1
|
Moraga C, Branco C, Rougemont Q, Jedlička P, Mendoza-Galindo E, Veltsos P, Hanique M, de la Vega RCR, Tannier E, Liu X, Lemaitre C, Fields PD, Cruaud C, Labadie K, Belser C, Briolay J, Santoni S, Cegan R, Linheiro R, Adam G, Filali AE, Mossion V, Boualem A, Tavares R, Chebbi A, Cordaux R, Fruchard C, Prentout D, Velt A, Spataro B, Delmotte S, Weingartner L, Toegelová H, Tulpová Z, Cápal P, Šimková H, Štorchová H, Krüger M, Abeyawardana OAJ, Taylor DR, Olson MS, Sloan DB, Karrenberg S, Delph LF, Charlesworth D, Muyle A, Giraud T, Bendahmane A, Di Genova A, Madoui MA, Hobza R, Marais GAB. The Silene latifolia genome and its giant Y chromosome. Science 2025; 387:630-636. [PMID: 39913565 PMCID: PMC11890086 DOI: 10.1126/science.adj7430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/22/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
In many species with sex chromosomes, the Y is a tiny chromosome. However, the dioecious plant Silene latifolia has a giant ~550-megabase Y chromosome, which has remained unsequenced so far. We used a long- and short-read hybrid approach to obtain a high-quality male genome. Comparative analysis of the sex chromosomes with their homologs in outgroups showed that the Y is highly rearranged and degenerated. Recombination suppression between X and Y extended in several steps and triggered a massive accumulation of repeats on the Y as well as in the nonrecombining pericentromeric region of the X, leading to giant sex chromosomes. Using sex phenotype mutants, we identified candidate sex-determining genes on the Y in locations consistent with their favoring recombination suppression events 11 and 5 million years ago.
Collapse
Affiliation(s)
- Carol Moraga
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Centro UOH de Bioingenieria (CUBI), Universidad de O’Higgins, Rancagua, Chile
| | - Catarina Branco
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Quentin Rougemont
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eddy Mendoza-Galindo
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Paris Veltsos
- Ecology, Evolution and Genetics Research Group, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Melissa Hanique
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Ricardo C. Rodríguez de la Vega
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Eric Tannier
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Inria Lyon Research Center, Villeurbanne, France
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Claire Lemaitre
- Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes, Inria, CNRS, Rennes, France
| | - Peter D. Fields
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Jerome Briolay
- Développement de Techniques et Analyse Moléculaire de la Biodiversité (DTAMB), Université Claude Bernard Lyon 1, Campus de la Doua, Villeurbanne, France
| | - Sylvain Santoni
- Genomic Platform, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), Université de Montpellier, CIRAD, INRAE, Montpellier, France
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Raquel Linheiro
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Gabriele Adam
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Adil El Filali
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Vinciane Mossion
- Department of Ecology and Genetics, Division of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Raquel Tavares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Amine Chebbi
- Efor, Grosspeter Tower (Spaces), Basel, Switzerland
| | - Richard Cordaux
- Évolution Génomes Comportement Écologie, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| | - Cécile Fruchard
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Amandine Velt
- Santé de la Vigne et Qualité du Vin (SVQV), INRAE, Colmar, France
| | - Bruno Spataro
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Stephane Delmotte
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laura Weingartner
- University of Louisville School of Medicine, Undergraduate Medical Education, Louisville, KY, USA
| | - Helena Toegelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Oushadee A. J. Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Douglas R. Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Matthew S. Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Division of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Lynda F. Delph
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| | - Aline Muyle
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Alex Di Genova
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Centro UOH de Bioingenieria (CUBI), Universidad de O’Higgins, Rancagua, Chile
- Center for Mathematical Modeling, UMI-CNRS 2807, Santiago, Chile
| | - Mohammed-Amin Madoui
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Gabriel A. B. Marais
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- GreenUPorto–Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
2
|
Charlesworth D, Harkess A. Why should we study plant sex chromosomes? THE PLANT CELL 2024; 36:1242-1256. [PMID: 38163640 PMCID: PMC11062472 DOI: 10.1093/plcell/koad278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024]
Abstract
Understanding plant sex chromosomes involves studying interactions between developmental and physiological genetics, genome evolution, and evolutionary ecology. We focus on areas of overlap between these. Ideas about how species with separate sexes (dioecious species, in plant terminology) can evolve are even more relevant to plants than to most animal taxa because dioecy has evolved many times from ancestral functionally hermaphroditic populations, often recently. One aim of studying plant sex chromosomes is to discover how separate males and females evolved from ancestors with no such genetic sex-determining polymorphism, and the diversity in the genetic control of maleness vs femaleness. Different systems share some interesting features, and their differences help to understand why completely sex-linked regions may evolve. In some dioecious plants, the sex-determining genome regions are physically small. In others, regions without crossing over have evolved sometimes extensive regions with properties very similar to those of the familiar animal sex chromosomes. The differences also affect the evolutionary changes possible when the environment (or pollination environment, for angiosperms) changes, as dioecy is an ecologically risky strategy for sessile organisms. Dioecious plants have repeatedly reverted to cosexuality, and hermaphroditic strains of fruit crops such as papaya and grapes are desired by plant breeders. Sex-linked regions are predicted to become enriched in genes with sex differences in expression, especially when higher expression benefits one sex function but harms the other. Such trade-offs may be important for understanding other plant developmental and physiological processes and have direct applications in plant breeding.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
3
|
Kazama Y, Kobayashi T, Filatov DA. Evolution of sex-determination in dioecious plants: From active Y to X/A balance? Bioessays 2023; 45:e2300111. [PMID: 37694687 PMCID: PMC11475520 DOI: 10.1002/bies.202300111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Sex chromosomes in plants have been known for a century, but only recently have we begun to understand the mechanisms behind sex determination in dioecious plants. Here, we discuss evolution of sex determination, focusing on Silene latifolia, where evolution of separate sexes is consistent with the classic "two mutations" model-a loss of function male sterility mutation and a gain of function gynoecium suppression mutation, which turned an ancestral hermaphroditic population into separate males and females. Interestingly, the gynoecium suppression function in S. latifolia evolved via loss of function in at least two sex-linked genes and works via gene dosage balance between sex-linked, and autosomal genes. This system resembles X/A-ratio-based sex determination systems in Drosophila and Rumex, and could represent a steppingstone in the evolution of X/A-ratio-based sex determination from an active Y system.
Collapse
Affiliation(s)
- Yusuke Kazama
- Graduate school of Bioscience and BiotechnologyFukui Prefectural UniversityEiheiji‐choFukuiJapan
- RIKEN Nishina CenterWakoSaitamaJapan
| | - Taiki Kobayashi
- Graduate school of Bioscience and BiotechnologyFukui Prefectural UniversityEiheiji‐choFukuiJapan
| | | |
Collapse
|
4
|
Bobadilla LK, Baek Y, Tranel PJ. Comparative transcriptomic analysis of male and females in the dioecious weeds Amaranthus palmeri and Amaranthus tuberculatus. BMC PLANT BIOLOGY 2023; 23:339. [PMID: 37365527 DOI: 10.1186/s12870-023-04286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Waterhemp (Amaranthus tuberculatus (Moq.) Sauer) and Palmer amaranth (Amaranthus palmeri S. Wats.) are two dioecious and important weed species in the world that can rapidly evolve herbicide-resistance traits. Understanding these two species' dioecious and sex-determination mechanisms could open opportunities for new tools to control them. This study aims to identify the differential expression patterns between males and females in A. tuberculatus and A. palmeri. Multiple analyses, including differential expression, co-expression, and promoter analyses, used RNA-seq data from multiple tissue types to identify putative essential genes for sex determination in both dioecious species. RESULTS Genes were identified as potential key players for sex determination in A. palmeri. Genes PPR247, WEX, and ACD6 were differentially expressed between the sexes and located at scaffold 20 within or near the male-specific Y (MSY) region. Multiple genes involved with flower development were co-expressed with these three genes. For A. tuberculatus, no differentially expressed gene was identified within the MSY region; however, multiple autosomal class B and C genes were identified as differentially expressed and possible candidate genes. CONCLUSIONS This is the first study comparing the global expression profile between males and females in dioecious weedy Amaranthus species. Results narrow down putative essential genes for sex-determination in A. palmeri and A. tuberculatus and also strengthen the hypothesis of two different evolutionary events for dioecy within the genus.
Collapse
Affiliation(s)
- Lucas K Bobadilla
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Yousoon Baek
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
5
|
Kazama Y, Kitoh M, Kobayashi T, Ishii K, Krasovec M, Yasui Y, Abe T, Kawano S, Filatov DA. A CLAVATA3-like Gene Acts as a Gynoecium Suppression Function in White Campion. Mol Biol Evol 2022; 39:msac195. [PMID: 36166820 PMCID: PMC9550985 DOI: 10.1093/molbev/msac195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How do separate sexes originate and evolve? Plants provide many opportunities to address this question as they have diverse mating systems and separate sexes (dioecy) that evolved many times independently. The classic "two-factor" model for evolution of separate sexes proposes that males and females can evolve from hermaphrodites via the spread of male and female sterility mutations that turn hermaphrodites into females and males, respectively. This widely accepted model was inspired by early genetic work in dioecious white campion (Silene latifolia) that revealed the presence of two sex-determining factors on the Y-chromosome, though the actual genes remained unknown. Here, we report identification and functional analysis of the putative sex-determining gene in S. latifolia, corresponding to the gynoecium suppression factor (GSF). We demonstrate that GSF likely corresponds to a Y-linked CLV3-like gene that is specifically expressed in early male flower buds and encodes the protein that suppresses gynoecium development in S. latifolia. Interestingly, GSFY has a dysfunctional X-linked homolog (GSFX) and their synonymous divergence (dS = 17.9%) is consistent with the age of sex chromosomes in this species. We propose that female development in S. latifolia is controlled via the WUSCHEL-CLAVATA feedback loop, with the X-linked WUSCHEL-like and Y-linked CLV3-like genes, respectively. Evolution of dioecy in the S. latifolia ancestor likely involved inclusion of ancestral GSFY into the nonrecombining region on the nascent Y-chromosome and GSFX loss of function, which resulted in disbalance of the WUSCHEL-CLAVATA feedback loop between the sexes and ensured gynoecium suppression in males.
Collapse
Affiliation(s)
- Yusuke Kazama
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Japan
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Moe Kitoh
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Japan
| | - Taiki Kobayashi
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Japan
| | - Kotaro Ishii
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Marc Krasovec
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoko Abe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Future Center Initiative, The University of Tokyo, 178-4-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
6
|
Muyle A, Marais GAB, Bačovský V, Hobza R, Lenormand T. Dosage compensation evolution in plants: theories, controversies and mechanisms. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210222. [PMID: 35306896 PMCID: PMC8935305 DOI: 10.1098/rstb.2021.0222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In a minority of flowering plants, separate sexes are genetically determined by sex chromosomes. The Y chromosome has a non-recombining region that degenerates, causing a reduced expression of Y genes. In some species, the lower Y expression is accompanied by dosage compensation (DC), a mechanism that re-equalizes male and female expression and/or brings XY male expression back to its ancestral level. Here, we review work on DC in plants, which started as early as the late 1960s with cytological approaches. The use of transcriptomics fired a controversy as to whether DC existed in plants. Further work revealed that various plants exhibit partial DC, including a few species with young and homomorphic sex chromosomes. We are starting to understand the mechanisms responsible for DC in some plants, but in most species, we lack the data to differentiate between global and gene-by-gene DC. Also, it is unknown why some species evolve many dosage compensated genes while others do not. Finally, the forces that drive DC evolution remain mysterious, both in plants and animals. We review the multiple evolutionary theories that have been proposed to explain DC patterns in eukaryotes with XY or ZW sex chromosomes. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France
| | - Gabriel A B Marais
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Thomas Lenormand
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
7
|
Liu Z, Wang H, Xu Z, Zhang H, Li G, Wang X, Qian W. Transcriptome profiling of differentially expressed genes of male and female inflorescences in spinach ( Spinacia oleracea L.). Genome 2021; 64:777-788. [PMID: 33539259 DOI: 10.1139/gen-2020-0122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinach (Spinacia oleracea L.) is commonly considered a dioecious plant with heterogametic (XY) and homogametic (XX) sex chromosomes. The characteristic is also utilized for the production of spinach hybrid seeds. However, the molecular mechanisms of sex determination in spinach are still unclear because of a lack of genomic and transcriptomic information. In this study, RNA sequencing (RNA-seq) was performed in male and female inflorescences to provide insight into the molecular basis of sex determination in spinach. Comparative transcriptome analyses showed that 2278 differentially expressed genes (DEGs) were identified between male and female inflorescences. A high correlation between the RNA-Seq and qRT-PCR validation for DEGs was observed. Among these, 182 DEGs were annotated to transcription factors including the MYB family protein, bHLH family, and MADS family, suggesting these factors might play a vital role in sex determination. Moreover, 26 DEGs related to flower development, including nine ABCE class genes, were detected. Expression analyses of hormone pathways showed that brassinosteroids may be key hormones related to sex determination in spinach. Overall, this study provides a large amount of DEGs related to sexual expression and lays a foundation for unraveling the regulatory mechanism of sex determination in spinach.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Haoying Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China.,Horticulture & landscape college, Hunan Agricultural University, Furong District, Changsha City, Hunan Province 410128, People's Republic of China
| | - Zhaosheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Helong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Guoliang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Wei Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| |
Collapse
|
8
|
Almeida P, Proux-Wera E, Churcher A, Soler L, Dainat J, Pucholt P, Nordlund J, Martin T, Rönnberg-Wästljung AC, Nystedt B, Berlin S, Mank JE. Genome assembly of the basket willow, Salix viminalis, reveals earliest stages of sex chromosome expansion. BMC Biol 2020; 18:78. [PMID: 32605573 PMCID: PMC7329446 DOI: 10.1186/s12915-020-00808-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sex chromosomes have evolved independently multiple times in eukaryotes and are therefore considered a prime example of convergent genome evolution. Sex chromosomes are known to emerge after recombination is halted between a homologous pair of chromosomes, and this leads to a range of non-adaptive modifications causing gradual degeneration and gene loss on the sex-limited chromosome. However, the proximal causes of recombination suppression and the pace at which degeneration subsequently occurs remain unclear. RESULTS Here, we use long- and short-read single-molecule sequencing approaches to assemble and annotate a draft genome of the basket willow, Salix viminalis, a species with a female heterogametic system at the earliest stages of sex chromosome emergence. Our single-molecule approach allowed us to phase the emerging Z and W haplotypes in a female, and we detected very low levels of Z/W single-nucleotide divergence in the non-recombining region. Linked-read sequencing of the same female and an additional male (ZZ) revealed the presence of two evolutionary strata supported by both divergence between the Z and W haplotypes and by haplotype phylogenetic trees. Gene order is still largely conserved between the Z and W homologs, although the W-linked region contains genes involved in cytokinin signaling regulation that are not syntenic with the Z homolog. Furthermore, we find no support across multiple lines of evidence for inversions, which have long been assumed to halt recombination between the sex chromosomes. CONCLUSIONS Our data suggest that selection against recombination is a more gradual process at the earliest stages of sex chromosome formation than would be expected from an inversion and may result instead from the accumulation of transposable elements. Our results present a cohesive understanding of the earliest genomic consequences of recombination suppression as well as valuable insights into the initial stages of sex chromosome formation and regulation of sex differentiation.
Collapse
Affiliation(s)
- Pedro Almeida
- Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Estelle Proux-Wera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jacques Dainat
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, National Genomics Infrastructure, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tom Martin
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ann-Christin Rönnberg-Wästljung
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Judith E Mank
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Almeida P, Proux-Wera E, Churcher A, Soler L, Dainat J, Pucholt P, Nordlund J, Martin T, Rönnberg-Wästljung AC, Nystedt B, Berlin S, Mank JE. Genome assembly of the basket willow, Salix viminalis, reveals earliest stages of sex chromosome expansion. BMC Biol 2020. [PMID: 32605573 DOI: 10.1101/589804v1.full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Sex chromosomes have evolved independently multiple times in eukaryotes and are therefore considered a prime example of convergent genome evolution. Sex chromosomes are known to emerge after recombination is halted between a homologous pair of chromosomes, and this leads to a range of non-adaptive modifications causing gradual degeneration and gene loss on the sex-limited chromosome. However, the proximal causes of recombination suppression and the pace at which degeneration subsequently occurs remain unclear. RESULTS Here, we use long- and short-read single-molecule sequencing approaches to assemble and annotate a draft genome of the basket willow, Salix viminalis, a species with a female heterogametic system at the earliest stages of sex chromosome emergence. Our single-molecule approach allowed us to phase the emerging Z and W haplotypes in a female, and we detected very low levels of Z/W single-nucleotide divergence in the non-recombining region. Linked-read sequencing of the same female and an additional male (ZZ) revealed the presence of two evolutionary strata supported by both divergence between the Z and W haplotypes and by haplotype phylogenetic trees. Gene order is still largely conserved between the Z and W homologs, although the W-linked region contains genes involved in cytokinin signaling regulation that are not syntenic with the Z homolog. Furthermore, we find no support across multiple lines of evidence for inversions, which have long been assumed to halt recombination between the sex chromosomes. CONCLUSIONS Our data suggest that selection against recombination is a more gradual process at the earliest stages of sex chromosome formation than would be expected from an inversion and may result instead from the accumulation of transposable elements. Our results present a cohesive understanding of the earliest genomic consequences of recombination suppression as well as valuable insights into the initial stages of sex chromosome formation and regulation of sex differentiation.
Collapse
Affiliation(s)
- Pedro Almeida
- Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Estelle Proux-Wera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jacques Dainat
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, National Genomics Infrastructure, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tom Martin
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ann-Christin Rönnberg-Wästljung
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Judith E Mank
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Hobza R, Hudzieczek V, Kubat Z, Cegan R, Vyskot B, Kejnovsky E, Janousek B. Sex and the flower - developmental aspects of sex chromosome evolution. ANNALS OF BOTANY 2018; 122:1085-1101. [PMID: 30032185 PMCID: PMC6324748 DOI: 10.1093/aob/mcy130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 05/07/2023]
Abstract
Background The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| |
Collapse
|
11
|
Muyle A, Zemp N, Fruchard C, Cegan R, Vrana J, Deschamps C, Tavares R, Hobza R, Picard F, Widmer A, Marais GAB. Genomic imprinting mediates dosage compensation in a young plant XY system. NATURE PLANTS 2018; 4:677-680. [PMID: 30104649 DOI: 10.1038/s41477-018-0221-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/16/2018] [Indexed: 05/06/2023]
Abstract
Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced expression and eventual loss of Y genes1. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals2-4. However, the early steps in the evolution of dosage compensation remain unknown, and dosage compensation is poorly understood in plants5. Here, we describe a dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males, but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno6 for the evolution of X inactivation in mammals.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France.
| | - Niklaus Zemp
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Cécile Fruchard
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Radim Cegan
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Vrana
- Institute of Experimental Botany, Center of the Hana Region for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Raquel Tavares
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Roman Hobza
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Institute of Experimental Botany, Center of the Hana Region for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Franck Picard
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Gabriel A B Marais
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| |
Collapse
|
12
|
West NW, Golenberg EM. Gender-specific expression of GIBBERELLIC ACID INSENSITIVE is critical for unisexual organ initiation in dioecious Spinacia oleracea. THE NEW PHYTOLOGIST 2018; 217:1322-1334. [PMID: 29226967 DOI: 10.1111/nph.14919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/20/2017] [Indexed: 05/20/2023]
Abstract
While unisexual flowers have evolved repeatedly throughout angiosperm families, the actual identification of sex-determining genes has been elusive, and their regulation within populations remains largely undefined. Here, we tested the mechanism of the feminization pathway in cultivated spinach (Spinacia oleracea), and investigated how this pathway may regulate alternative sexual development. We tested the effect of gibberellic acid (GA) on sex determination through exogenous applications of GA and inhibitors of GA synthesis and proteasome activity. GA concentrations in multiple tissues were estimated by enzyme-linked immunosorbent assay analysis. Gene function was investigated and pathway analysis was performed through virus-induced gene silencing. Relative gene expression levels were estimated by quantitative reverse transcription-polymerase chain reaction. Inhibition of GA production and proteasome activity feminized male flowers. However, there was no difference in GA content in tissues between males and females. We characterized a single DELLA family transcription factor gene (GIBBERELLIC ACID INSENSITIVE (SpGAI)) and observed inflorescence expression in females two-fold higher than in males. Reduction of SpGAI expression in females to male levels phenocopied exogenous GA application with respect to flower development. These results implicate SpGAI as the feminizing factor in spinach, and suggest that the feminizing pathway is epistatic to the masculinizing pathway. We present a unified model for alternative sexual development and discuss the implications for established theory.
Collapse
Affiliation(s)
- Nicholas W West
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Edward M Golenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
13
|
Muyle A, Shearn R, Marais GA. The Evolution of Sex Chromosomes and Dosage Compensation in Plants. Genome Biol Evol 2017; 9:627-645. [PMID: 28391324 PMCID: PMC5629387 DOI: 10.1093/gbe/evw282] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Plant sex chromosomes can be vastly different from those of the few historical animal model organisms from which most of our understanding of sex chromosome evolution is derived. Recently, we have seen several advancements from studies on green algae, brown algae, and land plants that are providing a broader understanding of the variable ways in which sex chromosomes can evolve in distant eukaryotic groups. Plant sex-determining genes are being identified and, as expected, are completely different from those in animals. Species with varying levels of differentiation between the X and Y have been found in plants, and these are hypothesized to be representing different stages of sex chromosome evolution. However, we are also finding that sex chromosomes can remain morphologically unchanged over extended periods of time. Where degeneration of the Y occurs, it appears to proceed similarly in plants and animals. Dosage compensation (a phenomenon that compensates for the consequent loss of expression from the Y) has now been documented in a plant system, its mechanism, however, remains unknown. Research has also begun on the role of sex chromosomes in sexual conflict resolution, and it appears that sex-biased genes evolve similarly in plants and animals, although the functions of these genes remain poorly studied. Because the difficulty in obtaining sex chromosome sequences is increasingly being overcome by methodological developments, there is great potential for further discovery within the field of plant sex chromosome evolution.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Rylan Shearn
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Gabriel Ab Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
14
|
Kazama Y, Ishii K, Aonuma W, Ikeda T, Kawamoto H, Koizumi A, Filatov DA, Chibalina M, Bergero R, Charlesworth D, Abe T, Kawano S. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Sci Rep 2016; 6:18917. [PMID: 26742857 PMCID: PMC4705512 DOI: 10.1038/srep18917] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022] Open
Abstract
Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.
Collapse
Affiliation(s)
- Yusuke Kazama
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kotaro Ishii
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Wataru Aonuma
- Department of Integrated Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Tokihiro Ikeda
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroki Kawamoto
- Department of Integrated Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Ayako Koizumi
- Department of Integrated Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Margarita Chibalina
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Roberta Bergero
- Institute of Evolutionary Biology, University of Edinburgh, School of Biological Sciences, Edinburgh EH9 3JT, UK
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, School of Biological Sciences, Edinburgh EH9 3JT, UK
| | - Tomoko Abe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shigeyuki Kawano
- Department of Integrated Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
15
|
Abstract
Background Silene latifolia represents one of the best-studied plant sex chromosome systems. A new approach using RNA-seq data has recently identified hundreds of new sex-linked genes in this species. However, this approach is expected to miss genes that are either not expressed or are expressed at low levels in the tissue(s) used for RNA-seq. Therefore other independent approaches are needed to discover such sex-linked genes. Results Here we used 10 well-characterized S. latifolia sex-linked genes and their homologs in Silene vulgaris, a species without sex chromosomes, to screen BAC libraries of both species. We isolated and sequenced 4 Mb of BAC clones of S. latifolia X and Y and S. vulgaris genomic regions, which yielded 59 new sex-linked genes (with S. vulgaris homologs for some of them). We assembled sequences that we believe represent the tip of the Xq arm. These sequences are clearly not pseudoautosomal, so we infer that the S. latifolia X has a single pseudoautosomal region (PAR) on the Xp arm. The estimated mean gene density in X BACs is 2.2 times lower than that in S. vulgaris BACs, agreeing with the genome size difference between these species. Gene density was estimated to be extremely low in the Y BAC clones. We compared our BAC-located genes with the sex-linked genes identified in previous RNA-seq studies, and found that about half of them (those with low expression in flower buds) were not identified as sex-linked in previous RNA-seq studies. We compiled a set of ~70 validated X/Y genes and X-hemizygous genes (without Y copies) from the literature, and used these genes to show that X-hemizygous genes have a higher probability of being undetected by the RNA-seq approach, compared with X/Y genes; we used this to estimate that about 30 % of our BAC-located genes must be X-hemizygous. The estimate is similar when we use BAC-located genes that have S. vulgaris homologs, which excludes genes that were gained by the X chromosome. Conclusions Our BAC sequencing identified 59 new sex-linked genes, and our analysis of these BAC-located genes, in combination with RNA-seq data suggests that gene losses from the S. latifolia Y chromosome could be as high as 30 %, higher than previous estimates of 10-20 %. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1698-7) contains supplementary material, which is available to authorized users.
Collapse
|