1
|
Kindelay SM, Maggert KA. Insights into ribosomal DNA dominance and magnification through characterization of isogenic deletion alleles. Genetics 2024; 227:iyae063. [PMID: 38797870 DOI: 10.1093/genetics/iyae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/29/2024] Open
Abstract
The major loci for the large primary ribosomal RNA (rRNA) genes (35S rRNAs) exist as hundreds to thousands of tandem repeats in all organisms and dozens to hundreds in Drosophila. The highly repetitive nature of the ribosomal DNA (rDNA) makes it intrinsically unstable, and many conditions arise from the reduction in or magnification of copy number, but the conditions under which it does so remain unknown. By targeted DNA damage to the rDNA of the Y chromosome, we created and investigated a series of rDNA alleles. We found that complete loss of rDNA leads to lethality after the completion of embryogenesis, blocking larval molting and metamorphosis. We find that the resident retrotransposons-R1 and R2-are regulated by active rDNA such that reduction in copy number derepresses these elements. Their expression is highest during the early first instar, when loss of rDNA is lethal. Regulation of R1 and R2 may be related to their structural arrangement within the rDNA, as we find they are clustered in the flanks of the nucleolus organizing region (NOR; the cytological appearance of the rDNA). We assessed the complex nucleolar dominance relationship between X- and Y-linked rDNA using a histone H3.3-GFP reporter construct and incorporation at the NOR and found that dominance is controlled by rDNA copy number as at high multiplicity the Y-linked array is dominant, but at low multiplicity the X-linked array becomes derepressed. Finally, we found that multiple conditions that disrupt nucleolar dominance lead to increased rDNA magnification, suggesting that the phenomena of dominance and magnification are related, and a single mechanism may underlie and unify these two longstanding observations in Drosophila.
Collapse
Affiliation(s)
- Selina M Kindelay
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Keith A Maggert
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
2
|
Flynn JM, Hu KB, Clark AG. Three recent sex chromosome-to-autosome fusions in a Drosophila virilis strain with high satellite DNA content. Genetics 2023; 224:iyad062. [PMID: 37052958 PMCID: PMC10213488 DOI: 10.1093/genetics/iyad062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
The karyotype, or number and arrangement of chromosomes, has varying levels of stability across both evolution and disease. Karyotype changes often originate from DNA breaks near the centromeres of chromosomes, which generally contain long arrays of tandem repeats or satellite DNA. Drosophila virilis possesses among the highest relative satellite abundances of studied species, with almost half its genome composed of three related 7 bp satellites. We discovered a strain of D. virilis that we infer recently underwent three independent chromosome fusion events involving the X and Y chromosomes, in addition to one subsequent fission event. Here, we isolate and characterize the four different karyotypes we discovered in this strain which we believe demonstrates remarkable genome instability. We discovered that one of the substrains with an X-autosome fusion has an X-to-Y chromosome nondisjunction rate 20 × higher than the D. virilis reference strain (21% vs 1%). Finally, we found an overall higher rate of DNA breakage in the substrain with higher satellite DNA compared to a genetically similar substrain with less satellite DNA. This suggests that satellite DNA abundance may play a role in the risk of genome instability. Overall, we introduce a novel system consisting of a single strain with four different karyotypes, which we believe will be useful for future studies of genome instability, centromere function, and sex chromosome evolution.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building Room 227, Ithaca, NY 14853, USA
| | - Kevin B Hu
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building Room 227, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building Room 227, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Kindelay SM, Maggert KA. Under the magnifying glass: The ups and downs of rDNA copy number. Semin Cell Dev Biol 2023; 136:38-48. [PMID: 35595601 PMCID: PMC9976841 DOI: 10.1016/j.semcdb.2022.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
The ribosomal DNA (rDNA) in Drosophila is found as two additive clusters of individual 35 S cistrons. The multiplicity of rDNA is essential to assure proper translational demands, but the nature of the tandem arrays expose them to copy number variation within and between populations. Here, we discuss means by which a cell responds to insufficient rDNA copy number, including a historical view of rDNA magnification whose mechanism was inferred some 35 years ago. Recent work has revealed that multiple conditions may also result in rDNA loss, in response to which rDNA magnification may have evolved. We discuss potential models for the mechanism of magnification, and evaluate possible consequences of rDNA copy number variation.
Collapse
Affiliation(s)
- Selina M Kindelay
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Keith A Maggert
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
4
|
Gheflat S, Sadeghi A, Bandehpour M, Ramezani K, Kazemi B. Designing an Engineered Construct Gene Sensitive to Carbohydrate In-vitro and Candidate for Human Insulin Gene Therapy In-vivo. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:2111-2116. [PMID: 32184874 PMCID: PMC7059050 DOI: 10.22037/ijpr.2019.14650.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes is a common disorder worldwide, and exhaustive efforts have been made to cure this disease. Gene therapy has been considered as a potential curative method that has had more stability in comparison with other pharmaceutical methods. However, the application of gene therapy as a definitive treatment demands further investigation. This study is aimed to prepare a suitable high- performance vector for gene therapy in diabetes mellitus. The designed vector has had prominent characteristics, such as directed replacement, which makes it a suitable method for treating or preventing other genetic disorders. The whole rDNA sequence of the human genome was scanned. The 800 bp two homology arms were digested by EcoRI, synthesized and cloned into the pGEM-B1 plasmid (prokaryotic moiety). The carbohydrate sensitive promoter, L-pyruvate kinase, and insulin gene were sub-cloned between homologous arms (eukaryotic moiety). The PGEM-B1 plasmid was digested by EcoRI, and the eukaryotic fragments were purified and transfected into Hela cell and then cultured. Afterward, the 300 µg/mL of glucose were added to the culture medium. Insulin expression in the transfected cells with 200 and 400 ng of the construct in comparison with negative control was detected using western blot and ELISA methods. Results have shown insulin expression in different glucose concentrates.
Collapse
Affiliation(s)
- Shivasadat Gheflat
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdolrahim Sadeghi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mojgan Bandehpour
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Keyvan Ramezani
- Departement of Parasitology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Departement of Parasitology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Kumar S, Bhatia S. A polymorphic (GA/CT)n- SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don. Sci Rep 2016; 6:33280. [PMID: 27623355 PMCID: PMC5020687 DOI: 10.1038/srep33280] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022] Open
Abstract
Simple Sequence Repeats (SSRs) of polypurine-polypyrimidine type motifs occur very frequently in the 5' flanks of genes in plants and have recently been implicated to have a role in regulation of gene expression. In this study, 2 accessions of Catharanthus roseus having (CT)8 and (CT)21 varying motifs in the 5'UTR of Tryptophan decarboxylase (Tdc) gene, were investigated for its role in regulation of gene expression. Extensive Tdc gene expression analysis in the 2 accessions was carried out both at the level of transcription and translation. Transcript abundance was estimated using Northern analysis and qRT-PCR, whereas the rate of Tdc gene transcription was assessed using in-situ nuclear run-on transcription assay. Translation status of Tdc gene was monitored by quantification of polysome associated Tdc mRNA using qRT-PCR. These observations were validated through transient expression analysis using the fusion construct [CaM35S:(CT)8-21:GUS]. Our study demonstrated that not only does the length of (CT)n -SSRs influences the promoter activity, but the presence of SSRs per se in the 5'-UTR significantly enhances the level of gene expression. We termed this phenomenon as "microsatellite mediated enhancement" (MME) of gene expression. Results presented here will provide leads for engineering plants with enhanced amounts of medicinally important alkaloids.
Collapse
Affiliation(s)
- Santosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| |
Collapse
|
6
|
Aldrich JC, Maggert KA. Transgenerational inheritance of diet-induced genome rearrangements in Drosophila. PLoS Genet 2015; 11:e1005148. [PMID: 25885886 PMCID: PMC4401788 DOI: 10.1371/journal.pgen.1005148] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 03/17/2015] [Indexed: 12/17/2022] Open
Abstract
Ribosomal RNA gene (rDNA) copy number variation modulates heterochromatin formation and influences the expression of a large fraction of the Drosophila genome. This discovery, along with the link between rDNA, aging, and disease, high-lights the importance of understanding how natural rDNA copy number variation arises. Pursuing the relationship between rDNA expression and stability, we have discovered that increased dietary yeast concentration, emulating periods of dietary excess during life, results in somatic rDNA instability and copy number reduction. Modulation of Insulin/TOR signaling produces similar results, indicating a role for known nutrient sensing signaling pathways in this process. Furthermore, adults fed elevated dietary yeast concentrations produce offspring with fewer rDNA copies demonstrating that these effects also occur in the germline, and are transgenerationally heritable. This finding explains one source of natural rDNA copy number variation revealing a clear long-term consequence of diet.
Collapse
Affiliation(s)
- John C. Aldrich
- Department of Biology, College of Science, Texas A&M University, College Station, Texas, United States of America
| | - Keith A. Maggert
- Department of Biology, College of Science, Texas A&M University, College Station, Texas, United States of America
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
7
|
Aldrich JC, Maggert KA. Simple quantitative PCR approach to reveal naturally occurring and mutation-induced repetitive sequence variation on the Drosophila Y chromosome. PLoS One 2014; 9:e109906. [PMID: 25285439 PMCID: PMC4186871 DOI: 10.1371/journal.pone.0109906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/13/2014] [Indexed: 02/06/2023] Open
Abstract
Heterochromatin is a significant component of the human genome and the genomes of most model organisms. Although heterochromatin is thought to be largely non-coding, it is clear that it plays an important role in chromosome structure and gene regulation. Despite a growing awareness of its functional significance, the repetitive sequences underlying some heterochromatin remain relatively uncharacterized. We have developed a real-time quantitative PCR-based method for quantifying simple repetitive satellite sequences and have used this technique to characterize the heterochromatic Y chromosome of Drosophila melanogaster. In this report, we validate the approach, identify previously unknown satellite sequence copy number polymorphisms in Y chromosomes from different geographic sources, and show that a defect in heterochromatin formation can induce similar copy number polymorphisms in a laboratory strain. These findings provide a simple method to investigate the dynamic nature of repetitive sequences and characterize conditions which might give rise to long-lasting alterations in DNA sequence.
Collapse
Affiliation(s)
- John C. Aldrich
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Keith A. Maggert
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|