1
|
Wang Z, Xiao T, Qi G, Zhong Y, Zhu Y. The Effect of Traditional Chinese Medicine Treatment on the Cumulative Live Birth Rate of Patients with Poor Ovarian Response to the Patient-Oriented Strategies Encompassing Individualized Oocyte Number Criteria. Int J Womens Health 2024; 16:2377-2386. [PMID: 39749024 PMCID: PMC11693951 DOI: 10.2147/ijwh.s492333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Objective This study analyzed the role of traditional Chinese medicine (TCM) treatment on the cumulative live birth rate (CLBR) in women with poor ovarian response to the patient-oriented strategies encompassing individualized oocyte number (POSEIDON) criteria. Methods This cohort study selected 3347 patients with low ovarian response and divided them into four subgroups according to the POSEIDON criteria: Group 1 (n=947), Group 2 (n=778), Group 3 (n=164), and Group 4 (n=1458). Logistic regression analysis was used to evaluate the role of TCM treatment on the CLBR of patients with poor ovarian response to POSEIDON criteria. Results In the unadjusted model, TCM treatment might be related to the heightened CLBR (OR=2.052, 95% CI: 1.745-2.413). After adjusting for the POSEIDON group, a higher CLBR was identified in those with TCM treatment (OR=1.927, 95% CI: 1.615-2.300). In Model 3, covariates including the POSEIDON group, age, body mass index (BMI), anti-mullerian hormone (AMH), and/or antral follicle count (AFC) were adjusted, and TCM treatment was associated with elevated CLBR of patients with poor ovarian response to the POSEIDON criteria (OR=1.905, 95% CI: 1.586-2.289). This suggested that TCM increased CLBR by 19.05% in patients who used TCM compared with those who did not. Subgroup analysis indicated that TCM treatment might increase the CLBR of patients in POSEIDON criteria Group 1 (OR=1.83, 95% CI: 1.33-2.51), indicating that TCM elevated the CLBR by 8.3% in POSEIDON criteria Group 1. Conclusion TCM treatment was related to increased CLBR in patients with poor ovarian response to the POSEIDON criteria.
Collapse
Affiliation(s)
- Zhuran Wang
- Department of Traditional Chinese Medicine, Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen City, Guangdong Province, 518000, People’s Republic of China
| | - Ting Xiao
- Department of Traditional Chinese Medicine, Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen City, Guangdong Province, 518000, People’s Republic of China
| | - Guanglan Qi
- Department of Traditional Chinese Medicine, Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen City, Guangdong Province, 518000, People’s Republic of China
| | - Yue Zhong
- Department of Traditional Chinese Medicine, Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen City, Guangdong Province, 518000, People’s Republic of China
| | - Yue Zhu
- Department of Traditional Chinese Medicine, Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen City, Guangdong Province, 518000, People’s Republic of China
| |
Collapse
|
2
|
Yang X, Cai J, Jiang L, Jiang X, Liu Z, Chen J, Chen K, Yang C, Geng J, Ma C, Ren J, Liu L. Neutral effect of Zishen Yutai Pill on frozen-thawed embryo transfer: a propensity score matching study. Front Endocrinol (Lausanne) 2024; 15:1379590. [PMID: 39268234 PMCID: PMC11390590 DOI: 10.3389/fendo.2024.1379590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Objective To investigate whether using Zishen Yutai Pills (ZYP) following embryo transfer would affect the live birth rate in frozen-thawed embryo transfer (FET) cycles. Methods A retrospective analysis was performed on 15044 FET cycles in the Reproductive Medicine Center of The Affiliated Chenggong Hospital of Xiamen University from January 2013 to December 2020. Patients who used Zishen Yutai Pills were defined as Zishen Yutai Pills Group (ZYP, n=2735), while patients who did not use them were defined as Non- Zishen Yutai Pills Group (Non-ZYP, n=12309). The propensity score matching method was used to control for potential confounders between the two groups, and logistic regression analysis was also used to assess whether using ZYP would affect the live birth rate. Results After propensity score matching, basic characteristics were similar between the two groups. Using ZYP did not increase the pregnancy rate (51.5% vs. 52.7%, P=0.372), and live birth rate (43.0% vs. 44.7%, P=0.354). This was also confirmed by the logistic regression analysis results (OR=0.95, 95%CI=0.85-1.06). In the subgroup analysis of the endometrial preparation protocols, however, it was found that the use of ZYP in patients with natural cycles increased the live birth rate (47.4% vs. 41.5%, P=0.004). A significant interaction between endometrial preparation and ZYP was found (OR=1.38, 95%CI=1.07-1.79) in the multivariate model. Conclusion The use of ZYP may not improve the live birth rate of unselected patients in FET cycles. However, a future study is needed on the effect of ZYP in natural cycles for endometrial preparation.
Collapse
Affiliation(s)
- Xiaolian Yang
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiali Cai
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Li Jiang
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaoming Jiang
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Zhenfang Liu
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jinghua Chen
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Kaijie Chen
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Chao Yang
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jie Geng
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Caihui Ma
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jianzhi Ren
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
| | - Lanlan Liu
- Reproductive Medicine Center, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, China
- Medical College, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Yao M, Chang L, Xu S, Zhang J, Li P, Tian B, Luo L, Yang D, Long Q, Zou X. Comparison of production performance and meat quality characteristics between Guizhou Black goats and F4 generation hybrids of South African Kalahari Goats. Sci Rep 2024; 14:18608. [PMID: 39127724 PMCID: PMC11316849 DOI: 10.1038/s41598-024-69174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
This study spanned 6 years and 4 generations, involving the progressive crossbreeding of South African Kalahari Goat (SK) and Guizhou Black Goat (GB) over three generations, followed by cross fixation F3 with F1 in the fourth generation, accompanied by the use of molecular markers technology to select a high fertility population, resulting in the creation of a hybrid goat, BKF4 (11/16 SK lineage and 5/16 GB lineage). A comparative evaluation of the BKF4 hybrid breed and its parental breeds was conducted. Reproductive and production parameters of GB, SK, and BKF4 goat groups were monitored, including lambing rate (LR), survival rate (SR), daily weight gain at 3 months of age (DWG), and adult body weight (ABW) (n = 110, 106, 112 per group). In addition, dressing percentage (DP) (n = 12 per group) and analyses of amino acids (n = 8, 6, 10 per group) and fatty acids (n = 6 per group) were conducted to evaluate meat quality indicators. Results: (1) Reproductive and production performance: The index of LR reached 199%, significantly higher than GB and SK (p ≤ 0.001), with a SR of 95.0%, markedly higher than SK (p ≤ 0.001); DWG was 276.5 g, ABW reached 56.6 kg and with a dressing percentage (DP) of 54.5%, they are significantly surpassing GB (p ≤ 0.001). (2) Regarding meat quality: pH45-value and crude protein content (CP) increased, while intramuscular fat content increased compared to GB and ash content decreased. The amino acid composition was similar to GB, but the taste was more similar to SK. However, there were some negative impacts on fatty acid composition and functionality. (3) PCA analysis revealed that: BKF4 exhibited superior meat quality compared to GB and SK, influenced by two key factors contributing 83.49% and 16.51% to the explained variance, respectively. The key factors affecting meat quality include intramuscular fat (IMF), nutrient index (NI), PUFAs/MUFAs, n-6FAs, and drip loss (DL).
Collapse
Affiliation(s)
- Min Yao
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, Guizhou Province, China
| | - Lingle Chang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 500025, Guizhou Province, China
| | - Suyun Xu
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Jing Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Guiyang, 550005, Guizhou Province, China
| | - Ping Li
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, Guizhou Province, China
| | - Bing Tian
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, Guizhou Province, China
| | - Li Luo
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Danpin Yang
- Guizhou Kalahari Goat Breeding Company, Qianxinan, 562400, Guizhou Province, China
| | - Qingmeng Long
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, Guizhou Province, China.
| | - Xiao Zou
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
4
|
Fountas S, Petinaki E, Bolaris S, Kargakou M, Dafopoulos S, Zikopoulos A, Moustakli E, Sotiriou S, Dafopoulos K. The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization. J Clin Med 2024; 13:3775. [PMID: 38999341 PMCID: PMC11242125 DOI: 10.3390/jcm13133775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Growth differentiation factor 9 (GDF-9) contributes to early ovarian development and oocyte survival. Higher concentrations of GDF-9 in follicular fluid (FF) are associated with oocyte nuclear maturation and optimal embryo development. In in vitro fertilization (IVF), GDF-9 affects the ability of the oocyte to fertilize and subsequent embryonic development. Bone morphogenetic protein 15 (BMP-15) is involved in the regulation of ovarian function and affects oocyte development. During IVF, BMP-15 contributes to the formation of competent blastocysts. BMP-15 may play a role in embryo implantation by affecting endometrial receptivity. Bone morphogenetic protein 4 (BMP-4) is involved in the regulation of follicle growth and development and affects granulosa cell (GC) differentiation. In relation to IVF, BMP-4 is important for embryonic development, influences cell fate and differentiation, and plays a role in facilitating embryo-endometrial interactions during the implantation process. Extracellular matrix metalloproteinase inducer (EMMPRIN) is associated with ovulation and follicle rupture, promotes the release of mature eggs, and affects the modification of the extracellular matrix of the follicular environment. In IVF, EMMPRIN is involved in embryo implantation by modulating the adhesive properties of endometrial cells and promotes trophoblastic invasion, which is essential for pregnancy to occur. The purpose of the current article is to review the studies and recent findings of GDF-9, BMP-15, BMP-4 and EMMPRIN as fundamental factors in normal follicular development and in vitro fertilization.
Collapse
Affiliation(s)
- Serafeim Fountas
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Efthymia Petinaki
- Department of Microbiology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Stamatis Bolaris
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Magdalini Kargakou
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Stefanos Dafopoulos
- Department of Health Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | | | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Konstantinos Dafopoulos
- ART Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
5
|
Richani D, Poljak A, Wang B, Mahbub SB, Biazik J, Campbell JM, Habibalahi A, Stocker WA, Marinova MB, Nixon B, Bustamante S, Skerrett-Byrne D, Harrison CA, Goldys E, Gilchrist RB. Oocyte and cumulus cell cooperativity and metabolic plasticity under the direction of oocyte paracrine factors. Am J Physiol Endocrinol Metab 2024; 326:E366-E381. [PMID: 38197792 DOI: 10.1152/ajpendo.00148.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during mouse oocyte maturation in vitro altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, whereas mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content while maintaining ATP homeostasis. Collectively, these data demonstrate that cumulin and BMP15 remodel cumulus cell metabolism, instructing them to upregulate their anabolic metabolic processes, while routine cellular functions are minimized in the oocyte during maturation, in preparation for ensuing embryonic development.NEW & NOTEWORTHY Oocyte-secreted factors (OSFs) promote oocyte and cumulus cell cooperativity by altering the molecular composition of both cell types. OSFs downregulate protein catabolic processes and upregulate processes associated with DNA binding, translation, and ribosome assembly in oocytes. In cumulus cells, OSFs alter mitochondrial number, morphology, and function, and enhance metabolic plasticity by upregulating anabolic pathways. Hence, the oocyte via OSFs, instructs cumulus cells to increase metabolic processes on its behalf, thereby subduing oocyte metabolism.
Collapse
Affiliation(s)
- Dulama Richani
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Baily Wang
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Saabah B Mahbub
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jared M Campbell
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Maria B Marinova
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - David Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ewa Goldys
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Swinerd GW, Alhussini AA, Sczelecki S, Heath D, Mueller TD, McNatty KP, Pitman JL. Molecular forms of BMP15 and GDF9 in mammalian species that differ in litter size. Sci Rep 2023; 13:22428. [PMID: 38104237 PMCID: PMC10725505 DOI: 10.1038/s41598-023-49852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Bone morphogenetic protein (BMP15) and growth differentiation factor (GDF9) are critical for ovarian follicular development and fertility and are associated with litter size in mammals. These proteins initially exist as pre-pro-mature proteins, that are subsequently cleaved into biologically active forms. Thus, the molecular forms of GDF9 and BMP15 may provide the key to understanding the differences in litter size determination in mammals. Herein, we compared GDF9 and BMP15 forms in mammals with high (pigs) and low to moderate (sheep) and low (red deer) ovulation-rate. In all species, oocyte lysates and secretions contained both promature and mature forms of BMP15 and GDF9. Whilst promature and mature GDF9 levels were similar between species, deer produced more BMP15 and exhibited, together with sheep, a higher promature:mature BMP15 ratio. N-linked glycosylation was prominant in proregion and mature GDF9 and in proregion BMP15 of pigs, and present in proregion GDF9 of sheep. There was no evidence of secreted native homo- or hetero-dimers although a GDF9 dimer in red deer oocyte lysate was detected. In summary, GDF9 appeared to be equally important in all species regardless of litter size, whilst BMP15 levels were highest in strict monovulatory species.
Collapse
Affiliation(s)
- Gene W Swinerd
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Abdulaziz A Alhussini
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sarah Sczelecki
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Derek Heath
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas D Mueller
- Department of Plant Physiology and Biophysics, Julius-Von-Sachs Institute of the University Würzburg, Würzburg, Germany
| | - Kenneth P McNatty
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
7
|
Krysta-Matter AE, Riepsamen AH, Lien S, Wong WYT, Richani D, Kilani S, Harrison CA, Mallitt KA, Ledger WL, Robertson DM, Gilchrist RB. Application of specific ELISAs for BMP15 and GDF9 to cumulus cell extracts from infertile women. Mol Cell Endocrinol 2023; 578:112049. [PMID: 37666445 DOI: 10.1016/j.mce.2023.112049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are oocyte-specific paracrine factors which regulate ovarian cumulus cell (CC) functions. This study aimed to investigate if BMP15 and GDF9 bound to CCs can be characterized, quantified, and show an association with IVF outcomes in infertile women. BMP15 and GDF9 ELISAs were validated and applied to discarded CC extracts. Pooled CCs from individual patients were collected from 120 (cohort 1; BMP15 only) and 81 infertility patients (cohort 2; BMP15 and GDF9) undergoing superovulation. BMP15 and GDF9 levels expressed per CC DNA were correlated with maternal age, clinical and embryology data. Total BMP15 and GDF9 were highly correlated with each other (r = 0.9, p < 0.001). The GDF9:BMP15 ratio was unrelated to oocyte number or age. BMP15/CC DNA and GDF9/CC DNA were unaffected by the type of superovulation and were not related to oocyte/embryo outcomes.
Collapse
Affiliation(s)
- A E Krysta-Matter
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, New South Wales, 2052, Australia; IVF Australia, Virtus Health, Alexandria, New South Wales, 2035, Australia
| | - A H Riepsamen
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, New South Wales, 2052, Australia
| | - S Lien
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, New South Wales, 2052, Australia
| | - W Y T Wong
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, New South Wales, 2052, Australia
| | - D Richani
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, New South Wales, 2052, Australia
| | - S Kilani
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, New South Wales, 2052, Australia; IVF Australia, Virtus Health, Alexandria, New South Wales, 2035, Australia
| | - C A Harrison
- Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - K A Mallitt
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, New South Wales, 2052, Australia; Centre for Big Data Research in Health, University of New South Wales Sydney, New South Wales, 2052, Australia
| | - W L Ledger
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, New South Wales, 2052, Australia; IVF Australia, Virtus Health, Alexandria, New South Wales, 2035, Australia
| | - D M Robertson
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, New South Wales, 2052, Australia
| | - R B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
8
|
Resolving the challenge of insoluble production of mature human growth differentiation factor 9 protein (GDF9) in E. coli using bicistronic expression with thioredoxin. Int J Biol Macromol 2023; 230:123225. [PMID: 36649874 DOI: 10.1016/j.ijbiomac.2023.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Growth differentiation factor 9 (GDF9) is an oocyte-derived protein with fundamental functions in folliculogenesis. While the crucial contributions of GDF9 in follicular survival have been revealed, crystallographic studies of GDF9 structure have not yet been carried out, essentially due to the insoluble expression of GDF9 in E. coli and lack of appropriate source for structural studies. Therefore, in this study, we investigated the impact of different expression rate of bacterial thioredoxin (TrxA) using bicistronic expression constructs to induce the soluble expression of mature human GDF9 (hGDF9) driven by T7 promoter in E. coli. Our findings revealed that in BL21(DE3), the high rate of TrxA co-expression at 30 °C was sufficiently potent for the soluble expression of hGDF9 and reduction of inclusion body formation by 4 fold. We also successfully confirmed the bioactivity of the purified soluble hGDF9 protein by evaluation of follicle-stimulating hormone receptor gene expression in bovine cumulus cells derived from small follicles. This study is the first to present an effective approach for expression of bioactive form of hGDF9 using TrxA co-expression in E. coli, which may unravel the current issues regarding structural analysis of hGDF9 protein and consequently provide a better insight into hGDF9 functions and interactions.
Collapse
|
9
|
Effects of Zishen Yutai Pills on in vitro Fertilization-Embryo Transfer Outcomes in Patients with Diminished Ovarian Reserve: A Prospective, Open-Labeled, Randomized and Controlled Study. Chin J Integr Med 2023; 29:291-298. [PMID: 36809499 DOI: 10.1007/s11655-023-3546-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/23/2023]
Abstract
OBJECTIVE To explore the effects of Zishen Yutai Pills (ZYPs) on the quality of oocytes and embryos, as well as pregnancy outcomes in patients with diminished ovarian reserve (DOR) receiving in vitro fertilization-embryo transfer (IVF-ET). The possible mechanisms, involving the regulation of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), were also investigated. METHODS A total of 120 patients with DOR who underwent their IVF-ET cycle were randomly allocated to 2 groups in a 1:1 ratio. The patients in the treatment group (60 cases) received ZYPs from the mid-luteal phase of the former menstrual cycle by using gonadotropin-releasing hormone (GnRH) antagonist protocol. The patients in the control group (60 cases) received the same protocol but without ZYPs. The primary outcomes were the number of oocytes retrieved and high-quality embryos. Secondary outcomes included other oocyte or embryo indices as well as pregnancy outcomes. Adverse events were assessed by comparison of the incidence of ectopic pregnancy, pregnancy complications, pregnancy loss, and preterm birth. Contents of BMP15 and GDF9 in the follicle fluids (FF) were also quantified with enzyme-linked immunosorbent assay. RESULTS Compared with the control group, the numbers of oocytes retrieved and high-quality embryos were significantly increased in the ZYPs group (both P<0.05). After treatment with ZYPs, a significant regulation of serum sex hormones was observed, including progesterone and estradiol. Both hormones were up-regulated compared with the control group (P=0.014 and 0.008), respectively. No significant differences were observed with regard to pregnancy outcomes including implantation rates, biochemical pregnancy rates, clinical pregnancy rates, live birth rates, and pregnancy loss rates (all P>0.05). The administration of ZYPs did not increase the incidence of adverse events. The expressions of BMP15 and GDF9 in the ZYPs group were significantly up-regulated compared with the control group (both P<0.05). CONCLUSIONS ZYPs exhibited beneficial effects in DOR patients undergoing IVF-ET, resulting in increments of oocytes and embryos, and up-regulation of BMP15 and GDF9 expressions in the FF. However, the effects of ZYPs on pregnancy outcomes should be assessed in clinical trials with larger sample sizes (Trial reqistration No. ChiCTR2100048441).
Collapse
|
10
|
Fu Y, Zhang JB, Han DX, Wang HQ, Liu JB, Xiao Y, Jiang H, Gao Y, Yuan B. CiRS-187 regulates BMPR2 expression by targeting miR-187 in bovine cumulus cells treated with BMP15 and GDF9. Theriogenology 2023; 197:62-70. [PMID: 36470111 DOI: 10.1016/j.theriogenology.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
Circular RNAs (circRNAs) play vital roles in regulating biological processes. However, the contributions of circRNAs to BMPR2 regulation during follicle development remain unknown. In this study, we first verified the optimal conditions for BMP15 and GDF9 treatment in bovine cumulus cells. Then, we screened and identified candidate microRNAs (miRNAs) that may target the BMPR2 3'UTR with TargetScan, a luciferase reporter assay and RT-qPCR. Next, we transfected miR-187 into bovine cumulus cells, and the results showed that miR-187 regulated BMPR2 and inhibited its expression. To explore the competing endogenous RNA (ceRNA) mechanism, we predicted the sponging circRNAs of miR-187 and identified ciRS-187. We further detected miR-187 and BMPR2 expression and apoptosis levels upon knockdown of ciRS-187 and found that ciRS-187 upregulated BMPR2 expression. The results provide a theoretical basis for a ceRNA mechanism of circRNAs related to follicle development.
Collapse
Affiliation(s)
- Yao Fu
- Department of Laboratory Animal Science, College of Animal Sciences, Jilin University, Changchun, 130062, China; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia-Bao Zhang
- Department of Laboratory Animal Science, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Dong-Xu Han
- Department of Laboratory Animal Science, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Hao-Qi Wang
- Department of Laboratory Animal Science, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jian-Bo Liu
- Department of Laboratory Animal Science, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yue Xiao
- Department of Laboratory Animal Science, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Hao Jiang
- Department of Laboratory Animal Science, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yan Gao
- Department of Laboratory Animal Science, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Bao Yuan
- Department of Laboratory Animal Science, College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
11
|
de Moraes FP, Missio D, Lazzari J, Rovani MT, Ferreira R, Gonçalves PBD, Gasperin BG. Local regulation of antral follicle development and ovulation in monovulatory species. Anim Reprod 2023; 19:e20220099. [PMID: 36650852 PMCID: PMC9833292 DOI: 10.1590/1984-3143-ar2022-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
The identification of mutations in the genes encoding bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) associated with phenotypes of sterility or increased ovulation rate in sheep aroused interest in the study of the role of local factors in preantral and antral folliculogenesis in different species. An additive mutation in the BMP15 receptor, BMPR1b, which determines an increase in the ovulatory rate, has been introduced in several sheep breeds to increase the number of lambs born. Although these mutations indicate extremely relevant functions of these factors, the literature data on the regulation of the expression and function of these proteins and their receptors are very controversial, possibly due to differences in experimental models. The present review discusses the published data and preliminary results obtained by our group on the participation of local factors in the selection of the dominant follicle, ovulation, and follicular atresia in cattle, focusing on transforming growth factors beta and their receptors. The study of the expression pattern and the functionality of proteins produced by follicular cells and their receptors will allow increasing the knowledge about this local system, known to be involved in ovarian physiopathology and with the potential to promote contraception or increase the ovulation rate in mammals.
Collapse
Affiliation(s)
- Fabiane Pereira de Moraes
- Programa de Pós-graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Capão do Leão, RS, Brasil
| | - Daniele Missio
- Rede FiBRA-RS - Fisiopatologia e Biotécnicas da Reprodução, Santa Maria, RS, Brasil,Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Jessica Lazzari
- Programa de Pós-graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Capão do Leão, RS, Brasil
| | - Monique Tomazele Rovani
- Rede FiBRA-RS - Fisiopatologia e Biotécnicas da Reprodução, Santa Maria, RS, Brasil,Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Rogério Ferreira
- Faculdade de Zootecnia, Universidade do Estado de Santa Catarina, Chapecó, SC, Brasil
| | - Paulo Bayard Dias Gonçalves
- Rede FiBRA-RS - Fisiopatologia e Biotécnicas da Reprodução, Santa Maria, RS, Brasil,Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Bernardo Garziera Gasperin
- Programa de Pós-graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Capão do Leão, RS, Brasil,Rede FiBRA-RS - Fisiopatologia e Biotécnicas da Reprodução, Santa Maria, RS, Brasil,Corresponding author:
| |
Collapse
|
12
|
Ajafar MH, Kadhim AH, Al-Thuwaini TM, Al-Shuhaib MBS, Hussein TH. Dr Association of bone morphogenetic protein 15 and growth differentiation factor 9 with litter size in livestock: a review study. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v45i1.57927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
. Litter size is one of the crucial factors in livestock production and is of high economic value, which is affected by ovulation rate, hormones, and growth factors. Growth factors play a multifaceted role in reproductive physiology. This review aims to investigate the association of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) with litter size in livestock. The transforming growth factor β (TGF- β) superfamily includes more than 34 members; GDF9 and BMP15 are among the most significant factors for regulating fertility and litter size in most livestock species. Ovarian follicles release BMP15 and GDF9 that are involved in the maturation of primary follicles into the basal form, proliferation of granulosa and theca cells, steroidogenesis, ovulation, and formation of the corpus luteum. Besides, these factors are highly expressed in oocytes and are necessary for female fertility and multiple ovulation in several livestock species. Animals with two inactive copies of these factors are sterile, while those with one inactive copy are fertile. Thus, the present review provides valuable information on the association of BMP15 and GDF9 with litter size in livestock that can be used as biological markers of multiple ovulation or for improving fertility in livestock.
Collapse
|
13
|
Effect of cumulin and super-GDF9 in standard and biphasic mouse IVM. J Assist Reprod Genet 2022; 39:127-140. [PMID: 34984599 PMCID: PMC8866628 DOI: 10.1007/s10815-021-02382-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE In vitro maturation (IVM) is a technology that generates mature oocytes following culture of immature cumulus-oocyte complexes (COC) in vitro. IVM is characterized by minimal patient stimulation, making it attractive for certain patient groups. Recently, a biphasic IVM system, capacitation (CAPA)-IVM, has shown improved clinical outcomes relative to standard IVM; however, it remains less efficient than IVF. This study assessed whether supplementation of CAPA-IVM culture media with the novel TGFβ superfamily proteins cumulin and super-GDF9 improves subsequent mouse embryo development. METHODS Immature mouse COCs were cultured by standard IVM or biphasic IVM ± cumulin or super-GDF9. RESULTS Both cumulin and super-GDF9 in standard IVM significantly improved day-6 blastocyst rate (53.9% control, 73.6% cumulin, 70.4% super-GDF9; p = 0.006; n = 382-406 oocytes). Cumulin or super-GDF9 in CAPA-IVM did not alter embryo yield or blastocyst cell allocation in an unstimulated model. Moreover, cumulin did not alter these outcomes in a mild PMSG stimulation model. Cumulin in CAPA-IVM significantly increased cumulus cell expression of cumulus expansion genes (Ptgs2, Ptx3, Adamts1, Gfat2) and decreased Lhr expression relative to control. However, cumulin-induced mRNA expression of cumulus cell (Ptgs2, Ptx3) and oocyte genes (Gdf9, Bmp15, Oct4, Stella) in CAPA-IVM remained significantly lower than that of in vivo matured cells. CONCLUSION Cumulin did not provide an additional beneficial effect in biphasic IVM in terms of blastocyst yield and cell allocation; however in standard IVM, cumulin and super-GDF9 significantly improve oocyte developmental competence.
Collapse
|
14
|
Ma X, Yi H. BMP15 regulates FSHR through TGF-β receptor II and SMAD4 signaling in prepubertal ovary of Rongchang pigs. Res Vet Sci 2021; 143:66-73. [PMID: 34979443 DOI: 10.1016/j.rvsc.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
Bone morphogenetic protein 15 (BMP15) and follicle-stimulating hormone (FSH) both play important roles in mammalian ovary and follicular development. The aim of the present study is to investigate the effects of BMP15 and FSH in the prepubertal ovary of Rongchang pigs considering a possible signaling mechanism involving TβRII/ SMAD4 and FSHR in granulosa cells. For this purpose, we quantified expression levels of BMP15, SMAD2, SMAD3, SMAD4, SMAD7, TGF-β1, TGF-β2, TGF-β3, TGFβRI, TGFβRII, and FSHR via qRT-PCR at different ages in prepubertal ovaries and cultured biopsy of 90-day-old ovary in Rongchang pig. Additionally, the protein levels of BMP15, FSHR, SMAD2, SMAD4, TGFβRI, TGFβRII, TGF-β1, TGF-β2 were quantified via Western blot and the localizations of BMP15, FSHR and TGFβRII were observed via immunofluorescence confocal microscope. The results showed that expression levels of BMP15, TGF-β1, TGFβRII and FSHR increased significantly at day 60 as compared to day 30 and reached peak value at day 90 in prepubertal ovary of Rongchang pigs. We observed that BMP15, TGFβRII and FSHR was highly presented, which TGFβRII and FSHR displayed co-localization in the follicles of the prepubertal ovaries of 90-day-old Rongchang gilts. Treatment with TGFβRI/II inhibitor LY2109761 significantly decreased the expression of TGFβRI, TGFβRII and SMAD4 and TGFβRI inhibitor LY2157299 decreased TGFβRI, but increased the TGFβRII, SMAD4 and FSHR expression levels. Furthermore, the addition of rBMP15 and rFSH group significantly increased the expression of TGFβRII and FSHR proteins (P < 0.01), but no significant change in the expression of TGFβRI (P > 0.05) was observed by Western blot. In conclusion, BMP15, TGFβRII and FSHR were increased significantly in the prepubertal ovarian follicles of Rongchang pigs and FSHR expression in GCs was regulated by BMP15 and FSH through the TGFβRII.
Collapse
Affiliation(s)
- Xianping Ma
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, PR China; Chongqing Veterinary Science Engineering Research Center, Rongchang, Chongqing, PR China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, PR China; Chongqing NaBii Veterinary Diagnostic and Technical Services Co., Ltd. Rongchang, Chongqing, PR China; National Center of Technology Innovation for Pigs, Rongchang, Chongqing, PR China.
| |
Collapse
|
15
|
Emori C, Ito H, Fujii W, Naito K, Sugiura K. Oocytes suppress FOXL2 expression in cumulus cells in mice†. Biol Reprod 2021; 103:85-93. [PMID: 32307529 DOI: 10.1093/biolre/ioaa054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/07/2020] [Accepted: 04/16/2020] [Indexed: 11/15/2022] Open
Abstract
Cumulus cells and mural granulosa cells (MGCs) play distinct roles during follicular development, and normal development of these cell lineages is critical for the female fertility. Transcriptomic diversification between the two cell lineages is obviously a critical mechanism for their functional diversification; however, the transcriptional regulators responsible for this event have not been fully defined. In this study, we sought to identify key transcriptional regulators responsible for the differential gene expression between the two cell lineages. In silico analysis of transcriptomic comparison between cumulus cells and MGCs identified several candidate regulators responsible for the diversification of the two cell lineages. Among them, we herein focused on forkhead box L2 (FOXL2) and showed that expressions of FOXL2 as well as its target transcripts were differentially regulated between cumulus cells and MGCs. The lower expression of FOXL2 in cumulus cells seemed to be due to the suppression by oocyte-derived paracrine signals. These results suggest that FOXL2 is one of the critical transcription factors that determine cumulus cell and MGC lineages under the control of oocytes.
Collapse
Affiliation(s)
- Chihiro Emori
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruka Ito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Heinks T, Hettwer A, Hiepen C, Weise C, Gorka M, Knaus P, Mueller TD, Loidl-Stahlhofen A. Optimized expression and purification of a soluble BMP2 variant based on in-silico design. Protein Expr Purif 2021; 186:105918. [PMID: 34044133 DOI: 10.1016/j.pep.2021.105918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/11/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Bone morphogenetic protein 2 (BMP21) is a highly interesting therapeutic growth factor due to its strong osteogenic/osteoinductive potential. However, its pronounced aggregation tendency renders recombinant and soluble production troublesome and complex. While prokaryotic expression systems can provide BMP2 in large amounts, the typically insoluble protein requires complex denaturation-renaturation procedures with medically hazardous reagents to obtain natively folded homodimeric BMP2. Based on a detailed aggregation analysis of wildtype BMP2, we designed a hydrophilic variant of BMP2 additionally containing an improved heparin binding site (BMP2-2Hep-7M). Consecutive optimization of BMP2-2Hep-7M expression and purification enabled production of soluble dimeric BMP2-2Hep-7M in high yield in E. coli. This was achieved by a) increasing protein hydrophilicity via introducing seven point mutations within aggregation hot spots of wildtype BMP2 and a longer N-terminus resulting in higher affinity for heparin, b) by employing E. coli strain SHuffle® T7, which enables the structurally essential disulfide-bond formation in BMP2 in the cytoplasm, c) by using BMP2 variant characteristic soluble expression conditions and application of l-arginine as solubility enhancer. The BMP2 variant BMP2-2Hep-7M shows strongly attenuated although not completely eliminated aggregation tendency.
Collapse
Affiliation(s)
- Tobias Heinks
- Westfälische Hochschule Recklinghausen, 45665, Recklinghausen, Germany.
| | - Anette Hettwer
- Westfälische Hochschule Recklinghausen, 45665, Recklinghausen, Germany; Universität Würzburg, Department for Molecular Plant Physiology and Biophysics - Botany I, Julius-von-Sachs Institute, 97082, Würzburg, Germany
| | - Christian Hiepen
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Marcel Gorka
- Westfälische Hochschule Recklinghausen, 45665, Recklinghausen, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Thomas D Mueller
- Universität Würzburg, Department for Molecular Plant Physiology and Biophysics - Botany I, Julius-von-Sachs Institute, 97082, Würzburg, Germany
| | | |
Collapse
|
17
|
Esfandyari S, Winston NJ, Fierro MA, Scoccia H, Stocco C. Oocyte-secreted factors strongly stimulate sFRP4 expression in human cumulus cells. Mol Hum Reprod 2021; 27:6255760. [PMID: 33905521 DOI: 10.1093/molehr/gaab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Secreted frizzled-related protein-4 (SFRP4) belongs to a family of soluble ovarian-expressed proteins that participate in female reproduction, particularly in rodents. In humans, SFRP4 is highly expressed in cumulus cells (CCs). However, the mechanisms that stimulate SFRP4 in CCs have not been examined. We hypothesise that oocyte-secreted factors such as growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are involved in the regulation of SFRP4. Human CCs were collected from patients undergoing fertility treatments and treated with GDF9 or BMP15 or their combination in the presence of FSH or vehicle. FSH treatment significantly decreased SFRP4 mRNA levels when compared with nontreated cells. However, SFRP4 mRNA levels were increased significantly by GDF9 plus BMP15 in a concentration-dependent manner in the presence or absence of FSH. The combination of GDF9 plus BMP15 also increased SFRP4 protein levels and decreased the activity of the β-catenin/T cell factor-responsive promoter significantly. GDF9 plus BMP15 inhibited steroidogenic acute regulatory protein and LH/hCG receptor stimulation by FSH, while treatment with SFRP4 blocked the stimulatory effect of FSH on these genes. The evidence demonstrates that GDF9 and BMP15 act in coordination to stimulate SFRP4 expression and suggests that SFRP4 mediates the anti-luteinising effects of the oocyte in human CCs.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Nicola J Winston
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Michelle A Fierro
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Humberto Scoccia
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Carlos Stocco
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| |
Collapse
|
18
|
Riepsamen AH, Donoghoe MW, Baerwald A, Pankhurst MW, Lien S, Chong YH, Robertson DM, Ledger WL, Gilchrist RB. Exploratory analysis of serum concentrations of oocyte biomarkers growth differentiation factor 9 and bone morphogenetic protein 15 in ovulatory women across the menstrual cycle. Fertil Steril 2021; 116:546-557. [PMID: 33775397 DOI: 10.1016/j.fertnstert.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To characterize and evaluate the variation in serum concentrations of oocyte-secreted growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) throughout the menstrual cycle in women from young to advanced reproductive ages. DESIGN Cross-sectional, observational, and exploratory study. SETTING Multicenter university-based clinical practices and laboratories. PATIENT(S) Serum was collected every 1-3 days throughout the menstrual cycle from 3 cohorts of healthy, ovulatory women: menses to late luteal phase (21-29 years of age; n = 16; University of Otago) and across one interovulatory interval (18-35 years of age; n = 10; and 45-50 years of age; n = 15; University of Saskatchewan). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) To detect the changes in serum GDF9 and BMP15 across the cycle, mean concentration and variance were statistically modeled using a generalized additive model of location, shape and scale (GAMLSS). Follicle-stimulating hormone, luteinizing hormone, estradiol, progesterone, and anti-Müllerian hormone were also assessed. RESULT(S) GDF9 and BMP15 were detectable in 54% and 73% of women and varied 236-fold and 52-fold between women, respectively. Across the menstrual cycle, there were minimal changes in GDF9 or BMP15 within a woman for all cohorts, with no significant differences detected in the modeled mean concentrations. However, modeled variances were highest in the luteal phases of all women for BMP15 immediately after ovulation, regardless of age. CONCLUSION(S) Serial changes in GDF9 or BMP15 concentrations across the cycle were not statistically detected and are likewise similar across the reproductive lifespan. Further research is required to fully elucidate the utility of these oocyte biomarkers at diagnosing fertility potential and/or disease.
Collapse
Affiliation(s)
- Angelique H Riepsamen
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, New South Wales, Australia.
| | - Mark W Donoghoe
- Stats Central, Mark Wainwright Analytical Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Angela Baerwald
- Department of Academic Family Medicine, West Winds Primary Health Center, Saskatchewan, Canada; College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michael W Pankhurst
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Shelly Lien
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, New South Wales, Australia
| | - Yih Harng Chong
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David M Robertson
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, New South Wales, Australia
| | - William L Ledger
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, New South Wales, Australia
| | - Robert B Gilchrist
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, New South Wales, Australia
| |
Collapse
|
19
|
D Occhio MJ, Campanile G, Baruselli PS. Transforming growth factor-β superfamily and interferon-τ in ovarian function and embryo development in female cattle: review of biology and application. Reprod Fertil Dev 2021; 32:539-552. [PMID: 32024582 DOI: 10.1071/rd19123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
Survival of the embryo and establishment of a pregnancy is a critical period in the reproductive function of female cattle. This review examines how the transforming growth factor-β (TGFB) superfamily (i.e. bone morphogenetic protein (BMP) 15, growth differentiation factor (GDF) 9, anti-Müllerian hormone (AMH)) and interferon-τ (IFNT) affect ovarian function and embryo development. The oocyte in a primary follicle secretes BMP15 and GDF9, which, together, organise the surrounding granulosa and theca cells into the oocyte-cumulus-follicle complex. At the same time, the granulosa secretes AMH, which affects the oocyte. This autocrine-paracrine dialogue between the oocyte and somatic cells continues throughout follicle development and is fundamental in establishing the fertilisation potential and embryo developmental competency of oocytes. The early bovine embryo secretes IFNT, which acts at the uterine endometrium, corpus luteum and blood leucocytes. IFNT is involved in the maternal recognition of pregnancy and immunomodulation to prevent rejection of the embryo, and supports progesterone secretion. Manipulation of BMP15, GDF9, AMH and IFNT in both invivo and invitro studies has confirmed their importance in reproductive function in female cattle. This review makes the case that a deeper understanding of the biology of BMP15, GDF9, AMH and IFNT will lead to new strategies to increase embryo survival and improve fertility in cattle. The enhancement of oocyte quality, early embryo development and implantation is considered necessary for the next step change in the efficiency of natural and assisted reproduction in cattle.
Collapse
Affiliation(s)
- Michael J D Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 410 Werombi Road, Camden, NSW 2006, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, V. F. Delpino, 1 80137 Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Zootecnia, University of Sao Paulo, Sao Paulo, CEP 05508-270 Brazil; and Corresponding author.
| |
Collapse
|
20
|
Falahati A, Ozaki Y, Damsteegt EL, Zadmajid V, Freeman KJ, Lokman PM. Spatiotemporal expression of activin receptor-like kinase-5 and bone morphogenetic protein receptor type II in the ovary of shortfinned eel, Anguilla australis. Comp Biochem Physiol B Biochem Mol Biol 2020; 251:110509. [PMID: 33002594 DOI: 10.1016/j.cbpb.2020.110509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022]
Abstract
In the eel ovary, the expression of growth differentiation factor-9 (Gdf9) appears to be largely confined to the germ cell in early stages of oogenesis. However, both the target tissue and the function of Gdf9 in fish remain unknown. This study aimed to describe the abundance and localization of activin receptor-like kinase-5 (Alk5) and bone morphogenetic protein receptor type II (Bmpr2), which together mediate the Gdf9 signal, in the ovary of a basal teleost, the shortfinned eel, Anguilla australis, during early folliculogenesis. The cDNA encoding eel alk5 and bmpr2 genes were cloned, characterized and the transcript abundances of these receptors quantified by quantitative real-time PCR. Ovarian transcript abundance for both receptors, along with that of gdf9 and of its paralogue bmp15, increased from the previtellogenic to early vitellogenic stage. Localization of receptor mRNAs by in situ hybridization revealed that these receptors are located in the somatic cells surrounding the oocyte. Furthermore, tissue distribution analysis showed that the expression of alk5 and bmpr2 were highest in ovary and thyroid, respectively. Unexpectedly, however, bmpr2 mRNA levels were lower in the ovary than in any of the other 17 tissues examined, and indeed, lower than ovarian gdf9 transcript abundance. These findings, together with the ovarian expression pattern of Gdf9, suggest that Gdf9, and conceivably, Bmp15, from the oocyte can signal through receptors that are located on the somatic cells surrounding the oocyte; this, in turn, facilitates elucidation of the function of these growth factors during oogenesis in teleost fish.
Collapse
Affiliation(s)
- Ali Falahati
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Yuichi Ozaki
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 224-1 Hiruta, Tamaki, Watarai, Mie 519-0423, Japan
| | - Erin L Damsteegt
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Vahid Zadmajid
- Department of Fisheries Science, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
| | - Kaitlyn J Freeman
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - P Mark Lokman
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
21
|
Association between polymorphism in BMP15 and GDF9 genes and impairing female fecundity in diabetes type 2. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2020. [DOI: 10.1186/s43043-020-00032-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
A shortened reproductive period and earlier menopause have been associated with type 2 diabetes. Growth differentiation factor 9(GDF9) and bone morphogenetic protein 15 (BMP15) gene mutations have been associated with earlier menopause. Therefore, this study aimed to evaluate the association between BMP15 and GDF9 mutations with impairing female fecundity in diabetic patients. The study subjects comprised 90 female diabetic patients and 60 female healthy controls. The physio-biochemical analysis was measured using enzymatic determination. A single-strand conformation polymorphism (SSCP) protocol was utilized to assess the pattern of genetic variations.
Results
Genotyping analysis of the BMP15 gene showed a heterogeneous pattern with the presence of two genotypes: AA and AC genotypes. Five novel missense single nucleotide polymorphisms (SNPs) were identified in the BMP15 gene: four SNPs detected in both genotypes, and Met4Leu, a specific SNP, was detected only in the AC genotype. Cumulative in silico tools indicated a highly deleterious effect for the Met4Leu on the mutant protein structure, function, and stability. Diabetes patients showed a significantly higher frequency of genotype AC. The physio-biochemical analysis of fasting plasma glucose (FBG), glycosylated hemoglobin (HbA1c), and luteinizing hormone (LH) were significantly higher (P < 0.05) in AC genotype than AA genotype.
Conclusions
The current research provides the first indication regarding the tight association of BMP15 polymorphism with the impairing female fecundity in the diabetic. A pivotal role is played by the novel (Met4Leu) SNP that can be used as a predictor for the impairing female fecundity of diabetes, while no polymorphism was found in exon 4 of the GDF9 gene.
Collapse
|
22
|
Hobeika E, Armouti M, Fierro MA, Winston N, Scoccia H, Zamah AM, Stocco C. Regulation of Insulin-Like Growth Factor 2 by Oocyte-Secreted Factors in Primary Human Granulosa Cells. J Clin Endocrinol Metab 2020; 105:5582040. [PMID: 31588501 PMCID: PMC6938692 DOI: 10.1210/clinem/dgz057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/20/2019] [Indexed: 01/02/2023]
Abstract
CONTEXT Human granulosa cells (hGCs) produce and respond to insulin-like growth factor 2 (IGF2) but whether the oocyte participates in IGF2 regulation in humans is unknown. OBJECTIVE To determine the role of oocyte-secreted factors (OSFs) such as growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in IGF2 production by hGCs. DESIGN Primary human cumulus GCs in culture. SETTING University infertility center. PATIENTS OR OTHER PARTICIPANTS GCs of women undergoing in vitro fertilization. INTERVENTION(S) Cells treated with GDF9 and BMP15 in the presence of vehicle, follicle-stimulating hormone (FSH), dibutyryl cyclic-AMP (dbcAMP), or mothers against decapentaplegic homolog (SMAD) inhibitors. MAIN OUTCOME MEASURE(S) Quantification of mRNA, protein, promoter activity, and DNA methylation. RESULTS FSH stimulation of IGF2 (protein and mRNA) was significantly potentiated by the GDF9 and BMP15 (G+B) combination (P < 0.0001) in a concentration-dependent manner showing a maximal effect at 5 ng/mL each. However, GDF9 or BMP15 alone or in combination (G+B) have no effect on IGF2 in the absence of FSH. FSH stimulated IGF2 promoter 3 activity, but G+B had no effect on promoter activity. G+B potentiated IGF2 stimulation by cAMP. SMAD3 inhibitors inhibited G+B enhancement of IGF2 stimulation by FSH (P < 0.05) but had no effect on FSH induction. Moreover, inhibition of insulin-like growth factor receptor partially blocked G+B potentiation of FSH actions (P < 0.009). CONCLUSIONS For the first time, we show that the oocyte actively participates in the regulation of IGF2 expression in hGCs, an effect that is mediated by the specific combination of G+B via SMAD2/3, which in turn target mechanisms downstream of the FSH receptor.
Collapse
Affiliation(s)
- Elie Hobeika
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Marah Armouti
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Michele A Fierro
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Nichola Winston
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Humberto Scoccia
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Alberuni M Zamah
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, the University of Chicago Medicine, Chicago, Illinois
| | - Carlos Stocco
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
- Correspondence: Carlos Stocco, 835 S Wolcott Ave, Chicago, Illinois, 60612. E-mail:
| |
Collapse
|
23
|
Liu MN, Zhang K, Xu TM. The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency. HUM FERTIL 2019; 24:325-332. [PMID: 31607184 DOI: 10.1080/14647273.2019.1672107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Endocrine and paracrine signals can be key regulators of ovarian physiology. The oocyte secretes growth factors which directly induce follicular development by a complex paracrine signalling process, and the transforming growth factorβ (TGF-β) superfamily has a pivotal role in this process. The bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) genes are relevant members of the TGF-β superfamily that encode proteins secreted by the oocytes into the ovarian follicles, where they contribute to creating an environment supporting follicle selection and growth. Their main functions include regulating cellular proliferation/differentiation, follicular survival/atresia, and oocyte maturation. Recent functional studies have validated genetic factors (Progesterone receptor membrane component 1 (PGRMC1)), Fragile X mental retardation 1 (FMR1, GDF9 and BMP15) as being causative of primary ovarian insufficiency (POI), BMP15/GDF9 gene variants were found to have a high incidence on the POI phenotype. This review considers the most recent research regarding the role of BMP15 and GDF9 in the genetic control of follicular development, paying special attention to the pathogenesis of POI.
Collapse
Affiliation(s)
- Meng-Na Liu
- Department of Clinical Laboratory, Jilin University Second Hospital , Changchun , China
| | - Kun Zhang
- Department of Research Center, Jilin University Second Hospital , Changchun , China
| | - Tian-Min Xu
- Department of Gynecology and Obstetrics, Jilin University Second Hospital , Changchun , China
| |
Collapse
|
24
|
Riepsamen AH, Chan K, Lien S, Sweeten P, Donoghoe MW, Walker G, Fraison EHJ, Stocker WA, Walton KL, Harrison CA, Ledger WL, Robertson DM, Gilchrist RB. Serum Concentrations of Oocyte-Secreted Factors BMP15 and GDF9 During IVF and in Women With Reproductive Pathologies. Endocrinology 2019; 160:2298-2313. [PMID: 31211369 DOI: 10.1210/en.2019-00264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022]
Abstract
Oocyte-secreted factors bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are critical for folliculogenesis and fertility. This study developed ELISAs for the measurement of BMP15 and GDF9 in serum and investigated their usefulness as biomarkers of female reproductive function. Serum samples were obtained from women undergoing infertility treatments (n = 154) and from perimenopausal and postmenopausal women (n = 28). Serum concentrations of BMP15 and GDF9 were analyzed in women relative to age, anti-Müllerian hormone, number of oocytes retrieved, and polycystic ovary syndrome (PCOS) after superovulation for in vitro fertilization. BMP15 and GDF9 immunoassays were validated for specificity, sensitivity (24 and 26 pg/mL, respectively), and reproducibility. BMP15 and GDF9 were detectable in 61% and 29% of women, respectively. BMP15 and GDF9 varied 64-fold and 15-fold, respectively, between women, but they did not change within subjects following ovarian stimulation with gonadotropins. Serum GDF9 concentration, but not BMP15 concentration, was associated with oocyte number retrieved in patients without PCOS (P = 0.018). GDF9 and BMP15 associations with oocyte number differed significantly (P < 0.05) with PCOS status. GDF9 concentrations were lower in poor responders (women with fewer than four oocytes retrieved or with cancelled cycles; P = 0.020). Serum BMP15, but not GDF9, was lower in women >55 years of age, compared with women of reproductive age (P < 0.01). This study develops and validates immunoassays to quantitate BMP15 and GDF9 in human serum and to correlate concentrations with female reproductive potential. Although assay sensitivities require improvement, this study demonstrates the diagnostic potential of oocyte-secreted BMP15 and GDF9 as serum biomarkers in reproductive medicine.
Collapse
Affiliation(s)
- Angelique H Riepsamen
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Karen Chan
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Shelly Lien
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Prudence Sweeten
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
- IVF Australia, Greenwich, New South Wales, Australia
| | - Mark W Donoghoe
- Stats Central, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Glenda Walker
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
- IVF Australia, Greenwich, New South Wales, Australia
| | - Eloïse H J Fraison
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - William A Stocker
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Kelly L Walton
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Craig A Harrison
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - William L Ledger
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
- IVF Australia, Greenwich, New South Wales, Australia
| | - David M Robertson
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Robert B Gilchrist
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Hobeika E, Armouti M, Kala H, Fierro MA, Winston NJ, Scoccia B, Zamah AM, Stocco C. Oocyte-Secreted Factors Synergize With FSH to Promote Aromatase Expression in Primary Human Cumulus Cells. J Clin Endocrinol Metab 2019; 104:1667-1676. [PMID: 30541132 PMCID: PMC6441017 DOI: 10.1210/jc.2018-01705] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
CONTEXT The role of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) on aromatase regulation is poorly understood in humans. OBJECTIVE Determine GDF9 and BMP15 effects on FSH stimulation of estradiol production in primary human cumulus granulosa cells (GCs). We hypothesized that the combination of GDF9 and BMP15 potentiates FSH-induced aromatase expression. DESIGN Primary human cumulus GCs in culture. SETTING University infertility center. PATIENTS OR OTHER PARTICIPANTS GCs of 60 women undergoing in vitro fertilization were collected. INTERVENTIONS Cells were treated with GDF9 and/or BMP15 (GB) in the presence or absence of FSH, dibutyryl cAMP, or SMAD inhibitors. MAIN OUTCOME MEASURES Promoter activity, mRNA, protein, and estradiol levels were quantified. RESULTS FSH and GB treatment increased CYP19A1 promoter activity, mRNA, and protein levels as well as estradiol when compared with cells treated with FSH only. GB treatment potentiated cAMP stimulation of aromatase and IGF2 stimulation by FSH. GB effects were inhibited by SMAD3 inhibitors and IGF1 receptor inhibitors. GB, but not FSH, stimulates SMAD3 phosphorylation. CONCLUSION The combination of GDF9 and BMP15 potently stimulates the effect of FSH and cAMP on CYP19a1 promoter activity and mRNA/protein levels. These effects translate into an increase in estradiol production. This potentiation seems to occur through activation of the SMAD2/3 and SMAD3 signaling pathway and involves, at least in part, the effect of the IGF system.
Collapse
Affiliation(s)
- Elie Hobeika
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Marah Armouti
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Hamsini Kala
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Michele A Fierro
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Nicola J Winston
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Bert Scoccia
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Alberuni M Zamah
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Carlos Stocco
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
- Correspondence and Reprint Requests: Carlos Stocco, PhD, Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, Illinois 60612. E-mail:
| |
Collapse
|
26
|
Richani D, Constance K, Lien S, Agapiou D, Stocker WA, Hedger MP, Ledger WL, Thompson JG, Robertson DM, Mottershead DG, Walton KL, Harrison CA, Gilchrist RB. Cumulin and FSH Cooperate to Regulate Inhibin B and Activin B Production by Human Granulosa-Lutein Cells In Vitro. Endocrinology 2019; 160:853-862. [PMID: 30753406 DOI: 10.1210/en.2018-01026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/01/2019] [Indexed: 11/19/2022]
Abstract
The oocyte-secreted factors bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) interact functionally, and it is hypothesized that this interaction may be mediated by formation of a GDF9:BMP15 heterodimer termed cumulin. GDF9 and BMP15 regulate folliculogenesis and ovulation rate and have been shown to regulate inhibin and activin, local regulators of folliculogenesis. The objective of this study was to determine whether cumulin regulates granulosa cell inhibin and activin production and whether this requires cooperation with FSH. Human granulosa-lutein (hGL) cells collected from patients undergoing in vitro fertilization were cultured with or without FSH with various forms of recombinant cumulin (native and cysteine mutants, with or without the prodomains), and cysteine mutant GDF9 or BMP15. Messenger RNA expression of the subunits of inhibins/activins (INHA, INHBA, INHBB) and secretion of inhibin A, inhibin B, and activin B were measured. Mature forms and proforms of cumulin stimulated comparable INHBB mRNA expression and secretion of inhibin B and activin B, whereas GDF9 or BMP15 exhibited no effect. Cumulin, but not GDF9 or BMP15, interacted synergistically with FSH to increase INHBB mRNA and inhibin B expression. FSH markedly stimulated INHA, which encodes the α subunit of inhibin A/B, and suppressed activin B. Cumulin with or without FSH did not significantly alter inhibin A. Together these data demonstrate that cumulin, but not GDF9 or BMP15, exerts paracrine control of FSH-induced regulation of inhibin B and activin B. The prodomains of cumulin may have a minimal role in its actions on granulosa cells.
Collapse
Affiliation(s)
- Dulama Richani
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Katherine Constance
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Shelly Lien
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - David Agapiou
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Mark P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - William L Ledger
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Jeremy G Thompson
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - David M Robertson
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - David G Mottershead
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Science and Technology in Medicine, School of Pharmacy, Keele University, Newcastle-under-Lyme, United Kingdom
| | - Kelly L Walton
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
27
|
Juengel JL. How the quest to improve sheep reproduction provided insight into oocyte control of follicular development. J R Soc N Z 2018. [DOI: 10.1080/03036758.2017.1421238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jennifer L. Juengel
- Reproduction, Animal Science, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|