNA expression profiles of LF and SF were more similar than those of OS—32, 16, and 29 differentially expressed miRNAs were identified in OS vs. LF, OS vs. SF, and LF vs. SF, respectively. Analyses of functional enrichment and the miRNA-targeted gene interaction network suggested that miR-182 (SMC3), miR-122 (SGO1), and miR-206 (AURKA) were involved in ovarian organogenesis and hormone secretion by oocyte meiosis. Furthermore, miR-202-5p (EREG) and miR-485-3p (FLT3) were involved in follicular maturation through the MAPK signaling pathway, and miR-2404 (BMP7 and CDKN1C) played a key role in follicular development through the TGF-β signaling pathway and cell cycle; nevertheless, further research is warranted. To our knowledge, this is the first study to investigate miRNA expression patterns in OS, LF, and SF of Chuanzhong black goats during estrus. Our findings provide a theoretical basis to elucidate the role of miRNAs in follicular maturation. These key miRNAs might provide candidate biomarkers for the diagnosis of follicular maturation and will assist in developing new therapeutic targets for female goat infertility.
Collapse
Affiliation(s)
- Tingting Lu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Xian Zou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
- Correspondence: ; Tel.: +86-1862-019-3682
| |
Collapse
|
19
|
Xu S, Wu X, Dong Y, Xu M, Li Z, Chen S, Zhuo Y, Lin Y, Che L, Fang Z, Feng B, Li J, Wang J, Wu D, Ren Z. Glucose activates the primordial follicle through the AMPK/mTOR signaling pathway. Clin Transl Med 2020. [PMCID: PMC7418812 DOI: 10.1002/ctm2.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background We have previously found that the energy level in sows affects the activation of primordial follicles. Glucose is the primary metabolic substrate of dietary energy and its effect and mechanism of action with regards to the activation and development of primordial follicle remain unclear. Studies utilizing several different animal cells have shown that energy stress, induced by glucose starvation, activates AMPK and participates in a variety of cellular processes by regulating the Hippo and mTOR signaling pathways. However, whether glucose can affect primordial follicle activation through the above pathways has not been reported. Methods We developed an in vitro culture system for mouse ovaries to investigate the effects of glucose on the primordial follicle activation. Protein expression of AMPK‐Hippo‐YAP and AMPK‐mTOR pathway was investigated under glucose starvation and optimal glucose level treatment. Then, ovaries were treated with AICAR or Compound C in vitro to explore the effect of AMPK activation or inhibition on primordial follicle activation, and the changes of AMPK‐Hippo‐YAP and AMPK‐mTOR signaling pathways. Finally, investigated the signaling pathways affected by glucose potentially affecting the primordial follicle activation in vivo. Results The glucose was an essential nutrient for primordial follicle activation and we identified 25 mM glucose as the optimal level (P < .05) for the primordial follicle activation in vitro. The glycolysis pathway was involved in primordial follicle activation (P < .05) of ovaries cultured in vitro. The glucose affected the activation of primordial follicles in vitro through AMPK/mTOR signaling pathway by AMPK activation or inhibition treatment and follicle ratio count (P < .05). Moreover, glucose affected the primordial follicle activation of ovary in vivo via mTOR signaling pathway. Conclusions This study demonstrates that glucose affects the primordial follicle activation through the AMPK/mTOR rather than the AMPK/Hippo signaling pathway.
Collapse
Affiliation(s)
- Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Xiaoling Wu
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Yanpeng Dong
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Mengmeng Xu
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Sirun Chen
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University; Key Laboratory of Animal Disease‐resistant Nutrition, Ministry of EducationMinistry of Agriculture and Rural Affairs, Sichuan Province Chengdu Sichuan P. R. China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceSichuan Agricultural University Chengdu Sichuan P. R. China
| |
Collapse
|
20
|
Gradinaru V, Treweek J, Overton K, Deisseroth K. Hydrogel-Tissue Chemistry: Principles and Applications. Annu Rev Biophys 2019; 47:355-376. [PMID: 29792820 PMCID: PMC6359929 DOI: 10.1146/annurev-biophys-070317-032905] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past five years, a rapidly developing experimental approach has enabled high-resolution and high-content information retrieval from intact multicellular animal (metazoan) systems. New chemical and physical forms are created in the hydrogel-tissue chemistry process, and the retention and retrieval of crucial phenotypic information regarding constituent cells and molecules (and their joint interrelationships) are thereby enabled. For example, rich data sets defining both single-cell-resolution gene expression and single-cell-resolution activity during behavior can now be collected while still preserving information on three-dimensional positioning and/or brain-wide wiring of those very same neurons-even within vertebrate brains. This new approach and its variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and chemical representations of sensation, cognition, and action. More generally, reimagining metazoans as metareactants-or positionally defined three-dimensional graphs of constituent chemicals made available for ongoing functionalization, transformation, and readout-is stimulating innovation across biology and medicine.
Collapse
Affiliation(s)
- Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Jennifer Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Kristin Overton
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA;
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA; .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA.,H oward Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
21
|
Abstract
Mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase of the phosphatidylinositol kinase-related kinase family that regulates cell growth, metabolism, and autophagy. Extensive research has linked mTOR to several human diseases including cancer, neurodegenerative disorders, and aging. In this review, recent publications regarding the mechanisms underlying the role of mTOR in female reproduction under physiological and pathological conditions are summarized. Moreover, we assess whether strategies to improve or suppress mTOR expression could have therapeutic potential for reproductive diseases like premature ovarian failure, polycystic ovarian syndrome, and endometriosis.
Collapse
|
22
|
Sun XF, Li YP, Pan B, Wang YF, Li J, Shen W. Molecular regulation of miR-378 on the development of mouse follicle and the maturation of oocyte in vivo. Cell Cycle 2018; 17:2230-2242. [PMID: 30244637 DOI: 10.1080/15384101.2018.1520557] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs which can bind to completely or partially complementary sequences in the 3'UTR of target mRNAs, therefore degrading the mRNA or repressing translation. We previously reported that miR-378 played a role in estradiol production via suppression of aromatase translation in porcine granulosa cells and could affect oocyte maturation in vitro by inhibiting cumulus cell expansion. However, the role of miR-378 on ovary development in vivo is unknown. The current study aimed to uncover the molecular mechanism of miR-378 in regulating mouse follicular development via micro-injection of CMV-miR-378 lentivirus into the bursa of mouse ovary. The results showed that CMV-miR-378 lentivirus transduction in the mouse ovaries resulted in reduced ovary size, extended oestrous cycle (6-7 d in miR-378 overexpression group and 4-5 dyas in GFP control group) due to continuous oestrum, decreased percentage of oocytes in vitro maturation rate (IVM 60.8% vs. 89.4% in GFP control), increased apoptosis rate (Bax/Bcl2 in mRNA and protein level), decreased expression of genes associated with gap junction, such as connexin 43 (Cx-43) and connexin (Cx-37) and decreased expression of genes associated with follicular development, such as BMP15 and GDF9. Moreover, the number of pups/litter was consistently lower in the miR-378 group in each batch of the paired breeding. Our data suggest that miR-378 alters gene expression in cumulus cells and indirectly influences oocyte maturation competency, possibly via inhibition of oocyte-cumulus interaction or induction of apoptosis.
Collapse
Affiliation(s)
- Xiao-Feng Sun
- a College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao , China
| | - Ya-Peng Li
- b College of Animal Science and Technology , Qingdao Agricultural University , Qingdao , China
| | - Bo Pan
- c Department of Animal BioSciences , University of Guelph , Guelph , Ontario , Canada
| | - Yu-Feng Wang
- a College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao , China
| | - Julang Li
- c Department of Animal BioSciences , University of Guelph , Guelph , Ontario , Canada
| | - Wei Shen
- a College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao , China
| |
Collapse
|
23
|
Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini DF, Segars JH. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assist Reprod Genet 2018; 35:1135-1148. [PMID: 29691711 PMCID: PMC6063820 DOI: 10.1007/s10815-018-1180-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Mammalian oogenesis and folliculogenesis share a dynamic connection that is critical for gamete development. For maintenance of quiescence or follicular activation, follicles must respond to soluble signals (growth factors and hormones) and physical stresses, including mechanical forces and osmotic shifts. Likewise, mechanical processes are involved in cortical tension and cell polarity in oocytes. Our objective was to examine the contribution and influence of biomechanical signaling in female mammalian gametogenesis. METHODS We performed a systematic review to assess and summarize the effects of mechanical signaling and mechanotransduction in oocyte maturation and folliculogenesis and to explore possible clinical applications. The review identified 2568 publications of which 122 met the inclusion criteria. RESULTS The integration of mechanical and cell signaling pathways in gametogenesis is complex. Follicular activation or quiescence are influenced by mechanical signaling through the Hippo and Akt pathways involving the yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), phosphatase and tensin homolog deleted from chromosome 10 (PTEN) gene, the mammalian target of rapamycin (mTOR), and forkhead box O3 (FOXO3) gene. CONCLUSIONS There is overwhelming evidence that mechanical signaling plays a crucial role in development of the ovary, follicle, and oocyte throughout gametogenesis. Emerging data suggest the complexities of mechanotransduction and the biomechanics of oocytes and follicles are integral to understanding of primary ovarian insufficiency, ovarian aging, polycystic ovary syndrome, and applications of fertility preservation.
Collapse
Affiliation(s)
- Jaimin S Shah
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Texas at Houston Health Science Center, Houston, TX, USA
| | - Reem Sabouni
- Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kamaria C Cayton Vaught
- Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences and Women's Health Research, Baltimore, MD, USA
| | - Carter M Owen
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - James H Segars
- Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences and Women's Health Research, Baltimore, MD, USA.
- Gynecology and Obstetrics, 720 Rutland Avenue/Ross 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
24
|
Nguyen LT, Reverter A, Cánovas A, Venus B, Anderson ST, Islas-Trejo A, Dias MM, Crawford NF, Lehnert SA, Medrano JF, Thomas MG, Moore SS, Fortes MRS. STAT6, PBX2, and PBRM1 Emerge as Predicted Regulators of 452 Differentially Expressed Genes Associated With Puberty in Brahman Heifers. Front Genet 2018; 9:87. [PMID: 29616079 PMCID: PMC5869259 DOI: 10.3389/fgene.2018.00087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The liver plays a central role in metabolism and produces important hormones. Hepatic estrogen receptors and the release of insulin-like growth factor 1 (IGF1) are critical links between liver function and the reproductive system. However, the role of liver in pubertal development is not fully understood. To explore this question, we applied transcriptomic analyses to liver samples of pre- and post-pubertal Brahman heifers and identified differentially expressed (DE) genes and genes encoding transcription factors (TFs). Differential expression of genes suggests potential biological mechanisms and pathways linking liver function to puberty. The analyses identified 452 DE genes and 82 TF with significant contribution to differential gene expression by using a regulatory impact factor metric. Brain-derived neurotrophic factor was observed as the most down-regulated gene (P = 0.003) in post-pubertal heifers and we propose this gene influences pubertal development in Brahman heifers. Additionally, co-expression network analysis provided evidence for three TF as key regulators of liver function during pubertal development: the signal transducer and activator of transcription 6, PBX homeobox 2, and polybromo 1. Pathway enrichment analysis identified transforming growth factor-beta and Wnt signaling pathways as significant annotation terms for the list of DE genes and TF in the co-expression network. Molecular information regarding genes and pathways described in this work are important to further our understanding of puberty onset in Brahman heifers.
Collapse
Affiliation(s)
- Loan T Nguyen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Antonio Reverter
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Bronwyn Venus
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Stephen T Anderson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Marina M Dias
- Departamento de Zootecnia, Faculdade de Ciências Agráìrias e Veterináìrias, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | - Natalie F Crawford
- Department of Animal Science, Colorado State University, Fort Collins, CO, United States
| | - Sigrid A Lehnert
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Milt G Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO, United States
| | - Stephen S Moore
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
25
|
Kawashima I, Kawamura K. Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway. Syst Biol Reprod Med 2017; 64:3-11. [PMID: 29224376 DOI: 10.1080/19396368.2017.1411990] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ovary is an interesting organ that shows major structural changes within a short period of time during each reproductive cycle. Follicle development is controlled by local paracrine and systemic endocrine factors. Many hormonal and molecular analyses have been conducted to find the mechanisms underlying structural changes in ovaries, However, exact mechanisms still remain to be determined. Recent development of mechanobiology facilitates the understanding on the contribution of physical forces and changes in the mechanical properties of cells and tissues to physiology and pathophysiology. The Hippo signaling pathway is one of the key players in mechanotransduction, providing an understanding of the molecular mechanisms by which cells sense and respond to mechanical signals to regulate cell proliferation and apoptosis for maintaining optimal organ sizes. Our group recently demonstrated the involvement of the Hippo signaling pathway in the regulation of ovarian follicle development. Fragmentation of ovarian cortex into small cubes changed cytoskeletal actin dynamics and induced disruption of the Hippo signaling pathway, leading to the production of CCN growth factors and anti-apoptotic BIRC. These factors, in turn, stimulated secondary follicle growth in vitro and in vivo. In this review, we summarized hormonal regulation of follicular structural changes and further focused on the role of Hippo signaling in the regulation of follicle development. We also suggest a new strategy of infertility treatments in patients with polycystic ovary syndrome and primary ovarian insufficiency based on mechanobiology.
Collapse
Affiliation(s)
- Ikko Kawashima
- a Department of Obstetrics and Gynecology , St. Marianna University School of Medicine , Kawasaki City , Kanagawa , Japan
| | - Kazuhiro Kawamura
- a Department of Obstetrics and Gynecology , St. Marianna University School of Medicine , Kawasaki City , Kanagawa , Japan
| |
Collapse
|
26
|
A Novel Heterogalactan from Antrodia camphorata and Anti-Angiogenic Activity of Its Sulfated Derivative. Polymers (Basel) 2017; 9:polym9060228. [PMID: 30970906 PMCID: PMC6432100 DOI: 10.3390/polym9060228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 12/11/2022] Open
Abstract
A heterogalactan, named ACW0, was extracted from Antrodia camphorata and purified by anion exchange and gel permeation chromatography. It was composed of galactose (94.98%), traces of mannose (2.41%), and fucose (2.61%), with its molecular weight estimated to be 13.5 k Da. The polysaccharide ACW0 was shown to be a mannofucogalactan with a backbone chain of α-d-1,6-linked Gal, attached by a non-reducing terminal α-d-Man and α-l-Fuc on C-2 of nearly every six α-d-1,6-linked Gal residues. A sulfated polysaccharide, ACW0-Sul was achieved by the chlorosulfonic acid-pyridine method. Compared with the native polysaccharide, ACW0-Sul could disrupt tube formation and migration as well as cell growth of human microvascular endothelial cells (HMEC-1) dose-dependently. Further studies revealed that phosphorylation of Extracellular Regulated Protein Kinases (Erk) and Focal Adhesion Kinase (FAK) were significantly inhibited by ACW0-Sul. These results suggested that ACW0-Sul could be a potent candidate for anti-angiogenic agent development.
Collapse
|