1
|
Bernabei G, De Simone G, Becarelli S, Di Mambro R, Gentini A, Di Gregorio S. Co-metabolic growth and microbial diversity: Keys for the depletion of the α, δ, β and γ-HCH isomers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135963. [PMID: 39341188 DOI: 10.1016/j.jhazmat.2024.135963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The objective of this study was the isolation and enrichment of microbiomes capable of degrading the main hexachlorocyclohexane isomers quantified in environmental matrices, e.g.: the α, δ, β and γ-HCH isomers. Four microbiomes were isolated and enriched from an HCH-contaminated dumpsite in Italy, both in the presence of HCH isomers (1:1:1:1) as the sole carbon sources and under co-metabolic growth conditions in presence of glucose (0.1 % v/v). The microbiomes were assessed for their relevant metabolic capabilities. A quantitative metabarcoding approach was employed to analyze the compositional evolution of the four microbiomes during the enrichment phase and the phase of testing of the HCH isomers degradation kinetics. The use of a co-metabolic substrate during enrichment process was essential for selecting microbiomes with higher biodiversity. All microbiomes efficiently degraded the α, δ, and γ-HCH isomers. The highest efficiency in the β-HCH degradation capacity was positively correlated to the highest biodiversity of the microbiome, and the involvement of Chryseobacterium and Asinibacterium sps. have been proposed for a recorded increment in bacterial load during the HCH degradation process.
Collapse
|
2
|
Kaur J, Verma H, Kaur J, Lata P, Dhingra GG, Lal R. In Silico Analysis of the Phylogenetic and Physiological Characteristics of Sphingobium indicum B90A: A Hexachlorocyclohexane-Degrading Bacterium. Curr Microbiol 2024; 81:233. [PMID: 38904756 DOI: 10.1007/s00284-024-03762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
The study focuses on the in silico genomic characterization of Sphingobium indicum B90A, revealing a wealth of genes involved in stress response, carbon monoxide oxidation, β-carotene biosynthesis, heavy metal resistance, and aromatic compound degradation, suggesting its potential as a bioremediation agent. Furthermore, genomic adaptations among nine Sphingomonad strains were explored, highlighting shared core genes via pangenome analysis, including those related to the shikimate pathway and heavy metal resistance. The majority of genes associated with aromatic compound degradation, heavy metal resistance, and stress response were found within genomic islands across all strains. Sphingobium indicum UT26S exhibited the highest number of genomic islands, while Sphingopyxis alaskensis RB2256 had the maximum fraction of its genome covered by genomic islands. The distribution of lin genes varied among the strains, indicating diverse genetic responses to environmental pressures. Additionally, in silico evidence of horizontal gene transfer (HGT) between plasmids pSRL3 and pISP3 of the Sphingobium and Sphingomonas genera, respectively, has been provided. The manuscript offers novel insights into strain B90A, highlighting its role in horizontal gene transfer and refining evolutionary relationships among Sphingomonad strains. The discovery of stress response genes and the czcABCD operon emphasizes the potential of Sphingomonads in consortia development, supported by genomic island analysis.
Collapse
Affiliation(s)
- Jasvinder Kaur
- Department of Zoology, Gargi College, Siri Fort Road, New Delhi, 110049, India.
| | - Helianthous Verma
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, 110007, India
| | - Jaspreet Kaur
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, 110021, India
| | - Pushp Lata
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Gauri Garg Dhingra
- Department of Zoology, Kirori Mal College, University of Delhi, New Delhi, 110007, India
| | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, New Delhi, 110019, India.
| |
Collapse
|
3
|
Resendiz-Nava CN, Alonso-Onofre F, Silva-Rojas HV, Rebollar-Alviter A, Rivera-Pastrana DM, Stasiewicz MJ, Nava GM, Mercado-Silva EM. Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture System. Microorganisms 2023; 11:1633. [PMID: 37512805 PMCID: PMC10383152 DOI: 10.3390/microorganisms11071633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Tomato is the main vegetable cultivated under soilless culture systems (SCSs); production of organic tomato under SCSs has increased due to consumer demands for healthier and environmentally friendly vegetables. However, organic tomato production under SCSs has been associated with low crop performance and fruit quality defects. These agricultural deficiencies could be linked to alterations in tomato plant microbiota; nonetheless, this issue has not been sufficiently addressed. Thus, the main goal of the present study was to characterize the rhizosphere and phyllosphere of tomato plants cultivated under conventional and organic SCSs. To accomplish this goal, tomato plants grown in commercial greenhouses under conventional or organic SCSs were tested at 8, 26, and 44 weeks after seedling transplantation. Substrate (n = 24), root (n = 24), and fruit (n = 24) composite samples were subjected to DNA extraction and high-throughput 16S rRNA gene sequencing. The present study revealed that the tomato core microbiota was predominantly constituted by Proteobacteria, Actinobacteria, and Firmicutes. Remarkably, six bacterial families, Bacillaceae, Microbacteriaceae, Nocardioidaceae, Pseudomonadaceae, Rhodobacteraceae, and Sphingomonadaceae, were shared among all substrate, rhizosphere, and fruit samples. Importantly, it was shown that plants under organic SCSs undergo a dysbiosis characterized by significant changes in the relative abundance of Bradyrhizobiaceae, Caulobacteraceae, Chitinophagaceae, Enterobacteriaceae, Erythrobacteraceae, Flavobacteriaceae, Nocardioidaceae, Rhodobacteraceae, and Streptomycetaceae. These results suggest that microbial alterations in substrates, roots, and fruits could be potential factors in contributing to the crop performance and fruit quality deficiencies observed in organic SCSs.
Collapse
Affiliation(s)
- Carolina N Resendiz-Nava
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | | | - Hilda V Silva-Rojas
- Posgrado en Recursos Geneticos y Productividad, Produccion de Semillas, Colegio de Postgraduados, Km 36.5 Carretera Mexico-Texcoco, Texcoco 56264, Mexico
| | - Angel Rebollar-Alviter
- Centro Regional Morelia, Universidad Autonoma de Chapingo, Morelia 58170, Michoacan, Mexico
| | - Dulce M Rivera-Pastrana
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | - Matthew J Stasiewicz
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1302W Pennsylvania Ave, Urbana, IL 61801, USA
| | - Gerardo M Nava
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | - Edmundo M Mercado-Silva
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| |
Collapse
|
4
|
Wu SC, Chang BS, Li YY. Effect of the coexistence of endosulfan on the lindane biodegradation by Novosphingobium barchaimii and microbial enrichment cultures. CHEMOSPHERE 2022; 297:134063. [PMID: 35192855 DOI: 10.1016/j.chemosphere.2022.134063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/30/2022] [Accepted: 02/18/2022] [Indexed: 05/06/2023]
Abstract
Organochlorine pesticides, especially lindane and endosulfan, have been demonstrated to be both biodegradable and frequently coexistent, but their inhibitory effect has never been studied. In this study, we investigated the effect of endosulfan coexistence on lindane degradation to a lindane-degrading isolate, Novosphingobium barchaimii strain LL02, and mixed enrichment cultures from two different inocula. Our results of the lindane degradation batch experiments demonstrated that endosulfan concentration above 20 mg L-1 causes significant inhibition to the lindane degradation efficiency of the strain LL02. Besides, the acidic conditions at pH 5.0 to 6.0 further decreased its lindane degradation rate constants by 57% compared to the neutral and alkaline conditions. For the mixed microbial cultures, the lindane degradation efficiency in the lindane/endosulfan co-contamination conditions decreased by 35.7%-50.7% compared to the lindane alone conditions. From our 16S rRNA amplicon sequencing results through the PacBio platform, most of the predominant bacteria in the lindane-enriched cultures were depressed in the lindane/endosulfan-enriched cultures. Moreover, bacteria of Burkholderia australis, Chujaibacter soli, Flavitalea flava, and one Rhodanobacteraceae bacterium were relatively highly abundant in the co-contamination enrichment cultures, suggesting their potential for lindane degradation under the endosulfan stress. Our results demonstrated that endosulfan coexistence causes inhibitory impacts on lindane biodegradation toward both lindane-degrading bacteria and mixed microbial cultures. The coexistence of multiple organochlorine pesticides on the biodegradation efficiencies should be carefully considered when applying bioremediation to remove organochlorine pesticide contamination.
Collapse
Affiliation(s)
- Siang Chen Wu
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Bo-Sheng Chang
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Yu-Ying Li
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| |
Collapse
|
5
|
Wang B, Gao J, Xu J, Fu X, Han H, Li Z, Wang L, Zhang F, Tian Y, Peng R, Yao Q. Optimization and reconstruction of two new complete degradation pathways for 3-chlorocatechol and 4-chlorocatechol in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126428. [PMID: 34171665 DOI: 10.1016/j.jhazmat.2021.126428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Chlorinated aromatic compounds are a serious environmental concern because of their widespread occurrence throughout the environment. Although several microorganisms have evolved to gain the ability to degrade chlorinated aromatic compounds and use them as carbon sources, they still cannot meet the diverse needs of pollution remediation. In this study, the degradation pathways for 3-chlorocatechol (3CC) and 4-chlorocatechol (4CC) were successfully reconstructed by the optimization, synthesis, and assembly of functional genes from different strains. The addition of a 13C-labeled substrate and functional analysis of different metabolic modules confirmed that the genetically engineered strains can metabolize chlorocatechol similar to naturally degrading strains. The strain containing either of these artificial pathways can degrade catechol, 3CC, and 4CC completely, although differences in the degradation efficiency may be noted. Proteomic analysis and scanning electron microscopy observation showed that 3CC and 4CC have toxic effects on Escherichia coli, but the engineered bacteria can significantly eliminate these inhibitory effects. As core metabolic pathways for the degradation of chloroaromatics, the two chlorocatechol degradation pathways constructed in this study can be used to construct pollution remediation-engineered bacteria, and the related technologies may be applied to construct complete degradation pathways for complex organic hazardous materials.
Collapse
Affiliation(s)
- Bo Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Jianjie Gao
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Jing Xu
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Xiaoyan Fu
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Hongjuan Han
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Zhenjun Li
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Lijuan Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Fujian Zhang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Yongsheng Tian
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China.
| | - Rihe Peng
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China.
| | - Quanhong Yao
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China.
| |
Collapse
|
6
|
Genome-Wide Analysis Reveals Genetic Potential for Aromatic Compounds Biodegradation of Sphingopyxis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5849123. [PMID: 32596333 PMCID: PMC7273453 DOI: 10.1155/2020/5849123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Members of genus Sphingopyxis are frequently found in diverse eco-environments worldwide and have been traditionally considered to play vital roles in the degradation of aromatic compounds. Over recent decades, many aromatic-degrading Sphingopyxis strains have been isolated and recorded, but little is known about their genetic nature related to aromatic compounds biodegradation. In this study, bacterial genomes of 19 Sphingopyxis strains were used for comparative analyses. Phylogeny showed an ambiguous relatedness between bacterial strains and their habitat specificity, while clustering based on Cluster of Orthologous Groups suggested the potential link of functional profile with substrate-specific traits. Pan-genome analysis revealed that 19 individuals were predicted to share 1,066 orthologous genes, indicating a high genetic homogeneity among Sphingopyxis strains. Notably, KEGG Automatic Annotation Server results suggested that most genes pertaining aromatic compounds biodegradation were predicted to be involved in benzoate, phenylalanine, and aminobenzoate metabolism. Among them, β-ketoadipate biodegradation might be the main pathway in Sphingopyxis strains. Further inspection showed that a number of mobile genetic elements varied in Sphingopyxis genomes, and plasmid-mediated gene transfer coupled with prophage- and transposon-mediated rearrangements might play prominent roles in the evolution of bacterial genomes. Collectively, our findings presented that Sphingopyxis isolates might be the promising candidates for biodegradation of aromatic compounds in pollution sites.
Collapse
|
7
|
Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in Pseudomonas sp. Strain SG-MS2. Appl Environ Microbiol 2020; 86:AEM.00375-20. [PMID: 32198167 DOI: 10.1128/aem.00375-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
Burkholderia sp. strain SG-MS1 and Pseudomonas sp. strain SG-MS2 have previously been found to mineralize (+)-pinoresinol through a common catabolic pathway. Here, we used comparative genomics, proteomics, protein semipurification, and heterologous expression to identify a flavoprotein from the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family in SG-MS2 that carries out the initial hydroxylation of (+)-pinoresinol at the benzylic carbon. The cognate gene is translationally coupled with a downstream cytochrome gene, and the cytochrome is required for activity. The flavoprotein has a unique combination of cofactor binding and cytochrome requirements for the VAO/PCMH family. The heterologously expressed enzyme has a Km of 1.17 μM for (+)-pinoresinol. The enzyme is overexpressed in strain SG-MS2 upon exposure to (+)-pinoresinol, along with 45 other proteins, 22 of which were found to be encoded by genes in an approximately 35.1-kb cluster also containing the flavoprotein and cytochrome genes. Homologs of 18 of these 22 genes, plus the flavoprotein and cytochrome genes, were also found in a 38.7-kb cluster in SG-MS1. The amino acid identities of four of the other proteins within the SG-MS2 cluster suggest they catalyze conversion of hydroxylated pinoresinol to protocatechuate and 2-methoxyhydroquinone. Nine other proteins upregulated in SG-MS2 on exposure to (+)-pinoresinol appear to be homologs of proteins known to comprise the protocatechuate and 2-methoxyhydroquinone catabolic pathways, but only three of the cognate genes lie within the cluster containing the flavoprotein and cytochrome genes.IMPORTANCE (+)-Pinoresinol is an important plant defense compound, a major food lignan for humans and some other animals, and the model compound used to study degradation of the β-β' linkages in lignin. We report a gene cluster, in one strain each of Pseudomonas and Burkholderia, that is involved in the oxidative catabolism of (+)-pinoresinol. The flavoprotein component of the α-hydroxylase which heads the pathway belongs to the 4-phenol oxidizing (4PO) subgroup of the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family but constitutes a novel combination of cofactor and electron acceptor properties for the family. It is translationally coupled with a cytochrome gene whose product is also required for activity. The work casts new light on the biology of (+)-pinoresinol and its transformation to other bioactive molecules. Potential applications of the findings include new options for deconstructing lignin into useful chemicals and the generation of new phytoestrogenic enterolactones from lignans.
Collapse
|
8
|
Glasner ME, Truong DP, Morse BC. How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. FEBS J 2020; 287:1323-1342. [PMID: 31858709 DOI: 10.1111/febs.15185] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
Promiscuity is the coincidental ability of an enzyme to catalyze its native reaction and additional reactions that are not biological functions in the same active site. Promiscuity plays a central role in enzyme evolution and is thus a useful property for protein and metabolic engineering. This review examines enzyme evolution holistically, beginning with evaluating biochemical support for four enzyme evolution models. As expected, there is strong biochemical support for the subfunctionalization and innovation-amplification-divergence models, in which promiscuity is a central feature. In many cases, however, enzyme evolution is more complex than the models indicate, suggesting much is yet to be learned about selective pressures on enzyme function. A complete understanding of enzyme evolution must also explain the ability of metabolic networks to integrate new enzyme activities. Hidden within metabolic networks are underground metabolic pathways constructed from promiscuous activities. We discuss efforts to determine the diversity and pervasiveness of underground metabolism. Remarkably, several studies have discovered that some metabolic defects can be repaired via multiple underground routes. In prokaryotes, metabolic innovation is driven by connecting enzymes acquired by horizontal gene transfer (HGT) into the metabolic network. Thus, we end the review by discussing how the combination of promiscuity and HGT contribute to evolution of metabolism in prokaryotes. Future studies investigating the contribution of promiscuity to enzyme and metabolic evolution will need to integrate deeper probes into the influence of evolution on protein biophysics, enzymology, and metabolism with more complex and realistic evolutionary models. ENZYMES: lactate dehydrogenase (EC 1.1.1.27), malate dehydrogenase (EC 1.1.1.37), OSBS (EC 4.2.1.113), HisA (EC 5.3.1.16), TrpF, PriA (EC 5.3.1.24), R-mandelonitrile lyase (EC 4.1.2.10), Maleylacetate reductase (EC 1.3.1.32).
Collapse
Affiliation(s)
- Margaret E Glasner
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Dat P Truong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Benjamin C Morse
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Nagata Y, Kato H, Ohtsubo Y, Tsuda M. Lessons from the genomes of lindane-degrading sphingomonads. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:630-644. [PMID: 31063253 DOI: 10.1111/1758-2229.12762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 05/27/2023]
Abstract
Bacterial strains capable of degrading man-made xenobiotic compounds are good materials to study bacterial evolution towards new metabolic functions. Lindane (γ-hexachlorocyclohexane, γ-HCH, or γ-BHC) is an especially good target compound for the purpose, because it is relatively recalcitrant but can be degraded by a limited range of bacterial strains. A comparison of the complete genome sequences of lindane-degrading sphingomonad strains clearly demonstrated that (i) lindane-degrading strains emerged from a number of different ancestral hosts that have recruited lin genes encoding enzymes that are able to channel lindane to central metabolites, (ii) in sphingomonads lin genes have been acquired by horizontal gene transfer mediated by different plasmids and in which IS6100 plays a role in recruitment and distribution of genes, and (iii) IS6100 plays a role in dynamic genome rearrangements providing genetic diversity to different strains and ability to evolve to other states. Lindane-degrading bacteria whose genomes change so easily and quickly are also fascinating starting materials for tracing the bacterial evolution process experimentally in a relatively short time period. As the origin of the specific lin genes remains a mystery, such genes will be useful probes for exploring the cryptic 'gene pool' available to bacteria.
Collapse
Affiliation(s)
- Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Hiromi Kato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| |
Collapse
|
10
|
Kaminski MA, Sobczak A, Dziembowski A, Lipinski L. Genomic Analysis of γ-Hexachlorocyclohexane-Degrading Sphingopyxis lindanitolerans WS5A3p Strain in the Context of the Pangenome of Sphingopyxis. Genes (Basel) 2019; 10:E688. [PMID: 31500174 PMCID: PMC6771000 DOI: 10.3390/genes10090688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022] Open
Abstract
Sphingopyxis inhabit diverse environmental niches, including marine, freshwater, oceans, soil and anthropogenic sites. The genus includes 20 phylogenetically distinct, valid species, but only a few with a sequenced genome. In this work, we analyzed the nearly complete genome of the newly described species, Sphingopyxislindanitolerans, and compared it to the other available Sphingopyxis genomes. The genome included 4.3 Mbp in total and consists of a circular chromosome, and two putative plasmids. Among the identified set of lin genes responsible for γ-hexachlorocyclohexane pesticide degradation, we discovered a gene coding for a new isoform of the LinA protein. The significant potential of this species in the remediation of contaminated soil is also correlated with the fact that its genome encodes a higher number of enzymes potentially involved in aromatic compound degradation than for most other Sphingopyxis strains. Additional analysis of 44 Sphingopyxis representatives provides insights into the pangenome of Sphingopyxis and revealed a core of 734 protein clusters and between four and 1667 unique proteins per genome.
Collapse
Affiliation(s)
- Michal A Kaminski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Adam Sobczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Leszek Lipinski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
11
|
Gutleben J, Koehorst JJ, McPherson K, Pomponi S, Wijffels RH, Smidt H, Sipkema D. Diversity of tryptophan halogenases in sponges of the genus Aplysina. FEMS Microbiol Ecol 2019; 95:fiz108. [PMID: 31276591 PMCID: PMC6644159 DOI: 10.1093/femsec/fiz108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Marine sponges are a prolific source of novel enzymes with promising biotechnological potential. Especially halogenases, which are key enzymes in the biosynthesis of brominated and chlorinated secondary metabolites, possess interesting properties towards the production of pharmaceuticals that are often halogenated. In this study we used a polymerase chain reaction (PCR)-based screening to simultaneously examine and compare the richness and diversity of putative tryptophan halogenase protein sequences and bacterial community structures of six Aplysina species from the Mediterranean and Caribbean seas. At the phylum level, bacterial community composition was similar amongst all investigated species and predominated by Actinobacteria, Chloroflexi, Cyanobacteria, Gemmatimonadetes, and Proteobacteria. We detected four phylogenetically diverse clades of putative tryptophan halogenase protein sequences, which were only distantly related to previously reported halogenases. The Mediterranean species Aplysina aerophoba harbored unique halogenase sequences, of which the most predominant was related to a sponge-associated Psychrobacter-derived sequence. In contrast, the Caribbean species shared numerous novel halogenase sequence variants and exhibited a highly similar bacterial community composition at the operational taxonomic unit (OTU) level. Correlations of relative abundances of halogenases with those of bacterial taxa suggest that prominent sponge symbiotic bacteria, including Chloroflexi and Actinobacteria, are putative producers of the detected enzymes and may thus contribute to the chemical defense of their host.
Collapse
Affiliation(s)
- Johanna Gutleben
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Kyle McPherson
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Shirley Pomponi
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
- Florida Atlantic University – Harbor Branch, 5600 U.S. 1, Fort Pierce, FL 34946, the United States
| | - René H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
12
|
Wang J, Wang C, Li J, Bai P, Li Q, Shen M, Li R, Li T, Zhao J. Comparative Genomics of Degradative Novosphingobium Strains With Special Reference to Microcystin-Degrading Novosphingobium sp. THN1. Front Microbiol 2018; 9:2238. [PMID: 30319567 PMCID: PMC6167471 DOI: 10.3389/fmicb.2018.02238] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria in genus Novosphingobium associated with biodegradation of substrates are prevalent in environments such as lakes, soil, sea, wood and sediments. To better understand the characteristics linked to their wide distribution and metabolic versatility, we report the whole genome sequence of Novosphingobium sp. THN1, a microcystin-degrading strain previously isolated by Jiang et al. (2011) from cyanobacteria-blooming water samples from Lake Taihu, China. We performed a genomic comparison analysis of Novosphingobium sp. THN1 with 21 other degradative Novosphingobium strains downloaded from GenBank. Phylogenetic trees were constructed using 16S rRNA genes, core genes, protein-coding sequences, and average nucleotide identity of whole genomes. Orthologous protein analysis showed that the 22 genomes contained 674 core genes and each strain contained a high proportion of distributed genes that are shared by a subset of strains. Inspection of their genomic plasticity revealed a high number of insertion sequence elements and genomic islands that were distributed on both chromosomes and plasmids. We also compared the predicted functional profiles of the Novosphingobium protein-coding genes. The flexible genes and all protein-coding genes produced the same heatmap clusters. The COG annotations were used to generate a dendrogram correlated with the compounds degraded. Furthermore, the metabolic profiles predicted from KEGG pathways showed that the majority of genes involved in central carbon metabolism, nitrogen, phosphate, sulfate metabolism, energy metabolism and cell mobility (above 62.5%) are located on chromosomes. Whereas, a great many of genes involved in degradation pathways (21-50%) are located on plasmids. The abundance and distribution of aromatics-degradative mono- and dioxygenases varied among 22 Novosphingoibum strains. Comparative analysis of the microcystin-degrading mlr gene cluster provided evidence for horizontal acquisition of this cluster. The Novosphingobium sp. THN1 genome sequence contained all the functional genes crucial for microcystin degradation and the mlr gene cluster shared high sequence similarity (≥85%) with the sequences of other microcystin-degrading genera isolated from cyanobacteria-blooming water. Our results indicate that Novosphingobium species have high genomic and functional plasticity, rearranging their genomes according to environment variations and shaping their metabolic profiles by the substrates they are exposed to, to better adapt to their environments.
Collapse
Affiliation(s)
- Juanping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jionghui Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mengyuan Shen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Renhui Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
13
|
Kumar D, Pannu R. Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: a review. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0213-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Nielsen TK, Rasmussen M, Demanèche S, Cecillon S, Vogel TM, Hansen LH. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH. Genome Biol Evol 2018; 9:2477-2490. [PMID: 28961970 PMCID: PMC5737581 DOI: 10.1093/gbe/evx185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 12/03/2022] Open
Abstract
Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology.
Collapse
Affiliation(s)
| | | | - Sandrine Demanèche
- Environmental Microbial Genomics, Laboratoire Ampère (CNRS UMR5005), École Centrale de Lyon, Université de Lyon, Ecully, France
| | - Sébastien Cecillon
- Environmental Microbial Genomics, Laboratoire Ampère (CNRS UMR5005), École Centrale de Lyon, Université de Lyon, Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère (CNRS UMR5005), École Centrale de Lyon, Université de Lyon, Ecully, France
| | | |
Collapse
|
15
|
Cuozzo SA, Sineli PE, Davila Costa J, Tortella G. Streptomyces sp. is a powerful biotechnological tool for the biodegradation of HCH isomers: biochemical and molecular basis. Crit Rev Biotechnol 2017; 38:719-728. [PMID: 29124958 DOI: 10.1080/07388551.2017.1398133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Actinobacteria are well-known degraders of toxic materials that have the ability to tolerate and remove organochloride pesticides; thus, they are used for bioremediation. The biodegradation of organochlorines by actinobacteria has been demonstrated in pure and mixed cultures with the concomitant production of metabolic intermediates including γ-pentachlorocyclohexene (γ-PCCH); 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN); 1,2-dichlorobenzene (1,2-DCB), 1,3-dichlorobenzene (1,3-DCB), or 1,4-dichlorobenzene (1,4-DCB); 1,2,3-trichlorobenzene (1,2,3-TCB), 1,2,4-trichlorobenzene (1,2,4-TCB), or 1,3,5-trichlorobenzene (1,3,5-TCB); 1,3-DCB; and 1,2-DCB. Chromatography coupled to mass spectrometric detection, especially GC-MS, is typically used to determine HCH-isomer metabolites. The important enzymes involved in HCH isomer degradation metabolic pathways include hexachlorocyclohexane dehydrochlorinase (LinA), haloalkane dehalogenase (LinB), and alcohol dehydrogenase (LinC). The metabolic versatility of these enzymes is known. Advances have been made in the identification of actinobacterial haloalkane dehydrogenase, which is encoded by linB. This knowledge will permit future improvements in biodegradation processes using Actinobacteria. The enzymatic and genetic characterizations of the molecular mechanisms involved in these processes have not been fully elucidated, necessitating further studies. New advances in this area suggest promising results. The scope of this paper encompasses the following: (i) the aerobic degradation pathways of hexachlorocyclohexane (HCH) isomers; (ii) the important genes and enzymes involved in the metabolic pathways of HCH isomer degradation; and (iii) the identification and quantification of intermediate metabolites through gas chromatography coupled to mass spectrometry (GC-MS).
Collapse
Affiliation(s)
- S A Cuozzo
- a Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET) , Tucumán , Argentina.,b Facultad de Ciencias Naturales e Instituto Miguel Lillo , Universidad Nacional de Tucumán , Tucumán , Argentina
| | - P E Sineli
- a Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET) , Tucumán , Argentina
| | - J Davila Costa
- a Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET) , Tucumán , Argentina
| | - G Tortella
- c Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA) , Universidad de La Frontera , Temuco , Chile.,d Departamento de Ingeniería Química , Universidad de La Frontera , Temuco , Chile
| |
Collapse
|
16
|
Verma H, Bajaj A, Kumar R, Kaur J, Anand S, Nayyar N, Puri A, Singh Y, Khurana JP, Lal R. Genome Organization of Sphingobium indicum B90A: An Archetypal Hexachlorocyclohexane (HCH) Degrading Genotype. Genome Biol Evol 2017; 9:2191-2197. [PMID: 28922869 PMCID: PMC5737386 DOI: 10.1093/gbe/evx133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 12/23/2022] Open
Abstract
Among sphingomonads, Sphingobium indicum B90A is widely investigated for its ability to degrade a manmade pesticide, γ-hexachlorocyclohexane (γ-HCH) and its isomers (α-, β-, δ-, and ε-HCH). In this study, complete genome of strain B90A was constructed using Single Molecule Real Time Sequencing (SMRT) and Illumina platform. The complete genome revealed that strain B90A harbors four replicons: one chromosome (3,654,322 bp) and three plasmids designated as pSRL1 (139,218 bp), pSRL2 (108,430 bp) and pSRL3 (43,761 bp). The study determined the precise location of lin genes (genes associated with the degradation of HCH isomers), for example, linA2, linB, linDER, linF, linGHIJ, and linKLMN on the chromosome; linA1, linC, and linF on pSRL1 and linDEbR on pSRL3. Strain B90A contained 26 copies of IS6100 element and most of them (15 copies) was found to be associated with lin genes. Duplication of several lin genes including linA, linDER, linGHIJ, and linF along with two variants of linE, that is, linEa (hydroquinone 1,2-dioxygenase) and linEb (chlorohydroquinone/hydroquinone 1,2-dioxygenase) were identified. This suggests that strain B90A not only possess efficient machinery for upper and lower HCH degradation pathways but it can also act on both hydroquinone and chlorohydroquinone metabolites produced during γ-HCH degradation. Synteny analysis revealed the duplication and transposition of linA gene (HCH dehydrochlorinase) between the chromosome and pSRL1, possibly through homologous recombination between adjacent IS6100 elements. Further, in silico analysis and laboratory experiments revealed that incomplete tyrosine metabolism was responsible for the production of extracellular brown pigment which distinguished strain B90A from other HCH degrading sphingomonads. The precise localization of lin genes, and transposable elements (IS6100) on different replicons now opens up several experimental avenues to elucidate the functions and regulatory mechanism of lin genes acquisition and transfer that were not completely known among the bacterial population inhabiting the HCH contaminated environment.
Collapse
Affiliation(s)
- Helianthous Verma
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, India
| | - Abhay Bajaj
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, India
| | - Roshan Kumar
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, India
| | - Jasvinder Kaur
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, India
| | - Shailly Anand
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, India
| | - Namita Nayyar
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, India
| | - Akshita Puri
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, India
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, India
| | - Jitendra P. Khurana
- Department of Plant Molecular Biology, Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, India
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, India
| |
Collapse
|
17
|
Comparative Genomic Analysis Reveals Habitat-Specific Genes and Regulatory Hubs within the Genus Novosphingobium. mSystems 2017; 2:mSystems00020-17. [PMID: 28567447 PMCID: PMC5443232 DOI: 10.1128/msystems.00020-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/17/2017] [Indexed: 11/24/2022] Open
Abstract
This study highlights the significant role of the genetic repertoire of a microorganism in the similarity between Novosphingobium strains. The results suggest that the phylogenetic relationships were mostly influenced by metabolic trait enrichment, which is possibly governed by the microenvironment of each microbe’s respective niche. Using core genome analysis, the enrichment of a certain set of genes specific to a particular habitat was determined, which provided insights on the influence of habitat on the distribution of metabolic traits for Novosphingobium strains. We also identified habitat-specific protein hubs, which suggested delineation of Novosphingobium strains based on their habitat. Examining the available genomes of ecologically diverse bacterial species and analyzing the habitat-specific genes are useful for understanding the distribution and evolution of functional and phylogenetic diversity in the genus Novosphingobium. Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups—rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats—freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a key role in habitat demarcation and extend our understanding of the metabolic versatility of the Novosphingobium species. IMPORTANCE This study highlights the significant role of a microorganism’s genetic repertoire in structuring the similarity between Novosphingobium strains. The results suggest that the phylogenetic relationships were mostly influenced by metabolic trait enrichment, which is possibly governed by the microenvironment of each microbe’s respective niche. Using core genome analysis, the enrichment of a certain set of genes specific to a particular habitat was determined, which provided insights on the influence of habitat on the distribution of metabolic traits in Novosphingobium strains. We also identified habitat-specific protein hubs, which suggested delineation of Novosphingobium strains based on their habitat. Examining the available genomes of ecologically diverse bacterial species and analyzing the habitat-specific genes are useful for understanding the distribution and evolution of functional and phylogenetic diversity in the genus Novosphingobium.
Collapse
|
18
|
Gasc C, Peyret P. Revealing large metagenomic regions through long DNA fragment hybridization capture. MICROBIOME 2017; 5:33. [PMID: 28292322 PMCID: PMC5351058 DOI: 10.1186/s40168-017-0251-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/05/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND High-throughput DNA sequencing technologies have revolutionized genomic analysis, including the de novo assembly of whole genomes from single organisms or metagenomic samples. However, due to the limited capacity of short-read sequence data to assemble complex or low coverage regions, genomes are typically fragmented, leading to draft genomes with numerous underexplored large genomic regions. Revealing these missing sequences is a major goal to resolve concerns in numerous biological studies. METHODS To overcome these limitations, we developed an innovative target enrichment method for the reconstruction of large unknown genomic regions. Based on a hybridization capture strategy, this approach enables the enrichment of large genomic regions allowing the reconstruction of tens of kilobase pairs flanking a short, targeted DNA sequence. RESULTS Applied to a metagenomic soil sample targeting the linA gene, the biomarker of hexachlorocyclohexane (HCH) degradation, our method permitted the enrichment of the gene and its flanking regions leading to the reconstruction of several contigs and complete plasmids exceeding tens of kilobase pairs surrounding linA. Thus, through gene association and genome reconstruction, we identified microbial species involved in HCH degradation which constitute targets to improve biostimulation treatments. CONCLUSIONS This new hybridization capture strategy makes surveying and deconvoluting complex genomic regions possible through large genomic regions enrichment and allows the efficient exploration of metagenomic diversity. Indeed, this approach enables to assign identity and function to microorganisms in natural environments, one of the ultimate goals of microbial ecology.
Collapse
Affiliation(s)
- Cyrielle Gasc
- Université Clermont Auvergne, INRA, MEDIS, 63000 Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRA, MEDIS, 63000 Clermont-Ferrand, France
| |
Collapse
|
19
|
Tabata M, Ohhata S, Nikawadori Y, Kishida K, Sato T, Kawasumi T, Kato H, Ohtsubo Y, Tsuda M, Nagata Y. Comparison of the complete genome sequences of four γ-hexachlorocyclohexane-degrading bacterial strains: insights into the evolution of bacteria able to degrade a recalcitrant man-made pesticide. DNA Res 2016; 23:581-599. [PMID: 27581378 PMCID: PMC5144681 DOI: 10.1093/dnares/dsw041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/09/2016] [Indexed: 11/20/2022] Open
Abstract
γ-Hexachlorocyclohexane (γ-HCH) is a recalcitrant man-made chlorinated pesticide. Here, the complete genome sequences of four γ-HCH-degrading sphingomonad strains, which are most unlikely to have been derived from one ancestral γ-HCH degrader, were compared. Together with several experimental data, we showed that (i) all the four strains carry almost identical linA to linE genes for the conversion of γ-HCH to maleylacetate (designated “specific” lin genes), (ii) considerably different genes are used for the metabolism of maleylacetate in one of the four strains, and (iii) the linKLMN genes for the putative ABC transporter necessary for γ-HCH utilization exhibit structural divergence, which reflects the phylogenetic relationship of their hosts. Replicon organization and location of the lin genes in the four genomes are significantly different with one another, and that most of the specific lin genes are located on multiple sphingomonad-unique plasmids. Copies of IS6100, the most abundant insertion sequence in the four strains, are often located in close proximity to the specific lin genes. Analysis of the footprints of target duplication upon IS6100 transposition and the experimental detection of IS6100 transposition strongly suggested that the IS6100 transposition has caused dynamic genome rearrangements and the diversification of lin-flanking regions in the four strains.
Collapse
Affiliation(s)
- Michiro Tabata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Satoshi Ohhata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Yuki Nikawadori
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Kouhei Kishida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Takuya Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Toru Kawasumi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Hiromi Kato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| |
Collapse
|