1
|
Ma Z, Hu N, Zheng L, Xue Y, Zhou C, Wang W, Cheng X, Luo T, Yu J, Hu L. Tanshinone IIA alleviates tri-ortho-cresyl phosphate-induced ovarian damage through Hippo signaling pathway activation in mice. J Ovarian Res 2025; 18:85. [PMID: 40287698 PMCID: PMC12032754 DOI: 10.1186/s13048-025-01671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Tri-ortho-cresyl phosphate (TOCP), a widely used plasticizer, has been shown to impair ovarian function. While tanshinone IIA exhibits ovarian protective effects in aging models, its potential to counteract TOCP-induced ovarian damage and associated signaling mechanisms remains unexplored. This study investigates the therapeutic effects of tanshinone IIA on TOCP-damaged ovaries in mice, with focus on Hippo, AKT, and MAPK pathways. RESULTS TOCP exposure (200 mg/kg/d for 28 days) significantly reduced ovarian follicle counts (primordial, preovulatory, and mature follicles) and disrupted hormone levels (elevated Estrogen(E2), decreased Follicle stimulating hormone(FSH)/ Anti-Mueller tube hormone(AMH)) in mice. Treatment with high-dose tanshinone IIA restored ovarian structure and function: growing follicle counts increased significantly (p < 0.001), FSH (p < 0.001) and AMH (p < 0.001) levels surged to marked degrees, while E2 (p < 0.001) levels decreased significantly. All changes were statistically significant. Immunohistochemistry and Western blot analysis revealed that tanshinone IIA restored ovarian AMH and Follicle-Stimulating Hormone Receptor (FSHR) protein expression, which were suppressed by TOCP. In vitro experiments further demonstrated that TOCP dose-dependently inhibited granulosa cell viability (p < 0.001) and proliferation (p < 0.001). Co-treatment with tanshinone IIA (0.01 mM) rescued cell viability (p < 0.01) and proliferation (p < 0.05). Mechanistically, tanshinone IIA suppressed ovarian apoptosis (p < 0.01) and modulated multiple signaling pathways: it attenuated Hippo signaling (p < 0.05) and reactivated PI3K/AKT (p < 0.05), p38 (p < 0.05), and ERK1/2 (p < 0.01) pathways. CONCLUSIONS Tanshinone IIA alleviates TOCP-induced ovarian dysfunction primarily through coordinated modulation of Hippo signaling and AKT/MAPK pathway activities, offering a potential therapeutic strategy for chemical-induced ovarian injury.
Collapse
Affiliation(s)
- Zhangqiang Ma
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Na Hu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Liping Zheng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yue Xue
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Chong Zhou
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Wencan Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Xiu Cheng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Luo
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Jianlin Yu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 566 Xuefu Road, Honggutan District, Nanchang, Jiangxi, 330036, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Liaoliao Hu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 566 Xuefu Road, Honggutan District, Nanchang, Jiangxi, 330036, China.
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Chen P, Song Y, Tang L, Qiu Z, Chen J, Xia S, Iyaswamy A, Cai J, Sun Y, Yang C, Wang J. Integrated RNA sequencing and biochemical studies reveal endoplasmic reticulum stress and autophagy dysregulation contribute to Tri (2-Ethylhexyl) phosphate (TEHP)-induced cell injury in Sertoli cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124536. [PMID: 39029862 DOI: 10.1016/j.envpol.2024.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Tri (2-Ethylhexyl) phosphate (TEHP), widely used as a fire retardant and plasticizer, has been commonly found in the environment. Its potential health-related risks, especially reproductive toxicity, have aroused concern. However, the potential cellular mechanisms remain unexplored. In this study, we aimed to investigate the molecular mechanisms underlying TEHP-caused cell damage in Sertoli cells, which play a crucial role in supporting spermatogenesis. Our findings indicate that TEHP induces apoptosis in 15P-1 mouse Sertoli cells. Subsequently, we conducted RNA sequencing analyses, which suggested that ER stress, autophagy, and MAPK-related pathways may participate in TEHP-induced cytotoxicity. Furthermore, we demonstrated that TEHP triggers ER stress, activates p38 MAPK, and inhibits autophagy flux. Then, we showed that the inhibition of ER stress or p38 MAPK activation attenuates TEHP-induced apoptosis, while the inhibition of autophagy flux is responsible for TEHP-induced apoptosis. These results collectively reveal that TEHP induces ER stress, activates p38, and inhibits autophagy flux, ultimately leading to apoptosis in Sertoli cells. These shed light on the molecular mechanisms underlying TEHP-associated testicular toxicity.
Collapse
Affiliation(s)
- Pengchen Chen
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Li Tang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Zhuolin Qiu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Siyu Xia
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Jing Cai
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Yan Sun
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Chuanbin Yang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China.
| | - Jigang Wang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Wang Y, Yang S, Hao C, Chen J, Wang J, Xu L. DDIT4 is essential for DINP-induced autophagy of ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115686. [PMID: 37976928 DOI: 10.1016/j.ecoenv.2023.115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
As one of the most important phthalates, di-isononyl phthalate (DINP) has been widely used as a common plasticizer in the food and personal care products sectors. In our previous study, we found that DINP can induce autophagy of ovarian granulosa cells; while the underlying mechanism is unclear. In the study, we showed that DINP exposure could induce autophagy of ovarian granulosa cells and KGN cells, accompanied with the increase in the mRNA and protein level of DDIT4. Furthermore, overexpression of DDIT4 were shown to induce autophagy of KGN cells; while knockdown of DDIT4 inhibited DINP-induced autophagy, implying that DDIT4 played an important role in DINP-induced autophagy of ovarian granulosa cells. There were three putative binding sites of transcription factor ATF4 in the promoter region of DDIT4 gene, suggesting that DDIT4 might be regulated by ATF4. Herein, we found that overexpression of ATF4 could upregulate the expression of DDIT4 in KGN cells, while knockdown of ATF4 inhibited its expression. Subsequently, ATF4 was identified to bind to the promoter region of DDIT4 gene and promote its transcription. The expression of ATF4 was also increased in the DINP-exposed granulosa cells, and ATF4 overexpression promoted autophagy of KGN cells; whereas knockdown of ATF4 alleviated DINP-induced upregulation of DDIT4 and autophagy of the cells. Taken together, DINP triggered autophagy of ovarian granulosa cells through activating ATF4/DDIT4 signals.
Collapse
Affiliation(s)
- Yijing Wang
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China; Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Si Yang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Chaoju Hao
- Library, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China
| | - Jinglei Wang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| | - Linlin Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
4
|
Wang X, Rowan-Carroll A, Meier MJ, Williams A, Yauk CL, Hales BF, Robaire B. Toxicological Mechanisms and Potencies of Organophosphate Esters in KGN Human Ovarian Granulosa Cells as Revealed by High-throughput Transcriptomics. Toxicol Sci 2023; 197:kfad114. [PMID: 37941476 PMCID: PMC10823774 DOI: 10.1093/toxsci/kfad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Despite the growing number of studies reporting potential risks associated with exposure to organophosphate esters (OPEs), their molecular mechanisms of action remain poorly defined. We used the high-throughput TempO-Seq™ platform to investigate the effects of frequently detected OPEs on the expression of ∼3000 environmentally responsive genes in KGN human ovarian granulosa cells. Cells were exposed for 48 h to one of five OPEs (0.1 to 50 μM): tris(methylphenyl) phosphate (TMPP), isopropylated triphenyl phosphate (IPPP), tert-butylphenyl diphenyl phosphate (BPDP), triphenyl phosphate (TPHP), or tris(2-butoxyethyl) phosphate (TBOEP). The sequencing data indicate that four OPEs induced transcriptional changes, whereas TBOEP had no effect within the concentration range tested. Multiple pathway databases were used to predict alterations in biological processes based on differentially expressed genes. At lower concentrations, inhibition of the cholesterol biosynthetic pathway was the predominant effect of OPEs; this was likely a consequence of intracellular cholesterol accumulation. At higher concentrations, BPDP and TPHP had distinct effects, primarily affecting pathways involved in cell cycle progression and other stress responses. Benchmark concentration (BMC) modelling revealed that BPDP had the lowest transcriptomic point of departure. However, in vitro to in vivo extrapolation modeling indicated that TMPP was bioactive at lower concentrations than the other OPEs. We conclude that these new approach methodologies provide information on the mechanism(s) underlying the effects of data-poor compounds and assist in the derivation of protective points of departure for use in chemical read-across and decision-making.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 9A7, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
5
|
Xu B, He T, Yang H, Dai W, Liu L, Ma X, Ma J, Yang G, Si R, Du X, Fu X, Pei X. Activation of the p62-Keap1-Nrf2 pathway protects against oxidative stress and excessive autophagy in ovarian granulosa cells to attenuate DEHP-induced ovarian impairment in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115534. [PMID: 37776821 DOI: 10.1016/j.ecoenv.2023.115534] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is widely used in various plastics but has been demonstrated to cause female reproductive toxicity. However, the exact mechanism underlying the ovarian damage induced by DEHP remains unclear. In this study, DEHP was administered orally to 5-week-old female mice for 30 days at doses of 0, 250, 500, and 1000 mg/kg/day. The findings demonstrated that DEHP exposure disrupted ovarian function and follicular development as well as induced oxidative stress and autophagy in ovarian granulosa cells (GCs). Further, 200 µM mono-(2-ethylhexyl) phthalate (MEHP), the primary metabolite of DEHP in vivo, induced autophagy in both human ovarian granulosa cells line (KGN) and mouse primary GCs within 24 h in vitro. However, it did not affect the p62-dependent autophagy flux. Furthermore, MEHP-induced autophagy was inhibited by the autophagy inhibitor 3-MA and exacerbated by the autophagy activator rapamycin, indicating that MEHP induces excessive autophagy in GCs. Subsequently, we found that MEHP-induced autophagic cell death was primarily attributed to oxidative damage from elevated intracellular ROS levels. Meanwhile, MEHP exposure induced nuclear translocation of erythroid-derived factor 2-related factor (Nrf2), a key regulator of antioxidant activity resulting in activating antioxidant effects. Interestingly, we also found that MEHP-induced increase in p62 competitively binds Keap1, thereby facilitating nuclear translocation of Nrf2 and establishing a positive feedback loop in antioxidant regulation. Therefore, this study demonstrated that inhibition of Nrf2 could aggravate oxidative damage and enhance excessive autophagy caused by MEHP, while activation of Nrf2 could reverse the trend. These findings have also been reinforced in studies of cultured ovaries in vitro. Our study suggests that the p62-Keap1-Nrf2 pathway may serve as a potential protective mechanism against DEHP-induced oxidative stress and excessive autophagy in mouse GCs.
Collapse
Affiliation(s)
- Bo Xu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Tiantian He
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Hong Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoqian Ma
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaxue Ma
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Guoqin Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Rui Si
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Xing Du
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiuying Pei
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
6
|
Liu Y, Li Y, Xiao N, Liu M, Wang Y, Luo H, Yao Y, Feng Y, Wang S. Serum Organophosphate Flame retardants and plasticizers in Chinese females of childbearing age: Association with serum reproductive and thyroid hormones. CHEMOSPHERE 2023:139237. [PMID: 37331665 DOI: 10.1016/j.chemosphere.2023.139237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Organophosphate flame retardants (OPFRs) are extensively used as flame retardants and plasticizers, but their endocrine disrupting potentials have raised concerns. However, the impacts of OPFR exposures on reproductive and thyroid hormones in females remains unclear. In this study, serum concentrations of OPFRs were investigated, and levels of reproductive and thyroid hormones, including follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, anti-Müllerian hormone, prolactin (PRL), testosterone (T), and thyroid stimulating hormone, were analyzed in childbearing-age females undergoing in-vitro fertilization treatment from Tianjin, a coastal city in China (n = 319). Tris (2-chloroethyl) phosphate (TCEP) was the predominant OPFR, with a median concentration of 0.33 ng/mL and a detection frequency of 96.6%. In the whole population, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroisopropyl) phosphate (TCIPP) were positively associated with T (p < 0.05), while triethyl phosphate (TEP) was negatively associated with LH (p < 0.05) and LH/FSH (p < 0.01). Particularly, TCIPP was negatively associated with PRL in the younger subgroup (age≤30, p < 0.05). Moreover, TCIPP was negatively associated with diagnostic antral follicle counting (AFC) in the mediation analysis by a dominating direct effect (p < 0.01). In conclusion, serum levels of OPFRs were significantly associated with reproductive and thyroid hormone levels and a risk of decreased ovarian reserve in childbearing-age females, with age and body mass index being significant influencing factors.
Collapse
Affiliation(s)
- Yarui Liu
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China; School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, 156 Nankaisanma Road, Nankai District, Tianjin, 300100, China.
| | - Min Liu
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, 156 Nankaisanma Road, Nankai District, Tianjin, 300100, China.
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, 156 Nankaisanma Road, Nankai District, Tianjin, 300100, China.
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China.
| | - Shuo Wang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China.
| |
Collapse
|
7
|
Tao H, Yang J, Xu M, Liu Z, Liu Y, Xiong Q. MicroRNA-27a-3p targeting Vangl1 and Vangl2 inhibits cell proliferation in mouse granulosa cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194885. [PMID: 36288764 DOI: 10.1016/j.bbagrm.2022.194885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Mammalian folliculogenesis is the complex process through which primordial follicles develop into preovulatory follicles. The chief function of ovarian follicle granulosa cells is to play a vital role in the growth, development and atresia of ovarian follicles via gap junctions. Increasing evidence suggests that microRNAs (miRNAs) are essential regulators of granulosa cell apoptosis or proliferation. METHODS The expression level of miR-27a-3p, myogenic differentiation (MyoD), Vangl1 and Vangl2 was investigated by Real-time quantitative PCR (RT-qPCR) and Western blot. Luciferase reporter assay, bioinformatics analysis and ChIP-PCR was used to detect the binding sites between miR-27a-3p, transcription factor and target genes. KEGG pathway analyses were performed to reveal the predicted targets of miR-27a-3p. Ethynyl deoxyuridine (EdU) proliferation assay was used to measure cell proliferation. RESULTS To explore the underlying mechanisms of the miR-27a-3p function in the development of mouse granulosa cells (mGCs), we screened for the target genes of miR-27a-3p, confirmed its interaction with Vangl1 and Vangl2 and elucidated their roles in mGCs. MiR-27a-3p inhibited the proliferation of mGCs, whereas target genes Vangl1 and Vangl2 had the opposite effect. In addition, the transcription factor MYOD bound to and activated the promoter of miR-27a-3p. MiR-27a-3p suppressed Vangl1 and Vangl2 expression by targeting their 3'-untranslated region (3'-UTR). Furthermore, Vangl1 and Vangl2 suppressed the Wnt pathway by reducing the expression of β-catenin and B-cell lymphoma/leukemia-2 (Bcl-2). CONCLUSION These findings indicate a pro-survival mechanism of the MyoD/miR-27a-3p/Vangl1/Vangl2 axis for granulosa cell proliferation and suggest a novel target for the improvement of female fertility.
Collapse
Affiliation(s)
- Hu Tao
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Juan Yang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mingzhu Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zelin Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yang Liu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qi Xiong
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
8
|
Land KL, Miller FG, Fugate AC, Hannon PR. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev 2022; 89:608-631. [PMID: 36580349 PMCID: PMC10100123 DOI: 10.1002/mrd.23652] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is unavoidable, which represents a public health concern given the ability of EDCs to target the ovary. However, there is a large gap in the knowledge about the impact of EDCs on ovarian function, including the process of ovulation. Defects in ovulation are the leading cause of infertility in women, and EDC exposures are contributing to the prevalence of infertility. Thus, investigating the effects of EDCs on the ovary and ovulation is an emerging area for research and is the focus of this review. The effects of EDCs on gametogenesis, uterine function, embryonic development, and other aspects of fertility are not addressed to focus on ovarian- and ovulation-related fertility issues. Herein, findings from epidemiological and basic science studies are summarized for several EDCs, including phthalates, bisphenols, per- and poly-fluoroalkyl substances, flame retardants, parabens, and triclosan. Epidemiological literature suggests that exposure is associated with impaired fecundity and in vitro fertilization outcomes (decreased egg yield, pregnancies, and births), while basic science literature reports altered ovarian follicle and corpora lutea numbers, altered hormone levels, and impaired ovulatory processes. Future directions include identification of the mechanisms by which EDCs disrupt ovulation leading to infertility, especially in women.
Collapse
Affiliation(s)
- Katie L. Land
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Frances G. Miller
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Ava C. Fugate
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick R. Hannon
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
9
|
Gao F, Zhang X, Shen X, Zhao F, Shen H, Hu J. Exposure assessment of aryl-organophosphate esters based on specific urinary biomarkers and their associations with reproductive hormone homeostasis disruption in women of childbearing age. ENVIRONMENT INTERNATIONAL 2022; 169:107503. [PMID: 36088870 DOI: 10.1016/j.envint.2022.107503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The effects of aryl-organophosphate esters (aryl-OPEs) on female reproduction health are still unclear owing to the lack of specific exposure biomarkers. Here, we analyzed the hydroxylated metabolites of three aryl-OPEs (phenyl diphenyl phosphate [TPhP], 2-ethylhexyl diphenyl phosphate [EHDPP], and tricresyl phosphate [TCrP]) and diphenyl phosphate (DPhP) in urine samples from 913 women of childbearing age, and explored the association between exposure to the aryl-OPEs and reproductive hormone levels. The detection frequencies of 2-ethyl-5-hydroxyhexyl diphenyl phosphate (5-OH-EHDPP), phenyl di-p-tolyl phosphate (4-OH-MDTP), and 4-hydroxyphenyl diphenyl phosphate (4-OH-TPhP) were 94.6 %, 93.3 %, and 84.2 %, respectively. Multivariate linear regression analyses revealed that the quartiles of 4-OH-TPhP were positively associated with the progesterone (P4) level (p-trend = 0.008), and the P level in the highest quartile of 5-OH-EHDPP was 7.2 % (95 % CI, 5.7 % to 8.7 %) higher than that in the lowest quartile. The 17β-estradiol levels in the highest quartiles of 4-OH-TPhP and 5-OH-EHDPP were 15.0 % (95 % CI, 13.7 % to16.1 %) and 5.9 % (95 % CI, 15.7 % to 16.1 %) lower than those in the lowest quartiles, respectively. The anti-Müllerian hormone level linearly increased across the quartiles of 4-OH-MDTP (p-trend = 0.036), and the follicle-stimulating hormone exhibited the opposite trend (p-trend = 0.0047). These results indicate that aryl-OPEs may disrupt hormone homeostasis using their specific biomarkers and may negatively affect female reproduction.
Collapse
Affiliation(s)
- Fumei Gao
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Reproductive Center of Peking University Peoples' Hospital, 11 Xizhimennan Rd, Beijing 100044, China
| | - Xiaohua Zhang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinming Shen
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fanrong Zhao
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huan Shen
- Reproductive Center of Peking University Peoples' Hospital, 11 Xizhimennan Rd, Beijing 100044, China.
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Samare-Najaf M, Samareh A, Namavar Jahromi B, Jamali N, Vakili S, Mohsenizadeh M, Clark CCT, Abbasi A, Khajehyar N. Female infertility caused by organophosphates: an insight into the latest biochemical and histomorphological findings. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Sina Vakili
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mohsenizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Cain C. T. Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Ali Abbasi
- Department of Biochemistry and Biophysics, Babol University of Medical Sciences, Babol, Iran
| | - Nastaran Khajehyar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| |
Collapse
|
11
|
Chen J, Yang S, Ma B, Wang J, Chen J. Di-isononyl phthalate induces apoptosis and autophagy of mouse ovarian granulosa cells via oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113898. [PMID: 35878499 DOI: 10.1016/j.ecoenv.2022.113898] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Di-isononyl phthalate (DINP) has been widely utilized in industrial, commercial and medical applications for the past few years. Therefore, more attention should be paid to the toxicity of DINP. DINP can cause damage to female reproductive system; however, the potential mechanism remains to be further investigated. In this study, female mice were orally administered with 0, 2, 20 and 200 mg DINP/kg/day for 14 days. We found that DINP significantly affected the arrangement of granulosa cells in ovarian follicles. In addition, DINP could induce apoptosis, autophagy and oxidative stress of the ovary tissue. Meanwhile, the serum estradiol concentration distinctly decreased in the 20 and 200 mg/kg DINP-treated groups, suggesting that DINP might affect the function of ovarian granulosa cells. Primary mouse ovarian granulosa cells were utilized for further investigation after the cells were treated with 0, 100, 200, 400 μM DINP for 24 h. Similar to the in vivo experiment, DINP could also induce apoptosis and autophagy of ovarian granulosa cells, as well as oxidative stress; while inhibition of oxidative stress by NAC could alleviate DINP-induced apoptosis and autophagy. Furthermore, inhibition of autophagy by 3-MA could also rescue the induction of apoptosis by DINP. Taken together, these results indicated that DINP induced apoptosis and autophagy of mouse ovarian granulosa cells via oxidative stress, and autophagy played a cytotoxic role in DINP-induced apoptosis.
Collapse
Affiliation(s)
- Jie Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Si Yang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Bingchun Ma
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Jinglei Wang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| |
Collapse
|
12
|
Wang X, Luu T, Beal MA, Barton-Maclaren TS, Robaire B, Hales BF. The Effects of Organophosphate Esters Used as Flame Retardants and Plasticizers on Granulosa, Leydig, and Spermatogonial Cells Analyzed Using High-Content Imaging. Toxicol Sci 2022; 186:269-287. [PMID: 35135005 PMCID: PMC8963303 DOI: 10.1093/toxsci/kfac012] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The replacement of regulated brominated flame retardants and plasticizers with organophosphate esters (OPEs) has led to their pervasive presence in the environment and in biological matrices. Further, there is evidence that exposure to some of these chemicals is associated with reproductive toxicity. Using a high-content imaging approach, we assessed the effects of exposure to 9 OPEs on cells related to reproductive function: KGN human granulosa cells, MA-10 mouse Leydig cells, and C18-4 mouse spermatogonial cells. The effects of OPEs were compared with those of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a legacy brominated flame retardant. Alterations in several important cell features, including cell survival, mitochondrial dynamics, oxidative stress, lysosomes, and lipid droplets, were analyzed. Most of the OPEs tested displayed higher cytotoxicity than BDE-47 in all 3 cell lines. Effects on phenotypic parameters were specific for each cell type. Several OPEs increased total mitochondria, decreased lysosomes, increased the total area of lipid droplets, and induced oxidative stress in KGN cells; these endpoints were differentially affected in MA-10 and C18-4 cells. Alterations in cell phenotypes were highly correlated in the 2 steroidogenic cell lines for a few triaryl OPEs. Potency ranking using 2 complementary approaches, Toxicological Prioritization Index analyses and the lowest benchmark concentration/administered equivalent dose method, revealed that while most of the OPEs tested were more potent than BDE-47, others showed little to no effect. We propose that these approaches serve as lines of evidence in a screening strategy to identify the potential for reproductive and endocrine effects of emerging chemicals and assist in regulatory decision-making.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- To whom correspondence should be addressed at Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 110, Montreal, QC H3G1Y6, Canada. E-mail:
| |
Collapse
|
13
|
Yang S, Chen J, Ma B, Wang J, Chen J. Role of Autophagy in Lysophosphatidylcholine-Induced Apoptosis of Mouse Ovarian Granulosa Cells. Int J Mol Sci 2022; 23:ijms23031479. [PMID: 35163399 PMCID: PMC8835979 DOI: 10.3390/ijms23031479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022] Open
Abstract
Lysophosphatidylcholine (LPC), also known as lysolecithin, is one of the major components of oxidized low-density lipoproteins (ox-LDL). In the pathogenetic process of diverse diseases, LPC acts as a significant lipid mediator. However, no evidence shows that LPC can affect the female reproductive system. In our study, we found that LPC inhibited the cell viability of primary mouse ovarian granulosa cells. Meanwhile, LPC was shown to induce apoptosis, which is accompanied by an increase in apoptosis-related protein levels, such as cleaved caspase-3, cleaved caspase-8 and Bax, as well as a decrease in Bcl-2. The total numbers of early and late apoptotic cells also increased in the LPC-treated cells. These results indicated that LPC could induce apoptosis of mouse ovarian granulosa cells. Furthermore, the increase in autophagy-related protein levels and the number of autophagic vesicles suggested that LPC could induce autophagy. The inhibition of oxidative stress by N-acetyl-L-cysteine (NAC) could rescue the induction of apoptosis and autophagy by LPC, which indicated that oxidative stress was involved in LPC-induced apoptosis and autophagy. Interestingly, the inhibition of autophagy by 3-MA could reserve the inhibition of cell viability and the induction of apoptosis by LPC. In conclusion, oxidative stress was involved in LPC-induced apoptosis, whileautophagy of mouse ovarian granulosa cells and the inhibition of autophagy could alleviate LPC-induced apoptosis.
Collapse
Affiliation(s)
- Si Yang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (S.Y.); (J.C.); (B.M.)
| | - Jie Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (S.Y.); (J.C.); (B.M.)
| | - Bingchun Ma
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (S.Y.); (J.C.); (B.M.)
| | - Jinglei Wang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (S.Y.); (J.C.); (B.M.)
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, China
- Correspondence: (J.W.); (J.C.)
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (S.Y.); (J.C.); (B.M.)
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, China
- Correspondence: (J.W.); (J.C.)
| |
Collapse
|
14
|
Wang X, Hales BF, Robaire B. Effects of flame retardants on ovarian function. Reprod Toxicol 2021; 102:10-23. [PMID: 33819575 DOI: 10.1016/j.reprotox.2021.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Flame retardants have been added to a variety of consumer products and are now found ubiquitously throughout the environment. Epidemiological, in vivo, and in vitro studies have shown that polybrominated diphenyl ether (PBDE) flame retardants may have a negative impact on human health; this has resulted in their phase-out and replacement by alternative flame retardants, such as hexabromocyclododecane (HBCDD), tetrabromobisphenol A (TBBPA), and organophosphate esters (OPEs). Evidence suggests that some of these chemicals induce ovarian dysfunction and thus may be detrimental to female fertility; however, the effects of many of these flame retardants on the ovary remain unclear. In this review, we present an overview of the effects of brominated and organophosphate ester flame retardants on ovarian function and discuss the possible mechanisms which may mediate these effects.
Collapse
Affiliation(s)
- Xiaotong Wang
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Barbara F Hales
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Bernard Robaire
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Yang D, Zhang M, Gan Y, Yang S, Wang J, Yu M, Wei J, Chen J. Involvement of oxidative stress in ZnO NPs-induced apoptosis and autophagy of mouse GC-1 spg cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110960. [PMID: 32800232 DOI: 10.1016/j.ecoenv.2020.110960] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/15/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been extensively used in various industries and reported to inhibit spermatogenesis, however, ZnO NPs-induced spermatogenesis failure is yet to be fully elucidated. Herein, mouse-derived spermatogonia cell line GC-1 spg cells were treated with ZnO NPs for 24 h in the presence or absence of radical scavenger N-acetyl-L-cysteine (NAC) or autophagy inhibitor 3-methyladenine (3-MA), then cell viability was observed by MTT assay; apoptosis was observed by western blotting analysis and AnnexinV-FITC/PI assay, respectively; autophagy was detected by western blotting analysis and transmission electron microscopy, respectively; and the contents of MDA and GSH and the activities of SOD and GSH-PX were measured by oxidative stress kits. The present study showed that ZnO NPs exposure inhibited viability and induced apoptosis of mouse GC-1 spg cells. Intriguingly, ZnO NPs markedly increased the protein content of LC3-II, the ratio of LC3-II/LC3-I, and the protein levels of ATG 5 and Beclin 1 in the cells. Furthermore, transmission electron microscopy (TEM) showed that autophagic vesicles in the cytoplasm increased significantly in the ZnO NPs-treated cells, indicating that ZnO NPs could induce autophagy of the cells. Oxidative stress could be induced by ZnO NPs; moreover, inhibition of oxidative stress could alleviate the induction of apoptosis and autophagy by ZnO NPs. Inhibition of autophagy by 3-MA could rescue the inhibition of cell viability and induction of apoptosis by ZnO NPs, which indicated that autophagy might have cytotoxic effect on ZnO NPs-induced apoptosis. In summary, oxidative stress was involved in ZnO NPs-induced apoptosis and autophagy of mouse GC-1 spg cells, and autophagy might play a cytotoxic role in ZnO NPs-induced apoptosis.
Collapse
Affiliation(s)
- Dan Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, PR China
| | - Meijuan Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, PR China
| | - Yu Gan
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, PR China
| | - Si Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, PR China
| | - Jinglei Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, 330006, PR China
| | - Mei Yu
- Library, Medical College of Nanchang University, Nanchang, 330006, PR China
| | - Jie Wei
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, 330006, PR China
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, 330006, PR China.
| |
Collapse
|
16
|
Yang S, Shao S, Huang B, Yang D, Zeng L, Gan Y, Long D, Chen J, Wang J. Tea polyphenols alleviate tri-ortho-cresyl phosphate-induced autophagy of mouse ovarian granulosa cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:478-486. [PMID: 31793191 DOI: 10.1002/tox.22883] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Tri-ortho-cresyl phosphate (TOCP), a widely used plasticizer in industry, can cause female reproductive damage. Tea polyphenols (TPs) have multiple health effects via inhibiting oxidative stress. However, the reproductive protection of TPs in TOCP-induced female reproductive system damage is yet to be elucidated. In the study, TOCP inhibited cell viability and induced autophagy of mouse ovarian granulosa cells; while TPs could rescue the inhibition of viability and induction of autophagy. 3-MA, an autophagy inhibitor, could also rescue the inhibition of cell viability. These results indicated that TPs played a protective role in TOCP-induced autophagy. Furthermore, TPs could inhibit the induction of oxidative stress of the cells by TOCP, which implying that TPs might alleviate TOCP-induced autophagy via inhibiting oxidative stress. Furthermore, TPs could rescue TOCP-induced autophagy and oxidative stress in the mouse ovarian tissues. Taken together, these results indicated that TPs could protect TOCP-induced ovarian damage via inhibiting oxidative stress.
Collapse
Affiliation(s)
- Si Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| | - Shuxin Shao
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Nursing School of Gongqing Institute of Science and Technology, Gongqing, China
| | - Boshu Huang
- School of Public Health, Nanchang University, Nanchang, China
| | - Dan Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Lin Zeng
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Yu Gan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Dingxin Long
- School of Public Health, University of South China, Hengyang, China
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| | - Jinglei Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| |
Collapse
|
17
|
Gan Y, Yang D, Yang S, Wang J, Wei J, Chen J. Di-2-ethylhexyl phthalate (DEHP) induces apoptosis and autophagy of mouse GC-1 spg cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:292-299. [PMID: 31675140 DOI: 10.1002/tox.22866] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
As a widely used plasticizer in industry, di-2-ethylhexylphthalate (DEHP) can cause testicular toxicity, yet little is known about the potential mechanism. In this study, DEHP exposure dramatically inhibited cellviability and induced apoptosis of mouse GC-1 spg cells. Furthermore, DEHP significantly increased the levels of autophagy proteins LC3-II, Beclin1 and Atg5, as well as the ratio ofLC3-II/LC3-I. Transmission electron microscopy (TEM) further confirmed that DEHP induced autophagy of mouse GC-1 spg cells. DEHP was also shown to induceoxidative stress; while inhibition of oxidative stress with NAC could increase cell viability and inhibit DEHP-induced apoptosis and autophagy. These results suggested that DEHP induced apoptosis and autophagy of mouse GC-1 spg cells via oxidative stress. 3-MA, an inhibitor of autophagy, could rescue DEHP-induced apoptosis. In summary, DEHP induced apoptosis and autophagy of mouse GC-1 spg cells via oxidative stress, and autophagy might exert a cytotoxic effect on DEHP-induced apoptosis.
Collapse
Affiliation(s)
- Yu Gan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Dan Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Si Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Jinglei Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Jie Wei
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| |
Collapse
|