1
|
Blank HM, Alonso A, Fabritius AS, Valk E, Loog M, Winey M, Polymenis M. Translational control of MPS1 links protein synthesis with the initiation of cell division and spindle pole body duplication in Saccharomyces cerevisiae. Genetics 2024; 227:iyae069. [PMID: 38713088 DOI: 10.1093/genetics/iyae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Protein synthesis underpins cell growth and controls when cells commit to a new round of cell division at a point in late G1 of the cell cycle called Start. Passage through Start also coincides with the duplication of the microtubule-organizing centers, the yeast spindle pole bodies, which will form the 2 poles of the mitotic spindle that segregates the chromosomes in mitosis. The conserved Mps1p kinase governs the duplication of the spindle pole body (SPB) in Saccharomyces cerevisiae. Here, we show that the MPS1 transcript has a short upstream open reading frame (uORF) that represses the synthesis of Mps1p. Mutating the MPS1 uORF makes the cells smaller, accelerates the appearance of Mps1p in late G1, and promotes completion of Start. Monitoring the SPB in the cell cycle using structured illumination microscopy revealed that mutating the MPS1 uORF enabled cells to duplicate their SPB earlier at a smaller cell size. The accelerated Start of MPS1 uORF mutants depends on the G1 cyclin Cln3p and the transcriptional repressor Whi5p but not on the Cln1,2p G1 cyclins. These results identify growth inputs in mechanisms that control duplication of the microtubule-organizing center and implicate these processes in the coupling of cell growth with division.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | - Annabel Alonso
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Amy S Fabritius
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Ervin Valk
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| |
Collapse
|
2
|
Maitra N, He C, Blank HM, Tsuchiya M, Schilling B, Kaeberlein M, Aramayo R, Kennedy BK, Polymenis M. Translational control of one-carbon metabolism underpins ribosomal protein phenotypes in cell division and longevity. eLife 2020; 9:53127. [PMID: 32432546 PMCID: PMC7263821 DOI: 10.7554/elife.53127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
A long-standing problem is how cells that lack one of the highly similar ribosomal proteins (RPs) often display distinct phenotypes. Yeast and other organisms live longer when they lack specific ribosomal proteins, especially of the large 60S subunit of the ribosome. However, longevity is neither associated with the generation time of RP deletion mutants nor with bulk inhibition of protein synthesis. Here, we queried actively dividing RP mutants through the cell cycle. Our data link transcriptional, translational, and metabolic changes to phenotypes associated with the loss of paralogous RPs. We uncovered translational control of transcripts encoding enzymes of methionine and serine metabolism, which are part of one-carbon (1C) pathways. Cells lacking Rpl22Ap, which are long-lived, have lower levels of metabolites associated with 1C metabolism. Loss of 1C enzymes increased the longevity of wild type cells. 1C pathways exist in all organisms and targeting the relevant enzymes could represent longevity interventions.
Collapse
Affiliation(s)
- Nairita Maitra
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Chong He
- Buck Institute for Research on Aging, Novato, United States
| | - Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Mitsuhiro Tsuchiya
- Department of Pathology, University of Washington, Seattle, United States
| | | | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, United States
| | - Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, United States
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, United States.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Centre for Healthy Ageing, National University of Singapore, National University Health System, Singapore, Singapore
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| |
Collapse
|
3
|
Blank HM, Papoulas O, Maitra N, Garge R, Kennedy BK, Schilling B, Marcotte EM, Polymenis M. Abundances of transcripts, proteins, and metabolites in the cell cycle of budding yeast reveal coordinate control of lipid metabolism. Mol Biol Cell 2020; 31:1069-1084. [PMID: 32129706 PMCID: PMC7346729 DOI: 10.1091/mbc.e19-12-0708] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Establishing the pattern of abundance of molecules of interest during cell division has been a long-standing goal of cell cycle studies. Here, for the first time in any system, we present experiment-matched datasets of the levels of RNAs, proteins, metabolites, and lipids from unarrested, growing, and synchronously dividing yeast cells. Overall, transcript and protein levels were correlated, but specific processes that appeared to change at the RNA level (e.g., ribosome biogenesis) did not do so at the protein level, and vice versa. We also found no significant changes in codon usage or the ribosome content during the cell cycle. We describe an unexpected mitotic peak in the abundance of ergosterol and thiamine biosynthesis enzymes. Although the levels of several metabolites changed in the cell cycle, by far the most significant changes were in the lipid repertoire, with phospholipids and triglycerides peaking strongly late in the cell cycle. Our findings provide an integrated view of the abundance of biomolecules in the eukaryotic cell cycle and point to a coordinate mitotic control of lipid metabolism.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Ophelia Papoulas
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Nairita Maitra
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Riddhiman Garge
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596.,Centre for Healthy Ageing, National University of Singapore, National University Health System, Singapore 117609.,Buck Institute for Research on Aging, Novato, CA 94945
| | | | - Edward M Marcotte
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
4
|
Perturbations of Transcription and Gene Expression-Associated Processes Alter Distribution of Cell Size Values in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:239-250. [PMID: 30463882 PMCID: PMC6325893 DOI: 10.1534/g3.118.200854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The question of what determines whether cells are big or small has been the focus of many studies because it is thought that such determinants underpin the coupling of cell growth with cell division. In contrast, what determines the overall pattern of how cell size is distributed within a population of wild type or mutant cells has received little attention. Knowing how cell size varies around a characteristic pattern could shed light on the processes that generate such a pattern and provide a criterion to identify its genetic basis. Here, we show that cell size values of wild type Saccharomyces cerevisiae cells fit a gamma distribution, in haploid and diploid cells, and under different growth conditions. To identify genes that influence this pattern, we analyzed the cell size distributions of all single-gene deletion strains in Saccharomyces cerevisiae. We found that yeast strains which deviate the most from the gamma distribution are enriched for those lacking gene products functioning in gene expression, especially those in transcription or transcription-linked processes. We also show that cell size is increased in mutants carrying altered activity substitutions in Rpo21p/Rpb1, the largest subunit of RNA polymerase II (Pol II). Lastly, the size distribution of cells carrying extreme altered activity Pol II substitutions deviated from the expected gamma distribution. Our results are consistent with the idea that genetic defects in widely acting transcription factors or Pol II itself compromise both cell size homeostasis and how the size of individual cells is distributed in a population.
Collapse
|
5
|
Smith JT, White JW, Dungrawala H, Hua H, Schneider BL. Yeast lifespan variation correlates with cell growth and SIR2 expression. PLoS One 2018; 13:e0200275. [PMID: 29979754 PMCID: PMC6034835 DOI: 10.1371/journal.pone.0200275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/22/2018] [Indexed: 11/19/2022] Open
Abstract
Isogenic wild type yeast cells raised in controlled environments display a significant range of lifespan variation. Recent microfluidic studies suggest that differential growth or gene expression patterns may explain some of the heterogeneity of aging assays. Herein, we sought to complement this work by similarly examining a large set of replicative lifespan data from traditional plate assays. In so doing, we reproduced the finding that short-lived cells tend to arrest at senescence with a budded morphology. Further, we found that wild type cells born unusually small did not have an extended lifespan. However, large birth size and/or high inter-generational growth rates significantly correlated with a reduced lifespan. Finally, we found that SIR2 expression levels correlated with lifespan and intergenerational growth. SIR2 expression was significantly reduced in large cells and increased in small wild type cells. A moderate increase in SIR2 expression correlated with reduced growth, decreased proliferation and increased lifespan in plate aging assays. We conclude that cellular growth rates and SIR2 expression levels may contribute to lifespan variation in individual cells.
Collapse
Affiliation(s)
- Jessica T. Smith
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Jill W. White
- Center for the Integration of STEM Education & Research, Texas Tech University, Lubbock, TX, United States of America
| | - Huzefa Dungrawala
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Hui Hua
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Brandt L. Schneider
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| |
Collapse
|
6
|
Mena A, Medina DA, García-Martínez J, Begley V, Singh A, Chávez S, Muñoz-Centeno MC, Pérez-Ortín JE. Asymmetric cell division requires specific mechanisms for adjusting global transcription. Nucleic Acids Res 2017; 45:12401-12412. [PMID: 29069448 PMCID: PMC5716168 DOI: 10.1093/nar/gkx974] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022] Open
Abstract
Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme.
Collapse
Affiliation(s)
- Adriana Mena
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| | - Daniel A Medina
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| | - José García-Martínez
- Departamento de Genética and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| | - Victoria Begley
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - Mari C Muñoz-Centeno
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| |
Collapse
|
7
|
Mohler K, Mann R, Bullwinkle TJ, Hopkins K, Hwang L, Reynolds NM, Gassaway B, Aerni HR, Rinehart J, Polymenis M, Faull K, Ibba M. Editing of misaminoacylated tRNA controls the sensitivity of amino acid stress responses in Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:3985-3996. [PMID: 28168297 PMCID: PMC5397148 DOI: 10.1093/nar/gkx077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Amino acid starvation activates the protein kinase Gcn2p, leading to changes in gene expression and translation. Gcn2p is activated by deacylated tRNA, which accumulates when tRNA aminoacylation is limited by lack of substrates or inhibition of synthesis. Pairing of amino acids and deacylated tRNAs is catalyzed by aminoacyl-tRNA synthetases, which use quality control pathways to maintain substrate specificity. Phenylalanyl-tRNA synthetase (PheRS) maintains specificity via an editing pathway that targets non-cognate Tyr-tRNAPhe. While the primary role of aaRS editing is to prevent misaminoacylation, we demonstrate editing of misaminoacylated tRNA is also required for detection of amino acid starvation by Gcn2p. Ablation of PheRS editing caused accumulation of Tyr-tRNAPhe (5%), but not deacylated tRNAPhe during amino acid starvation, limiting Gcn2p kinase activity and suppressing Gcn4p-dependent gene expression. While the PheRS-editing ablated strain grew 50% slower and displayed a 27-fold increase in the rate of mistranslation of Phe codons as Tyr compared to wild type, the increase in mistranslation was insufficient to activate an unfolded protein stress response. These findings show that during amino acid starvation a primary role of aaRS quality control is to help the cell mount an effective stress response, independent of the role of editing in maintaining translational accuracy.
Collapse
Affiliation(s)
- Kyle Mohler
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Rebecca Mann
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Tammy J Bullwinkle
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Kyle Hopkins
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Lin Hwang
- Pasarow Mass Spectrometry Laboratory, Semel Institute of Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Noah M Reynolds
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Brandon Gassaway
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Hans-Rudolf Aerni
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Michael Polymenis
- Biochemistry and Biophysics, Texas A&M University, Rm 333, 2128 TAMU, College Station, TX 77843, USA
| | - Kym Faull
- Pasarow Mass Spectrometry Laboratory, Semel Institute of Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Delarue M, Weissman D, Hallatschek O. A simple molecular mechanism explains multiple patterns of cell-size regulation. PLoS One 2017; 12:e0182633. [PMID: 28813456 PMCID: PMC5558972 DOI: 10.1371/journal.pone.0182633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
Increasingly accurate and massive data have recently shed light on the fundamental question of how cells maintain a stable size trajectory as they progress through the cell cycle. Microbes seem to use strategies ranging from a pure sizer, where the end of a given phase is triggered when the cell reaches a critical size, to pure adder, where the cell adds a constant size during a phase. Yet the biological origins of the observed spectrum of behavior remain elusive. We analyze a molecular size-control mechanism, based on experimental data from the yeast S. cerevisiae, that gives rise to behaviors smoothly interpolating between adder and sizer. The size-control is obtained from the accumulation of an activator protein that titrates an inhibitor protein. Strikingly, the size-control is composed of two different regimes: for small initial cell size, the size-control is a sizer, whereas for larger initial cell size, it is an imperfect adder, in agreement with recent experiments. Our model thus indicates that the adder and critical size behaviors may just be different dynamical regimes of a single simple biophysical mechanism.
Collapse
Affiliation(s)
- Morgan Delarue
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, United States of America
- Institute for Systems Genetics, University of New York Langone Medical Center, New York, United States of America
- * E-mail:
| | - Daniel Weissman
- Department of Physics, Emory University, Atlanta, GA 30322, United States of America
| | - Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, United States of America
| |
Collapse
|
9
|
Blank HM, Perez R, He C, Maitra N, Metz R, Hill J, Lin Y, Johnson CD, Bankaitis VA, Kennedy BK, Aramayo R, Polymenis M. Translational control of lipogenic enzymes in the cell cycle of synchronous, growing yeast cells. EMBO J 2017; 36:487-502. [PMID: 28057705 PMCID: PMC5694946 DOI: 10.15252/embj.201695050] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 02/04/2023] Open
Abstract
Translational control during cell division determines when cells start a new cell cycle, how fast they complete it, the number of successive divisions, and how cells coordinate proliferation with available nutrients. The translational efficiencies of mRNAs in cells progressing synchronously through the mitotic cell cycle, while preserving the coupling of cell division with cell growth, remain uninvestigated. We now report comprehensive ribosome profiling of a yeast cell size series from the time of cell birth, to identify mRNAs under periodic translational control. The data reveal coordinate translational activation of mRNAs encoding lipogenic enzymes late in the cell cycle including Acc1p, the rate-limiting enzyme acetyl-CoA carboxylase. An upstream open reading frame (uORF) confers the translational control of ACC1 and adjusts Acc1p protein levels in different nutrients. The ACC1 uORF is relevant for cell division because its ablation delays cell cycle progression, reduces cell size, and suppresses the replicative longevity of cells lacking the Sch9p protein kinase regulator of ribosome biogenesis. These findings establish an unexpected relationship between lipogenesis and protein synthesis in mitotic cell divisions.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ricardo Perez
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Chong He
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Nairita Maitra
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Richard Metz
- Genomics and Bioinformatics Services, Texas A&M Agrilife Research, College Station, TX, USA
| | - Joshua Hill
- Genomics and Bioinformatics Services, Texas A&M Agrilife Research, College Station, TX, USA
| | - Yuhong Lin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Charles D Johnson
- Genomics and Bioinformatics Services, Texas A&M Agrilife Research, College Station, TX, USA
| | - Vytas A Bankaitis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, USA
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | | | - Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
García-Martínez J, Delgado-Ramos L, Ayala G, Pelechano V, Medina DA, Carrasco F, González R, Andrés-León E, Steinmetz L, Warringer J, Chávez S, Pérez-Ortín JE. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons. Nucleic Acids Res 2015; 44:3643-58. [PMID: 26717982 PMCID: PMC4856968 DOI: 10.1093/nar/gkv1512] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023] Open
Abstract
We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay. The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth.
Collapse
Affiliation(s)
- José García-Martínez
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València. C/ Dr. Moliner 50. E46100, Burjassot, Spain ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de Valencia. C/ Dr. Moliner 50. E46100, Burjassot, Spain
| | - Lidia Delgado-Ramos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, C/ Antonio Maura Montaner, E41013 Sevilla Departamento de Genética, Universidad de Sevilla, Avenida de la Reina Mercedes s/n, E41012, Spain
| | - Guillermo Ayala
- Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universitat de València. C/ Dr. Moliner 50. E46100, Burjassot, Spain
| | - Vicent Pelechano
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel A Medina
- ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de Valencia. C/ Dr. Moliner 50. E46100, Burjassot, Spain Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de Valencia. C/ Dr. Moliner 50. E46100, Burjassot, Spain
| | - Fany Carrasco
- ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de Valencia. C/ Dr. Moliner 50. E46100, Burjassot, Spain Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de Valencia. C/ Dr. Moliner 50. E46100, Burjassot, Spain
| | - Ramón González
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera LO-20 Salida 13, Autovía del Camino de Santiago, E26007 Logroño, Spain
| | - Eduardo Andrés-León
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, C/ Antonio Maura Montaner, E41013 Sevilla
| | - Lars Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany Stanford University School of Medicine, Department of Genetics, Stanford, CA 94305, USA Stanford Genome Technology Center, 3165 Porter Dr. Palo Alto, CA 94305, USA
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9 c, 40530 Göteborg, Sweden
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, C/ Antonio Maura Montaner, E41013 Sevilla Departamento de Genética, Universidad de Sevilla, Avenida de la Reina Mercedes s/n, E41012, Spain
| | - José E Pérez-Ortín
- ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de Valencia. C/ Dr. Moliner 50. E46100, Burjassot, Spain Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de Valencia. C/ Dr. Moliner 50. E46100, Burjassot, Spain
| |
Collapse
|
11
|
He C, Tsuchiyama SK, Nguyen QT, Plyusnina EN, Terrill SR, Sahibzada S, Patel B, Faulkner AR, Shaposhnikov MV, Tian R, Tsuchiya M, Kaeberlein M, Moskalev AA, Kennedy BK, Polymenis M. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet 2014; 10:e1004860. [PMID: 25521617 PMCID: PMC4270464 DOI: 10.1371/journal.pgen.1004860] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022] Open
Abstract
The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life. Aging is the greatest risk factor for many diseases, which together account for the majority of global deaths and healthcare costs. Here we show that the common drug ibuprofen increases the lifespan of yeast, worms and flies, indicative of conserved longevity effects. In budding yeast, an excellent model of cellular longevity mechanisms, ibuprofen's pro-longevity action is independent of its known anti-inflammatory role. We show that the critical function of ibuprofen in longevity is to inhibit the uptake of aromatic amino acids, by destabilizing the high-affinity tryptophan permease. We further show that ibuprofen alters cell cycle progression. Mirroring the effects of ibuprofen, we found that most yeast long-lived mutants were also similarly affected in cell cycle progression. These findings identify a safe drug that extends the lifespan of divergent organisms and reveal fundamental cellular properties associated with longevity.
Collapse
Affiliation(s)
- Chong He
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Scott K. Tsuchiyama
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Quynh T. Nguyen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ekaterina N. Plyusnina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
| | - Samuel R. Terrill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Sarah Sahibzada
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Bhumil Patel
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Alena R. Faulkner
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mikhail V. Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
| | - Ruilin Tian
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mitsuhiro Tsuchiya
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Alexey A. Moskalev
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Brian K. Kennedy
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (BKK); (MP)
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (BKK); (MP)
| |
Collapse
|
12
|
Abstract
Cell size is determined by a complex interplay between growth and division, involving multiple
cellular pathways. To identify systematically processes affecting size control in G1 in budding
yeast, we imaged and analyzed the cell cycle of millions of individual cells representing 591
mutants implicated in size control. Quantitative metric distinguished mutants affecting the
mechanism of size control from the majority of mutants that have a perturbed size due to indirect
effects modulating cell growth. Overall, we identified 17 negative and dozens positive size control
regulators, with the negative regulators forming a small network centered on elements of mitotic
exit network. Some elements of the translation machinery affected size control with a notable
distinction between the deletions of parts of small and large ribosomal subunit: parts of small
ribosomal subunit tended to regulate size control, while parts of the large subunit affected cell
growth. Analysis of small cells revealed additional size control mechanism that functions in G2/M,
complementing the primary size control in G1. Our study provides new insights about size control
mechanisms in budding yeast.
Collapse
Affiliation(s)
- Ilya Soifer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Soma S, Yang K, Morales MI, Polymenis M. Multiple metabolic requirements for size homeostasis and initiation of division in Saccharomyces cerevisiae. MICROBIAL CELL 2014; 1:256-266. [PMID: 28357252 PMCID: PMC5349232 DOI: 10.15698/mic2014.08.160] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most cells must grow before they can divide, but it is not known how cells
determine when they have grown enough so they can commit to a new round of cell
division. Several parameters affect the timing of initiation of division: cell
size at birth, the size cells have to reach when they commit to division, and
how fast they reach that size. We report that Saccharomyces
cerevisiae mutants in metabolic and biosynthetic pathways differ in
these variables, controlling the timing of initiation of cell division in
various ways. Some mutants affect the size at birth, size at initiation of
division, the rate of increase in size, or any combination of the above.
Furthermore, we show that adenylate kinase, encoded by ADK1, is
a significant determinant of the efficiency of size control mechanisms. Finally,
our data argue strongly that the cell size at division is not necessarily a
function of the rate cells increase in size in the G1 phase of the cell cycle.
Taken together, these findings reveal an unexpected diversity in the G1 cell
cycle phenotypes of metabolic and biosynthetic mutants, suggesting that growth
requirements for cell division are multiple, distinct and imposed throughout the
G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Shivatheja Soma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kailu Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Maria I Morales
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|