1
|
Menon V, Ghaffari S. Erythroid enucleation: a gateway into a "bloody" world. Exp Hematol 2021; 95:13-22. [PMID: 33440185 PMCID: PMC8147720 DOI: 10.1016/j.exphem.2021.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Erythropoiesis is an intricate process starting in hematopoietic stem cells and leading to the daily production of 200 billion red blood cells (RBCs). Enucleation is a greatly complex and rate-limiting step during terminal maturation of mammalian RBC production involving expulsion of the nucleus from the orthochromatic erythroblasts, resulting in the formation of reticulocytes. The dynamic enucleation process involves many factors ranging from cytoskeletal proteins to transcription factors to microRNAs. Lack of optimum terminal erythroid maturation and enucleation has been an impediment to optimum RBC production ex vivo. Major efforts in the past two decades have exposed some of the mechanisms that govern the enucleation process. This review focuses in detail on mechanisms implicated in enucleation and discusses the future perspectives of this fascinating process.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
2
|
Kummalue T, Inoue T, Miura Y, Narusawa M, Inoue H, Komatsu N, Wanachiwanawin W, Sugiyama D, Tani K. Ribosomal protein L11- and retinol dehydrogenase 11-induced erythroid proliferation without erythropoietin in UT-7/Epo erythroleukemic cells. Exp Hematol 2015; 43:414-423.e1. [PMID: 25829192 DOI: 10.1016/j.exphem.2015.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 01/08/2015] [Accepted: 01/11/2015] [Indexed: 12/31/2022]
Abstract
Erythropoiesis is the process of proliferation, differentiation, and maturation of erythroid cells. Understanding these steps will help to elucidate the basis of specific diseases associated with abnormal production of red blood cells. In this study, we continued our efforts to identify genes involved in erythroid proliferation. Lentivirally transduced UT-7/Epo erythroleukemic cells expressing ribosomal protein L11 (RPL11) or retinol dehydrogenase 11 (RDH11) could proliferate in the absence of erythropoietin, and their cell-cycle profiles revealed G0/G1 prolongation and low percentages of apoptosis. RPL11-expressing cells proliferated more rapidly than the RDH11-expressing cells. The antiapoptotic proteins BCL-XL and BCL-2 were expressed in both cell lines. Unlike the parental UT-7/Epo cells, the expression of hemoglobins (Hbs) in the transduced cells had switched from adult to fetal type. Several signal transduction pathways, including STAT5, were highly activated in transduced cells; furthermore, expression of the downstream target genes of STAT5, such as CCND1, was upregulated in the transduced cells. Taken together, the data indicate that RPL11 and RDH11 accelerate erythroid cell proliferation by upregulating the STAT5 signaling pathway with phosphorylation of Lyn and cyclic AMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Tanawan Kummalue
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tomoko Inoue
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshie Miura
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Megumi Narusawa
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inoue
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Department of Advanced Molecular and Cell Therapy, Kyushu University Hospital, Fukuoka, Japan
| | - Norio Komatsu
- Department of Hematology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Wanchai Wanachiwanawin
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Daisuke Sugiyama
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenzaburo Tani
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Department of Advanced Molecular and Cell Therapy, Kyushu University Hospital, Fukuoka, Japan.
| |
Collapse
|