1
|
Jafari G, Khan LA, Zhang H, Membreno E, Yan S, Dempsey G, Gobel V. Branched-chain actin dynamics polarizes vesicle trajectories and partitions apicobasal epithelial membrane domains. SCIENCE ADVANCES 2023; 9:eade4022. [PMID: 37379384 PMCID: PMC10306301 DOI: 10.1126/sciadv.ade4022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
In prevailing epithelial polarity models, membrane- and junction-based polarity cues such as the partitioning-defective PARs specify the positions of apicobasal membrane domains. Recent findings indicate, however, that intracellular vesicular trafficking can determine the position of the apical domain, upstream of membrane-based polarity cues. These findings raise the question of how vesicular trafficking becomes polarized independent of apicobasal target membrane domains. Here, we show that the apical directionality of vesicle trajectories depends on actin dynamics during de novo polarized membrane biogenesis in the C. elegans intestine. We find that actin, powered by branched-chain actin modulators, determines the polarized distribution of apical membrane components, PARs, and itself. Using photomodulation, we demonstrate that F-actin travels through the cytoplasm and along the cortex toward the future apical domain. Our findings support an alternative polarity model where actin-directed trafficking asymmetrically inserts the nascent apical domain into the growing epithelial membrane to partition apicobasal membrane domains.
Collapse
Affiliation(s)
- Gholamali Jafari
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Liakot A. Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Hongjie Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Edward Membreno
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Siyang Yan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Graham Dempsey
- Chemistry and Chemical Biology Department, Harvard University, Cambridge, MA, USA
| | - Verena Gobel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Taffoni C, Omi S, Huber C, Mailfert S, Fallet M, Rupprecht JF, Ewbank JJ, Pujol N. Microtubule plus-end dynamics link wound repair to the innate immune response. eLife 2020; 9:e45047. [PMID: 31995031 PMCID: PMC7043892 DOI: 10.7554/elife.45047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
The skin protects animals from infection and physical damage. In Caenorhabditis elegans, wounding the epidermis triggers an immune reaction and a repair response, but it is not clear how these are coordinated. Previous work implicated the microtubule cytoskeleton in the maintenance of epidermal integrity (Chuang et al., 2016). Here, by establishing a simple wounding system, we show that wounding provokes a reorganisation of plasma membrane subdomains. This is followed by recruitment of the microtubule plus end-binding protein EB1/EBP-2 around the wound and actin ring formation, dependent on ARP2/3 branched actin polymerisation. We show that microtubule dynamics are required for the recruitment and closure of the actin ring, and for the trafficking of the key signalling protein SLC6/SNF-12 toward the injury site. Without SNF-12 recruitment, there is an abrogation of the immune response. Our results suggest that microtubule dynamics coordinate the cytoskeletal changes required for wound repair and the concomitant activation of innate immunity.
Collapse
Affiliation(s)
- Clara Taffoni
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Shizue Omi
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Caroline Huber
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Sébastien Mailfert
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Mathieu Fallet
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | | | - Jonathan J Ewbank
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| | - Nathalie Pujol
- CIML, Centre d’Immunologie de Marseille-Luminy, Turing Centre for Living SystemsAix Marseille Univ, INSERM, CNRSMarseilleFrance
| |
Collapse
|
3
|
Polanowska J, Chen JX, Soulé J, Omi S, Belougne J, Taffoni C, Pujol N, Selbach M, Zugasti O, Ewbank JJ. Evolutionary plasticity in the innate immune function of Akirin. PLoS Genet 2018; 14:e1007494. [PMID: 30036395 PMCID: PMC6072134 DOI: 10.1371/journal.pgen.1007494] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/02/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic gene expression requires the coordinated action of transcription factors, chromatin remodelling complexes and RNA polymerase. The conserved nuclear protein Akirin plays a central role in immune gene expression in insects and mammals, linking the SWI/SNF chromatin-remodelling complex with the transcription factor NFκB. Although nematodes lack NFκB, Akirin is also indispensable for the expression of defence genes in the epidermis of Caenorhabditis elegans following natural fungal infection. Through a combination of reverse genetics and biochemistry, we discovered that in C. elegans Akirin has conserved its role of bridging chromatin-remodellers and transcription factors, but that the identity of its functional partners is different since it forms a physical complex with NuRD proteins and the POU-class transcription factor CEH-18. In addition to providing a substantial step forward in our understanding of innate immune gene regulation in C. elegans, our results give insight into the molecular evolution of lineage-specific signalling pathways.
Collapse
Affiliation(s)
| | - Jia-Xuan Chen
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Julien Soulé
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Shizue Omi
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | - Clara Taffoni
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
4
|
A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis elegans. Genetics 2018; 208:1467-1482. [PMID: 29487136 PMCID: PMC5887142 DOI: 10.1534/genetics.118.300827] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 12/24/2022] Open
Abstract
Although extracellular matrices function as protective barriers to many types of environmental insult, their role in sensing stress and regulating adaptive gene induction responses has not been studied carefully... Extracellular matrix barriers and inducible cytoprotective genes form successive lines of defense against chemical and microbial environmental stressors. The barrier in nematodes is a collagenous extracellular matrix called the cuticle. In Caenorhabditis elegans, disruption of some cuticle collagen genes activates osmolyte and antimicrobial response genes. Physical damage to the epidermis also activates antimicrobial responses. Here, we assayed the effect of knocking down genes required for cuticle and epidermal integrity on diverse cellular stress responses. We found that disruption of specific bands of collagen, called annular furrows, coactivates detoxification, hyperosmotic, and antimicrobial response genes, but not other stress responses. Disruption of other cuticle structures and epidermal integrity does not have the same effect. Several transcription factors act downstream of furrow loss. SKN-1/Nrf and ELT-3/GATA are required for detoxification, SKN-1/Nrf is partially required for the osmolyte response, and STA-2/Stat and ELT-3/GATA for antimicrobial gene expression. Our results are consistent with a cuticle-associated damage sensor that coordinates detoxification, hyperosmotic, and antimicrobial responses through overlapping, but distinct, downstream signaling.
Collapse
|
5
|
Park S, Jung Y, An SWA, Son HG, Hwang W, Lee D, Artan M, Park HEH, Jeong DE, Lee Y, Lee SJV. RNAi targeting Caenorhabditis elegans α-arrestins has little effect on lifespan. F1000Res 2017; 6:1515. [PMID: 29123644 PMCID: PMC5657022 DOI: 10.12688/f1000research.12337.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 01/01/2023] Open
Abstract
Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of
Caenorhabditis elegans through an RNA interference screen. Results: We found that feeding worms with bacteria expressing double-stranded RNA against each of 24 out of total 29
C. elegans α-arrestins had little effect on lifespan. Thus, individual
C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.
Collapse
Affiliation(s)
- Sangsoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Yoonji Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Seon Woo A An
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Murat Artan
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Hae-Eun H Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Yujin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| | - Seung-Jae V Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea, South
| |
Collapse
|
6
|
Peel N, Iyer J, Naik A, Dougherty MP, Decker M, O’Connell KF. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication. PLoS Genet 2017; 13:e1006543. [PMID: 28103229 PMCID: PMC5289615 DOI: 10.1371/journal.pgen.1006543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 02/02/2017] [Accepted: 12/16/2016] [Indexed: 01/01/2023] Open
Abstract
In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulators I-2SZY-2 and SDS-22 as key regulators of ZYG-1 protein levels. We find that down-regulation of PP1 activity either directly, or by mutation of szy-2 or sds-22 can rescue the loss of centriole duplication associated with a zyg-1 hypomorphic allele. Suppression is achieved through an increase in ZYG-1 levels, and our data indicate that PP1 normally regulates ZYG-1 through a post-translational mechanism. While moderate inhibition of PP1 activity can restore centriole duplication to a zyg-1 mutant, strong inhibition of PP1 in a wild-type background leads to centriole amplification via the production of more than one daughter centriole. Our results thus define a new pathway that limits the number of daughter centrioles produced each cycle. The centrosomes are responsible for organizing the mitotic spindle a microtubule-based structure that centers, then segregates, the chromosomes during cell division. When a cell divides it normally possesses two centrosomes, allowing it to build a bipolar spindle and accurately segregate the chromosomes to two daughter cells. Appropriate control of centrosome number is therefore crucial to maintaining genome stability. Centrosome number is largely controlled by their regulated duplication. In particular, the protein Plk4, which is essential for duplication, must be strictly limited as an overabundance leads to excess centrosome duplication. We have identified protein phosphatase 1 as a critical regulator of the C. elegans Plk4 homolog (known as ZYG-1). When protein phosphatase 1 is down-regulated, ZYG-1 levels increase leading to centrosome amplification. Thus our work identifies a novel mechanism that limits centrosome duplication.
Collapse
Affiliation(s)
- Nina Peel
- Department of Biology, The College of New Jersey, Ewing, NJ, United States of America
- * E-mail: (NP); (KFO)
| | - Jyoti Iyer
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
| | - Anar Naik
- Department of Biology, The College of New Jersey, Ewing, NJ, United States of America
| | - Michael P. Dougherty
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
| | - Markus Decker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kevin F. O’Connell
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
- * E-mail: (NP); (KFO)
| |
Collapse
|
7
|
Zugasti O, Thakur N, Belougne J, Squiban B, Kurz CL, Soulé J, Omi S, Tichit L, Pujol N, Ewbank JJ. A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes. BMC Biol 2016; 14:35. [PMID: 27129311 PMCID: PMC4850687 DOI: 10.1186/s12915-016-0256-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/18/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Caenorhabditis elegans has emerged over the last decade as a useful model for the study of innate immunity. Its infection with the pathogenic fungus Drechmeria coniospora leads to the rapid up-regulation in the epidermis of genes encoding antimicrobial peptides. The molecular basis of antimicrobial peptide gene regulation has been previously characterized through forward genetic screens. Reverse genetics, based on RNAi, provide a complementary approach to dissect the worm's immune defenses. RESULTS We report here the full results of a quantitative whole-genome RNAi screen in C. elegans for genes involved in regulating antimicrobial peptide gene expression. The results will be a valuable resource for those contemplating similar RNAi-based screens and also reveal the limitations of such an approach. We present several strategies, including a comprehensive class clustering method, to overcome these limitations and which allowed us to characterize the different steps of the interaction between C. elegans and the fungus D. coniospora, leading to a complete description of the MAPK pathway central to innate immunity in C. elegans. The results further revealed a cross-tissue signaling, triggered by mitochondrial dysfunction in the intestine, that suppresses antimicrobial peptide gene expression in the nematode epidermis. CONCLUSIONS Overall, our results provide an unprecedented system's level insight into the regulation of C. elegans innate immunity. They represent a significant contribution to our understanding of host defenses and will lead to a better comprehension of the function and evolution of animal innate immunity.
Collapse
Affiliation(s)
- Olivier Zugasti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Nishant Thakur
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Jérôme Belougne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Barbara Squiban
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Section of Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C Léopold Kurz
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Julien Soulé
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Genomique Fonctionnelle, 141, rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Shizue Omi
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Laurent Tichit
- Institut de Mathématiques de Marseille, Aix Marseille Université, I2M Centrale Marseille, CNRS UMR 7373, 13453, Marseille, France
| | - Nathalie Pujol
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| | - Jonathan J Ewbank
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| |
Collapse
|
8
|
Sinha A, Rae R. Genome-Wide RNAi Screens in C. elegans to Identify Genes Influencing Lifespan and Innate Immunity. Methods Mol Biol 2016; 1470:171-182. [PMID: 27581293 DOI: 10.1007/978-1-4939-6337-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RNA interference is a rapid, inexpensive, and highly effective tool used to inhibit gene function. In C. elegans, whole genome screens have been used to identify genes involved with numerous traits including aging and innate immunity. RNAi in C. elegans can be carried out via feeding, soaking, or injection. Here we outline protocols used to maintain, grow, and carry out RNAi via feeding in C. elegans and determine whether the inhibited genes are essential for lifespan or innate immunity.
Collapse
Affiliation(s)
- Amit Sinha
- University of Massachusetts Medical School, LRB 770R, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Robbie Rae
- School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK.
| |
Collapse
|