1
|
van Workum DJM, Mehrem SL, Snoek BL, Alderkamp MC, Lapin D, Mulder FFM, Van den Ackerveken G, de Ridder D, Schranz ME, Smit S. Lactuca super-pangenome reduces bias towards reference genes in lettuce research. BMC PLANT BIOLOGY 2024; 24:1019. [PMID: 39468479 PMCID: PMC11514843 DOI: 10.1186/s12870-024-05712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Breeding of lettuce (Lactuca sativa L.), the most important leafy vegetable worldwide, for enhanced disease resistance and resilience relies on multiple wild relatives to provide the necessary genetic diversity. In this study, we constructed a super-pangenome based on four Lactuca species (representing the primary, secondary and tertiary gene pools) and comprising 474 accessions. We include 68 newly sequenced accessions to improve cultivar coverage and add important foundational breeding lines. RESULTS With the super-pangenome we find substantial presence/absence variation (PAV) and copy-number variation (CNV). Functional enrichment analyses of core and variable genes show that transcriptional regulators are conserved whereas disease resistance genes are variable. PAV-genome-wide association studies (GWAS) and CNV-GWAS are largely congruent with single-nucleotide polymorphism (SNP)-GWAS. Importantly, they also identify several major novel quantitative trait loci (QTL) for resistance against Bremia lactucae in variable regions not present in the reference lettuce genome. The usability of the super-pangenome is demonstrated by identifying the likely origin of non-reference resistance loci from the wild relatives Lactuca serriola, Lactuca saligna and Lactuca virosa. CONCLUSIONS The super-pangenome offers a broader view on the gene repertoire of lettuce, revealing relevant loci that are not in the reference genome(s). The provided methodology and data provide a strong basis for research into PAVs, CNVs and other variation underlying important biological traits of lettuce and other crops.
Collapse
Affiliation(s)
- Dirk-Jan M van Workum
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Sarah L Mehrem
- Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Basten L Snoek
- Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Marrit C Alderkamp
- Translational Plant Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Dmitry Lapin
- Translational Plant Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Flip F M Mulder
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | | | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Sandra Smit
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands.
| |
Collapse
|
2
|
Thomas WJW, Amas JC, Dolatabadian A, Huang S, Zhang F, Zandberg JD, Neik TX, Edwards D, Batley J. Recent advances in the improvement of genetic resistance against disease in vegetable crops. PLANT PHYSIOLOGY 2024; 196:32-46. [PMID: 38796840 PMCID: PMC11376385 DOI: 10.1093/plphys/kiae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/10/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Affiliation(s)
- William J W Thomas
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Junrey C Amas
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Aria Dolatabadian
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Fangning Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jaco D Zandberg
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Ting Xiang Neik
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
- NUS Agritech Centre, National University of Singapore, Singapore, 118258, Republic of Singapore
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
- Centre for Applied Bioinformatics, The University of Western Australia, Perth, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| |
Collapse
|
3
|
Woudstra Y, Tumas H, van Ghelder C, Hung TH, Ilska JJ, Girardi S, A’Hara S, McLean P, Cottrell J, Bohlmann J, Bousquet J, Birol I, Woolliams JA, MacKay JJ. Conifers Concentrate Large Numbers of NLR Immune Receptor Genes on One Chromosome. Genome Biol Evol 2024; 16:evae113. [PMID: 38787537 PMCID: PMC11171428 DOI: 10.1093/gbe/evae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes form a major line of defense in plants, acting in both pathogen recognition and resistance machinery activation. NLRs are reported to form large gene clusters in limber pine (Pinus flexilis), but it is unknown how widespread this genomic architecture may be among the extant species of conifers (Pinophyta). We used comparative genomic analyses to assess patterns in the abundance, diversity, and genomic distribution of NLR genes. Chromosome-level whole genome assemblies and high-density linkage maps in the Pinaceae, Cupressaceae, Taxaceae, and other gymnosperms were scanned for NLR genes using existing and customized pipelines. The discovered genes were mapped across chromosomes and linkage groups and analyzed phylogenetically for evolutionary history. Conifer genomes are characterized by dense clusters of NLR genes, highly localized on one chromosome. These clusters are rich in TNL-encoding genes, which seem to have formed through multiple tandem duplication events. In contrast to angiosperms and nonconiferous gymnosperms, genomic clustering of NLR genes is ubiquitous in conifers. NLR-dense genomic regions are likely to influence a large part of the plant's resistance, informing our understanding of adaptation to biotic stress and the development of genetic resources through breeding.
Collapse
Affiliation(s)
| | - Hayley Tumas
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Cyril van Ghelder
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis 06903, France
| | - Tin Hang Hung
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Joana J Ilska
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Sebastien Girardi
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, Canada G1V 0A6
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada GIV 0A6
| | - Stuart A’Hara
- Forest Research, Northern Research Station, Roslin, Midlothian EH25 9SY, UK
| | - Paul McLean
- Forest Research, Northern Research Station, Roslin, Midlothian EH25 9SY, UK
| | - Joan Cottrell
- Forest Research, Northern Research Station, Roslin, Midlothian EH25 9SY, UK
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, Canada G1V 0A6
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada V5Z 4S6
| | - John A Woolliams
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - John J MacKay
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
4
|
Xiong W, Berke L, Michelmore R, van Workum DJM, Becker FFM, Schijlen E, Bakker LV, Peters S, van Treuren R, Jeuken M, Bouwmeester K, Schranz ME. The genome of Lactuca saligna, a wild relative of lettuce, provides insight into non-host resistance to the downy mildew Bremia lactucae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:108-126. [PMID: 36987839 DOI: 10.1111/tpj.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Lactuca saligna L. is a wild relative of cultivated lettuce (Lactuca sativa L.), with which it is partially interfertile. Hybrid progeny suffer from hybrid incompatibility (HI), resulting in reduced fertility and distorted transmission ratios. Lactuca saligna displays broad-spectrum resistance against lettuce downy mildew caused by Bremia lactucae Regel and is considered a non-host species. This phenomenon of resistance in L. saligna is called non-host resistance (NHR). One possible mechanism behind this NHR is through the plant-pathogen interaction triggered by pathogen recognition receptors, including nucleotide-binding leucine-rich repeat (NLR) proteins and receptor-like kinases (RLKs). We report a chromosome-level genome assembly of L. saligna (accession CGN05327), leading to the identification of two large paracentric inversions (>50 Mb) between L. saligna and L. sativa. Genome-wide searches delineated the major resistance clusters as regions enriched in NLRs and RLKs. Three of the enriched regions co-locate with previously identified NHR intervals. RNA-seq analysis of Bremia-infected lettuce identified several differentially expressed RLKs in NHR regions. Three tandem wall-associated kinase-encoding genes (WAKs) in the NHR8 interval display particularly high expression changes at an early stage of infection. We propose RLKs as strong candidates for determinants of the NHR phenotype of L. saligna.
Collapse
Affiliation(s)
- Wei Xiong
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Lidija Berke
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Richard Michelmore
- Genome Center and Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Frank F M Becker
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Elio Schijlen
- Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Linda V Bakker
- Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Sander Peters
- Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Rob van Treuren
- Centre for Genetic Resources, The Netherlands (CGN), Wageningen University and Research, Wageningen, The Netherlands
| | - Marieke Jeuken
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Fan D, He W, Jiang R, Song D, Zou G, Chen Y, Cao B, Wang J, Wang X. Enhanced-Efficiency Fertilizers Impact on Nitrogen Use Efficiency and Nitrous Oxide Emissions from an Open-Field Vegetable System in North China. PLANTS (BASEL, SWITZERLAND) 2022; 12:81. [PMID: 36616210 PMCID: PMC9823836 DOI: 10.3390/plants12010081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 05/25/2023]
Abstract
Open vegetable fields in China are a major anthropogenic source of nitrous oxide (N2O) emissions due to excessive nitrogen (N) fertilization. A 4 yr lettuce experiment was conducted to determine the impacts of controlled-release fertilizers (CRFs) and nitrification inhibitors (NIs) on lettuce yield, N2O emissions and net economic benefits. Five treatments included (i) no N fertilizer (CK), (ii) conventional urea at 255 kg N ha-1 based on farmers' practice (FP), (iii) conventional urea at 204 kg N ha-1 (OPT), (iv) CRF at 204 kg N ha-1 (CU) and (v) CRF (204 kg N ha-1) added with NI (CUNI). No significant differences were found in the lettuce yields among different N fertilization treatments. Compared with FP, the cumulative N2O emissions were significantly decreased by 8.1%, 38.0% and 42.6% under OPT, CU and CUNI, respectively. Meanwhile, the net benefits of OPT, CU and CUNI were improved by USD 281, USD 871 and USD 1024 ha-1 compared to CN, respectively. This study recommends the combined application of CRF and NI at a reduced N rate as the optimal N fertilizer management for the sustainable production of vegetables in China with the lowest environmental risks and the greatest economic benefits.
Collapse
Affiliation(s)
| | - Wentian He
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | | | | | | | | | | | | - Xuexia Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
6
|
Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G, Jin S. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells 2022; 11:3928. [PMID: 36497186 PMCID: PMC9736268 DOI: 10.3390/cells11233928] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes the modification and improvement of genes response to biotic stresses induced by fungus, virus, and bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses (herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future challenges faced by breeders using GE tools for crop improvement and suggested directions for future improvements in GE for agricultural applications, providing novel ideas to create super cultivars with broad resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Naeem Zafar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qurban Ali
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hakim Manghwar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Sthapit Kandel J, Sandoya GV, Zhou W, Read QD, Mou B, Simko I. Identification of Quantitative Trait Loci Associated with Bacterial Leaf Spot Resistance in Baby Leaf Lettuce. PLANT DISEASE 2022; 106:2583-2590. [PMID: 35285269 DOI: 10.1094/pdis-09-21-2087-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spring mix is a popular packaged salad that contains lettuce (Lactuca sativa L.) as one of its main ingredients. Plants for baby leaf lettuce (BLL) production are grown at very high densities, which enhances the occurrence of bacterial leaf spot (BLS) caused by Xanthomonas hortorum pv. vitians (Xhv), a disease that can make the crop unmarketable. The market demands disease-free, high-quality BLL all year round. Growing highly BLS-resistant cultivars will reduce loss of yield and quality, thus minimizing economic detriment to lettuce and spring mix growers. The research objectives were to identify lettuce accessions resistant to BLS and associated quantitative trait loci (QTL). A total of 495 lettuce accessions were screened with six isolates (BS0347, BS2861, BS3127, L7, L44, and Sc8B) of Xhv. Accessions showing overall high-level resistance to all tested Xhv isolates were 'Bunte Forellen', PI 226514, 'La Brillante', ARM09-161-10-1-4, 'Grenadier', 'Bella', PI 491210, 'Delight', and 'Romana Verde del Mercado'. Genome-wide association studies of BLS resistance by mixed linear model analyses identified significant QTLs on four lettuce chromosomes (2, 4, 6, and 8). The most significant QTL was on Chromosome 8 (P = 1.42 × 10-7), which explained 6.7% of total phenotypic variation for the disease severity. Accessions with a high level of resistance detected in this study are valuable resources for lettuce germplasm improvement. Molecular markers closely linked to QTLs can be considered for marker-assisted selection to develop new BLL lettuce cultivars with resistance to multiple races of Xhv.
Collapse
Affiliation(s)
- Jinita Sthapit Kandel
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - Germán V Sandoya
- Horticultural Sciences Department, Everglades Research and Education Center, University of Florida, Belle Glade, FL 33430
| | - Wei Zhou
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - Quentin D Read
- U.S. Department of Agriculture, Agricultural Research Service, Southeast Area, North Carolina State University, Raleigh, NC 27607
| | - Beiquan Mou
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - Ivan Simko
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| |
Collapse
|
8
|
Pink H, Talbot A, Graceson A, Graham J, Higgins G, Taylor A, Jackson AC, Truco M, Michelmore R, Yao C, Gawthrop F, Pink D, Hand P, Clarkson JP, Denby K. Identification of genetic loci in lettuce mediating quantitative resistance to fungal pathogens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2481-2500. [PMID: 35674778 PMCID: PMC9271113 DOI: 10.1007/s00122-022-04129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE We demonstrate genetic variation for quantitative resistance against important fungal pathogens in lettuce and its wild relatives, map loci conferring resistance and predict key molecular mechanisms using transcriptome profiling. Lactuca sativa L. (lettuce) is an important leafy vegetable crop grown and consumed globally. Chemicals are routinely used to control major pathogens, including the causal agents of grey mould (Botrytis cinerea) and lettuce drop (Sclerotinia sclerotiorum). With increasing prevalence of pathogen resistance to fungicides and environmental concerns, there is an urgent need to identify sources of genetic resistance to B. cinerea and S. sclerotiorum in lettuce. We demonstrated genetic variation for quantitative resistance to B. cinerea and S. sclerotiorum in a set of 97 diverse lettuce and wild relative accessions, and between the parents of lettuce mapping populations. Transcriptome profiling across multiple lettuce accessions enabled us to identify genes with expression correlated with resistance, predicting the importance of post-transcriptional gene regulation in the lettuce defence response. We identified five genetic loci influencing quantitative resistance in a F6 mapping population derived from a Lactuca serriola (wild relative) × lettuce cross, which each explained 5-10% of the variation. Differential gene expression analysis between the parent lines, and integration of data on correlation of gene expression and resistance in the diversity set, highlighted potential causal genes underlying the quantitative trait loci.
Collapse
Affiliation(s)
- Harry Pink
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Adam Talbot
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Abi Graceson
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Juliane Graham
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Gill Higgins
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Andrew Taylor
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Alison C Jackson
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Maria Truco
- Genome Center, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Richard Michelmore
- Genome Center, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Chenyi Yao
- A. L. Tozer Ltd., Pyports, Downside Road, Cobham, Surrey, KT11 3EH, UK
| | - Frances Gawthrop
- A. L. Tozer Ltd., Pyports, Downside Road, Cobham, Surrey, KT11 3EH, UK
| | - David Pink
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Paul Hand
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - John P Clarkson
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Katherine Denby
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
9
|
Wei T, van Treuren R, Liu X, Zhang Z, Chen J, Liu Y, Dong S, Sun P, Yang T, Lan T, Wang X, Xiong Z, Liu Y, Wei J, Lu H, Han S, Chen JC, Ni X, Wang J, Yang H, Xu X, Kuang H, van Hintum T, Liu X, Liu H. Whole-genome resequencing of 445 Lactuca accessions reveals the domestication history of cultivated lettuce. Nat Genet 2021; 53:752-760. [PMID: 33846635 DOI: 10.1038/s41588-021-00831-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/01/2021] [Indexed: 02/01/2023]
Abstract
Lettuce (Lactuca sativa) is an important vegetable crop worldwide. Cultivated lettuce is believed to be domesticated from L. serriola; however, its origins and domestication history remain to be elucidated. Here, we sequenced a total of 445 Lactuca accessions, including major lettuce crop types and wild relative species, and generated a comprehensive map of lettuce genome variations. In-depth analyses of population structure and demography revealed that lettuce was first domesticated near the Caucasus, which was marked by loss of seed shattering. We also identified the genetic architecture of other domestication traits and wild introgressions in major resistance clusters in the lettuce genome. This study provides valuable genomic resources for crop breeding and sheds light on the domestication history of cultivated lettuce.
Collapse
Affiliation(s)
- Tong Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Rob van Treuren
- Centre for Genetic Resources, the Netherlands, Wageningen, the Netherlands.
| | - Xinjiang Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhaowu Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | | | - Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Peinan Sun
- Huazhong Agricultural University, Wuhan, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Tianming Lan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Jinpu Wei
- China National GeneBank, Shenzhen, China
| | - Haorong Lu
- China National GeneBank, Shenzhen, China
| | | | | | - Xuemei Ni
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | | | - Theo van Hintum
- Centre for Genetic Resources, the Netherlands, Wageningen, the Netherlands
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
10
|
Testone G, Sobolev AP, Mele G, Nicolodi C, Gonnella M, Arnesi G, Biancari T, Giannino D. Leaf nutrient content and transcriptomic analyses of endive (Cichorium endivia) stressed by downpour-induced waterlog reveal a gene network regulating kestose and inulin contents. HORTICULTURE RESEARCH 2021; 8:92. [PMID: 33931617 PMCID: PMC8087766 DOI: 10.1038/s41438-021-00513-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 05/03/2023]
Abstract
Endive (Cichorium endivia L.), a vegetable consumed as fresh or packaged salads, is mostly cultivated outdoors and known to be sensitive to waterlogging in terms of yield and quality. Phenotypic, metabolic and transcriptomic analyses were used to study variations in curly- ('Domari', 'Myrna') and smooth-leafed ('Flester', 'Confiance') cultivars grown in short-term waterlog due to rainfall excess before harvest. After recording loss of head weights in all cultivars (6-35%), which was minimal in 'Flester', NMR untargeted profiling revealed variations as influenced by genotype, environment and interactions, and included drop of total carbohydrates (6-50%) and polyols (3-37%), gain of organic acids (2-30%) and phenylpropanoids (98-560%), and cultivar-specific fluctuations of amino acids (-37 to +15%). The analysis of differentially expressed genes showed GO term enrichment consistent with waterlog stress and included the carbohydrate metabolic process. The loss of sucrose, kestose and inulin recurred in all cultivars and the sucrose-inulin route was investigated by covering over 50 genes of sucrose branch and key inulin synthesis (fructosyltransferases) and catabolism (fructan exohydrolases) genes. The lowered expression of a sucrose gene subset together with that of SUCROSE:SUCROSE-1-FRUCTOSYLTRANSFERASE (1-SST) may have accounted for sucrose and kestose contents drop in the leaves of waterlogged plants. Two anti-correlated modules harbouring candidate hub-genes, including 1-SST, were identified by weighted gene correlation network analysis, and proposed to control positively and negatively kestose levels. In silico analysis further pointed at transcription factors of GATA, DOF, WRKY types as putative regulators of 1-SST.
Collapse
Affiliation(s)
- Giulio Testone
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300 - 00015 Monterotondo, Rome, Italy
| | - Anatoly Petrovich Sobolev
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300 - 00015 Monterotondo, Rome, Italy
| | - Giovanni Mele
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300 - 00015 Monterotondo, Rome, Italy
| | - Chiara Nicolodi
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300 - 00015 Monterotondo, Rome, Italy
| | - Maria Gonnella
- Institute of Sciences of Food Production, CNR. Via G. Amendola 122/O - 70126, Bari, Italy
| | - Giuseppe Arnesi
- Enza Zaden Italia, Strada Statale Aurelia km. 96.400 - 01016 Tarquinia, Viterbo, Italy
| | - Tiziano Biancari
- Enza Zaden Italia, Strada Statale Aurelia km. 96.400 - 01016 Tarquinia, Viterbo, Italy
| | - Donato Giannino
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300 - 00015 Monterotondo, Rome, Italy.
| |
Collapse
|
11
|
Su J, Nguyen QM, Kimble A, Pike SM, Kim SH, Gassmann W. The Conserved Arginine Required for AvrRps4 Processing Is Also Required for Recognition of Its N-Terminal Fragment in Lettuce. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:270-278. [PMID: 33147120 DOI: 10.1094/mpmi-10-20-0285-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pathogens utilize a repertoire of effectors to facilitate pathogenesis, but when the host recognizes one of them, it causes effector-triggered immunity. The Pseudomonas type III effector AvrRps4 is a bipartite effector that is processed in planta into a functional 133-amino acid N-terminus (AvrRps4-N) and 88-amino acid C-terminus (AvrRps4-C). Previous studies found AvrRps4-C to be sufficient to trigger the hypersensitive response (HR) in turnip. In contrast, our recent work found that AvrRps4-N but not AvrRps4-C triggered HR in lettuce, whereas both were required for resistance induction in Arabidopsis. Here, we initially compared AvrRps4 recognition by turnip and lettuce using transient expression. By serial truncation, we identified the central conserved region consisting of 37 amino acids as essential for AvrRps4-N recognition, whereas the putative type III secretion signal peptide or the C-terminal 13 amino acids were dispensable. Surprisingly, the conserved arginine at position 112 (R112) that is required for full-length AvrRps4 processing is also required for the recognition of AvrRps4-N by lettuce. Mutating R112 to hydrophobic leucine or negatively charged glutamate abolished the HR-inducing capacity of AvrRps4-N, while a positively charged lysine at this position resulted in a slow and weak HR. Together, our results suggest an AvrRps4-N recognition-specific role of R112 in lettuce.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jianbin Su
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, U.S.A
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 66211, U.S.A
| | - Quang-Minh Nguyen
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Ashten Kimble
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 66211, U.S.A
- Division of Biological Sciences, University of Columbia, MO 65211, U.S.A
| | - Sharon M Pike
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, U.S.A
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 66211, U.S.A
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Walter Gassmann
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, U.S.A
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 66211, U.S.A
| |
Collapse
|
12
|
Parra L, Nortman K, Sah A, Truco MJ, Ochoa O, Michelmore R. Identification and mapping of new genes for resistance to downy mildew in lettuce. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:519-528. [PMID: 33128618 PMCID: PMC7843477 DOI: 10.1007/s00122-020-03711-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Eleven new major resistance genes for lettuce downy mildew were introgressed from wild Lactuca species and mapped to small regions in the lettuce genome. Downy mildew, caused by the oomycete pathogen Bremia lactucae Regel, is the most important disease of lettuce (Lactuca sativa L.). The most effective method to control this disease is by using resistant cultivars expressing dominant resistance genes (Dm genes). In order to counter changes in pathogen virulence, multiple resistance genes have been introgressed from wild species by repeated backcrosses to cultivated lettuce, resulting in numerous near-isogenic lines (NILs) only differing for small chromosome regions that are associated with resistance. Low-pass, whole genome sequencing of 11 NILs was used to identify the chromosome segments introgressed from the wild donor species. This located the candidate chromosomal positions for resistance genes as well as additional segments. F2 segregating populations derived from these NILs were used to genetically map the resistance genes to one or two loci in the lettuce reference genome. Precise knowledge of the location of new Dm genes provides the foundation for marker-assisted selection to breed cultivars with multiple genes for resistance to downy mildew.
Collapse
Affiliation(s)
- Lorena Parra
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kazuko Nortman
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Anil Sah
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Maria Jose Truco
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Oswaldo Ochoa
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Richard Michelmore
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Wan WL, Kim ST, Castel B, Charoennit N, Chae E. Genetics of autoimmunity in plants: an evolutionary genetics perspective. THE NEW PHYTOLOGIST 2021; 229:1215-1233. [PMID: 32970825 DOI: 10.1111/nph.16947] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/12/2020] [Indexed: 05/14/2023]
Abstract
Autoimmunity in plants has been found in numerous hybrids as a form of hybrid necrosis and mutant panels. Uncontrolled cell death is a main cellular outcome of autoimmunity, which negatively impacts growth. Its occurrence highlights the vulnerable nature of the plant immune system. Genetic investigation of autoimmunity in hybrid plants revealed that extreme variation in the immune receptor repertoire is a major contributor, reflecting an evolutionary conundrum that plants face in nature. In this review, we discuss natural variation in the plant immune system and its contribution to fitness. The value of autoimmunity genetics lies in its ability to identify combinations of a natural immune receptor and its partner that are predisposed to triggering autoimmunity. The network of immune components for autoimmunity becomes instrumental in revealing mechanistic details of how immune receptors recognize cellular invasion and activate signaling. The list of autoimmunity-risk variants also allows us to infer evolutionary processes contributing to their maintenance in the natural population. Our approach to autoimmunity, which integrates mechanistic understanding and evolutionary genetics, has the potential to serve as a prognosis tool to optimize immunity in crops.
Collapse
Affiliation(s)
- Wei-Lin Wan
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Sang-Tae Kim
- Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Baptiste Castel
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Nuri Charoennit
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| |
Collapse
|
14
|
Kandel R, Lu H, Sandoya GV. Identification and mapping of quantitative trait loci for resistance to Liriomyza trifolii in romaine lettuce cultivar 'Valmaine'. Sci Rep 2021; 11:998. [PMID: 33441768 PMCID: PMC7807064 DOI: 10.1038/s41598-020-80050-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
Liriomyza trifolii (Diptera: Agromyzidae) is a leafminer that causes ruinous damage to many leafy vegetables including lettuce (Lactuca sativa L.) by stippling and tunneling the leaves. In this study, a population of 125 F3 families was developed from the intraspecific cross of 'Valmaine' (resistant) and 'Okeechobee' (susceptible) romaine cultivars for inheritance analysis and molecular mapping of the resistance loci controlling stippling damage. The experiments were conducted in an insectarium (controlled environment). Stippling damage proved to be heritable because the broad-sense heritability (H2) was 0.58. A segregation analysis suggested that a single dominant allele, Sd1 locus, controls resistance against L. trifolii. Furthermore, a quantitative trait loci (QTL) analysis identified one novel QTL, named Stippling on LG5 (qSTP5), flanked by two SNPs that were mapped to a 5.2 cM (8.5 Mb region) interval, explaining over 13% of the total phenotypic variance. Desirable allele for resistance to L. trifolii was derived from resistant cultivar Valmaine. Identification of SNPs closely linked to the QTL responsible for L. trifolii resistance should facilitate plant breeders to develop resistant romaine lettuce cultivars.
Collapse
Affiliation(s)
- Ramkrishna Kandel
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Huangjun Lu
- Everglades Research and Education Center, Institute of Food and Agricultural Sciences/University of Florida, Belle Glade, FL, 33430, USA
| | - Germán V Sandoya
- Everglades Research and Education Center, Institute of Food and Agricultural Sciences/University of Florida, Belle Glade, FL, 33430, USA.
| |
Collapse
|
15
|
Fass MI, Rivarola M, Ehrenbolger GF, Maringolo CA, Montecchia JF, Quiroz F, García-García F, Blázquez JD, Hopp HE, Heinz RA, Paniego NB, Lia VV. Exploring sunflower responses to Sclerotinia head rot at early stages of infection using RNA-seq analysis. Sci Rep 2020; 10:13347. [PMID: 32770047 PMCID: PMC7414910 DOI: 10.1038/s41598-020-70315-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Sclerotinia head rot (SHR), caused by the necrotrophic fungus Sclerotinia sclerotiorum, is one of the most devastating sunflower crop diseases. Despite its worldwide occurrence, the genetic determinants of plant resistance are still largely unknown. Here, we investigated the Sclerotinia-sunflower pathosystem by analysing temporal changes in gene expression in one susceptible and two tolerant inbred lines (IL) inoculated with the pathogen under field conditions. Differential expression analysis showed little overlapping among ILs, suggesting genotype-specific control of cell defense responses possibly related to differences in disease resistance strategies. Functional enrichment assessments yielded a similar pattern. However, all three ILs altered the expression of genes involved in the cellular redox state and cell wall remodeling, in agreement with current knowledge about the initiation of plant immune responses. Remarkably, the over-representation of long non-coding RNAs (lncRNA) was another common feature among ILs. Our findings highlight the diversity of transcriptional responses to SHR within sunflower breeding lines and provide evidence of lncRNAs playing a significant role at early stages of defense.
Collapse
Affiliation(s)
- Mónica I Fass
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina.
| | - Máximo Rivarola
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Guillermo F Ehrenbolger
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Carla A Maringolo
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce, Balcarce, Argentina
| | - Juan F Montecchia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Facundo Quiroz
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce, Balcarce, Argentina
| | | | - Joaquín Dopazo Blázquez
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, 41013, Sevilla, Spain.,INB-ELIXIR-Es, FPS, Hospital Virgen del Rocío, 42013, Sevilla, Spain
| | - H Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), 1428, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ruth A Heinz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Norma B Paniego
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Verónica V Lia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| |
Collapse
|
16
|
Lee RR, Chae E. Variation Patterns of NLR Clusters in Arabidopsis thaliana Genomes. PLANT COMMUNICATIONS 2020; 1:100089. [PMID: 33367252 PMCID: PMC7747988 DOI: 10.1016/j.xplc.2020.100089] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 05/04/2023]
Abstract
The nucleotide-binding domain and leucine-rich repeat (NLR) gene family is highly expanded in the plant lineage with extensive sequence and structure polymorphisms. To survey the landscape of NLR expansion, we mined the published long-read data generated by the resistance gene enrichment sequencing of 64 diverse Arabidopsis thaliana accessions. We found that the hot spots of massive multi-gene NLR cluster expansion did not typically span the whole cluster; instead, they were restricted to a handful of, or only one, dominant radiation(s). All sequences in such a radiation were distinct from other genes in the cluster but not from each other in the clade, making it difficult to assign trustworthy reference-based orthologies when multiple reference genes were present in the radiation. Consequently, NLR genes can be broadly divided into two types: radiating or high-fidelity, where high-fidelity genes are well conserved and well separated from other clades. A similar distinction could be made for NLR clusters, depending on whether cluster size was determined primarily by extensive radiation or the presence of numerous high-fidelity genes. We also identified groups of well-conserved NLR clades that were missing from the Columbia-0 reference genome. This suggests that the classification of NLRs using gene IDs from a single reference accession can rarely capture all major paralogs in a cluster accurately and representatively and that a reference-agnostic perspective is required to properly characterize these additional variations. Finally, we present a quantitative visualization method for differentiating these situations in a given clade of interest.
Collapse
Affiliation(s)
- Rachelle R.Q. Lee
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
17
|
van Wersch S, Li X. Stronger When Together: Clustering of Plant NLR Disease resistance Genes. TRENDS IN PLANT SCIENCE 2019; 24:688-699. [PMID: 31266697 DOI: 10.1016/j.tplants.2019.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/05/2019] [Accepted: 05/16/2019] [Indexed: 05/14/2023]
Abstract
Gene clustering is rare in eukaryotes. However, nucleotide-binding leucine-rich repeat (NLR)-encoding disease resistance (R) genes show consistent clustering in plant genomes. These arrangements are likely to provide coregulatory benefits, as suggested by growing evidence that the gene products of both paired and larger clusters of NLRs act together in triggering immunity. Head-to-head gene pairs where one of the encoded NLRs includes an integrated decoy domain appear to behave differently than clusters evolved from closely related typical NLRs. These patterns may help to explain the broad resistance that most plants have despite their finite number of R genes. By taking into consideration the relationship between genomic arrangement and function, we can improve our understanding of and ability to predict plant immune detection.
Collapse
Affiliation(s)
- Solveig van Wersch
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
18
|
Exogenous Application of Amino Acids Improves the Growth and Yield of Lettuce by Enhancing Photosynthetic Assimilation and Nutrient Availability. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050266] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As natural plant growth stimulators, amino acids are widely used to improve the yield and quality of crops. Several studies have illustrated the effects of different amino acids on lettuce plant parts. However, the effects of applying single amino acids on root growth remain elusive. The objective of this study was to evaluate the effect of root application of L-methionine on the growth of lettuce. In this study, two successive experiments on butterhead lettuce were conducted under hydroponic conditions. Three amino acids, L-methionine (20 mg/L), L-glycine (210 mg/L), and L-tryptophan (220 mg/L), were applied separately. L-methionine significantly increased the growth performance by 23.60%, whereas growth using L-tryptophan and L-glycine decreased by 98.78% and 27.45%, respectively. Considering the results of the first experiment, a second experiment was established with different concentrations of L-methionine (2200 mg/L, 220 mg/L, 22 mg/L, 2.2 mg/L, 0.2 mg/L, and 0.02 mg/L). The plants were allowed to grow for four weeks. Leaf width, plant area, leaf area, chlorophyll contents, etc., were evaluated. The results show that plant growth significantly improved by applying L-methionine at the lowest concentrations of 0.2 mg/L and 0.02 mg/L, which can, therefore, improve hydroponic production of lettuce and, accordingly, human nutrition.
Collapse
|
19
|
Verwaaijen B, Wibberg D, Winkler A, Zrenner R, Bednarz H, Niehaus K, Grosch R, Pühler A, Schlüter A. A comprehensive analysis of the Lactuca sativa, L. transcriptome during different stages of the compatible interaction with Rhizoctonia solani. Sci Rep 2019; 9:7221. [PMID: 31076623 PMCID: PMC6510776 DOI: 10.1038/s41598-019-43706-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
The leafy green vegetable Lactuca sativa, L. is susceptible to the soil-born fungus Rhizoctonia solani AG1-IB. In a previous study, we reported on the transcriptional response of R. solani AG1-IB (isolate 7/3/14) during the interspecies interaction with L. sativa cv. Tizian by means of RNA sequencing. Here we present the L. sativa transcriptome and metabolome from the same experimental approach. Three distinct interaction zones were sampled and compared to a blank (non-inoculated) sample: symptomless zone 1, zone 2 showing light brown discoloration, and a dark brown zone 3 characterized by necrotic lesions. Throughout the interaction, we observed a massive reprogramming of the L. sativa transcriptome, with 9231 unique genes matching the threshold criteria for differential expression. The lettuce transcriptome of the light brown zone 2 presents the most dissimilar profile compared to the uninoculated zone 4, marking the main stage of interaction. Transcripts putatively encoding several essential proteins that are involved in maintaining jasmonic acid and auxin homeostasis were found to be negatively regulated. These and other indicator transcripts mark a potentially inadequate defence response, leading to a compatible interaction. KEGG pathway mapping and GC-MS metabolome data revealed large changes in amino acid, lignin and hemicellulose related pathways and related metabolites.
Collapse
Affiliation(s)
- Bart Verwaaijen
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
- Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Anika Winkler
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Rita Zrenner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Hanna Bednarz
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Alfred Pühler
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
20
|
Chen Z, Han Y, Ning K, Luo C, Sheng W, Wang S, Fan S, Wang Y, Wang Q. Assessing the performance of different irrigation systems on lettuce (Lactuca sativa L.) in the greenhouse. PLoS One 2019; 14:e0209329. [PMID: 30716102 PMCID: PMC6361420 DOI: 10.1371/journal.pone.0209329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022] Open
Abstract
Lettuce (Lactuca sativa L.) is a very important leafy vegetable in China and is commonly grown using furrow irrigation. In order to improve production efficiency, greenhouse experiments were conducted at Experimental Station, China Agricultural University, Beijing, China using furrow irrigation (FI), micro-sprinkler irrigation (MS), plastic film mulching irrigation (PF) and a combined plastic film mulching-micro-sprinkler irrigation system (PF+MS) to study their effects on soil physical characteristics, water distribution, root morpho-physiological traits, nutrition absorption, lettuce yield and water use efficiency for a spring crop and autumn crop in 2015 (Fig 1). Root length, root surface area, and root density were significantly higher under PF and PF+MS than under FI. Moreover, these traits were higher under MS than under FI but these differences were not significant. The soluble protein, soluble sugar, and Vitamin C content of lettuce decreased in the order PF+MS > PF > MS > FI in both crops. In the spring crop, the biological yield of MS, PF, and PF+MS was 7.22%、36.77%、43.20% higher than FI, respectively. In the spring crop, biological water use efficiency (BWUE) of FI, MS, PF and PF+MS was 20.93, 25.24, 36.81 and 38.54 kg m-3, respectively. The BWUE of MS, PF, and PF+MS was 20.59%, 75.87% and 84.14% higher than FI. Economic water use efficiency (EWUE) of FI, MS, PF and PF+MS was 17.06, 21.31, 31.11 and 32.31 kg m-3, respectively. The EWUE of MS, PF, and PF+MS was 24.91%, 82.36% and 89.39% higher than FI, respectively. The autumn crop achieved a higher WUE than the spring crop. The results suggested that the combined plastic film mulching-micro-sprinkler irrigation was the most suitable irrigation approach for increasing lettuce yield.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huanghuaihai Region, Ministry of Agriculture/Shan Dong Agricultural University, Taian, Shandong, China
| | - Yingyan Han
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Kang Ning
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Chen Luo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wei Sheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Shenglin Wang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Shuangxi Fan
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yanfang Wang
- Beijing Agriculture technology promotion station, Beijing, China
| | - Qian Wang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Pelgrom AJE, Eikelhof J, Elberse J, Meisrimler C, Raedts R, Klein J, Van den Ackerveken G. Recognition of lettuce downy mildew effector BLR38 in Lactuca serriola LS102 requires two unlinked loci. MOLECULAR PLANT PATHOLOGY 2019; 20:240-253. [PMID: 30251420 PMCID: PMC6637914 DOI: 10.1111/mpp.12751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant-pathogenic oomycetes secrete effector proteins to suppress host immune responses. Resistance proteins may recognize effectors and activate immunity, which is often associated with a hypersensitive response (HR). Transient expression of effectors in plant germplasm and screening for HR has proven to be a powerful tool in the identification of new resistance genes. In this study, 14 effectors from the lettuce downy mildew Bremia lactucae race Bl:24 were screened for HR induction in over 150 lettuce accessions. Three effectors-BLN06, BLR38 and BLR40-were recognized in specific lettuce lines. The recognition of effector BLR38 in Lactuca serriola LS102 did not co-segregate with resistance against race Bl:24, but was linked to resistance against multiple other B. lactucae races. Two unlinked loci are both required for effector recognition and are located near known major resistance clusters. Gene dosage affects the intensity of the BLR38-triggered HR, but is of minor importance for disease resistance.
Collapse
Affiliation(s)
- Alexandra J. E. Pelgrom
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Jelle Eikelhof
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Joyce Elberse
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Claudia‐Nicole Meisrimler
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Rob Raedts
- BASF Vegetable SeedsPO Box 4005, 6080 AA, Haelenthe Netherlands
| | - Joël Klein
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Guido Van den Ackerveken
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| |
Collapse
|
22
|
Wróblewski T, Spiridon L, Martin EC, Petrescu AJ, Cavanaugh K, Truco MJ, Xu H, Gozdowski D, Pawłowski K, Michelmore RW, Takken FL. Genome-wide functional analyses of plant coiled-coil NLR-type pathogen receptors reveal essential roles of their N-terminal domain in oligomerization, networking, and immunity. PLoS Biol 2018; 16:e2005821. [PMID: 30540748 PMCID: PMC6312357 DOI: 10.1371/journal.pbio.2005821] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 12/31/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
The ability to induce a defense response after pathogen attack is a critical feature of the immune system of any organism. Nucleotide-binding leucine-rich repeat receptors (NLRs) are key players in this process and perceive the occurrence of nonself-activities or foreign molecules. In plants, coevolution with a variety of pests and pathogens has resulted in repertoires of several hundred diverse NLRs in single individuals and many more in populations as a whole. However, the mechanism by which defense signaling is triggered by these NLRs in plants is poorly understood. Here, we show that upon pathogen perception, NLRs use their N-terminal domains to transactivate other receptors. Their N-terminal domains homo- and heterodimerize, suggesting that plant NLRs oligomerize upon activation, similar to the vertebrate NLRs; however, consistent with their large number in plants, the complexes are highly heterometric. Also, in contrast to metazoan NLRs, the N-terminus, rather than their centrally located nucleotide-binding (NB) domain, can mediate initial partner selection. The highly redundant network of NLR interactions in plants is proposed to provide resilience to perturbation by pathogens.
Collapse
Affiliation(s)
- Tadeusz Wróblewski
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Laurentiu Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Eliza Cristina Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Keri Cavanaugh
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Maria José Truco
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Huaqin Xu
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Dariusz Gozdowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Richard W. Michelmore
- The Genome Center, University of California–Davis, Davis, California, United States of America
- Departments of Plant Sciences, Molecular & Cellular Biology, and Medical Microbiology & Immunology, University of California–Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California–Davis, Davis, California, United States of America
| | - Frank L.W. Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A. The Enhancement of Plant Disease Resistance Using CRISPR/Cas9 Technology. FRONTIERS IN PLANT SCIENCE 2018; 9:1245. [PMID: 30197654 PMCID: PMC6117396 DOI: 10.3389/fpls.2018.01245] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/06/2018] [Indexed: 05/03/2023]
Abstract
Genome editing technologies have progressed rapidly and become one of the most important genetic tools in the implementation of pathogen resistance in plants. Recent years have witnessed the emergence of site directed modification methods using meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). Recently, CRISPR/Cas9 has largely overtaken the other genome editing technologies due to the fact that it is easier to design and implement, has a higher success rate, and is more versatile and less expensive. This review focuses on the recent advances in plant protection using CRISPR/Cas9 technology in model plants and crops in response to viral, fungal and bacterial diseases. As regards the achievement of viral disease resistance, the main strategies employed in model species such as Arabidopsis and Nicotiana benthamiana, which include the integration of CRISPR-encoding sequences that target and interfere with the viral genome and the induction of a CRISPR-mediated targeted mutation in the host plant genome, will be discussed. Furthermore, as regards fungal and bacterial disease resistance, the strategies based on CRISPR/Cas9 targeted modification of susceptibility genes in crop species such as rice, tomato, wheat, and citrus will be reviewed. After spending years deciphering and reading genomes, researchers are now editing and rewriting them to develop crop plants resistant to specific pests and pathogens.
Collapse
Affiliation(s)
- Virginia M. G. Borrelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences – Production, Territory, Agroenergy, University of Milan, Milan, Italy
| | - Peter Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Lyon, France
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
24
|
Funk A, Galewski P, McGrath JM. Nucleotide-binding resistance gene signatures in sugar beet, insights from a new reference genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:659-671. [PMID: 29797366 DOI: 10.1111/tpj.13977] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/19/2018] [Accepted: 05/04/2018] [Indexed: 05/28/2023]
Abstract
Nucleotide-binding (NB-ARC), leucine-rich-repeat genes (NLRs) account for 60.8% of resistance (R) genes molecularly characterized from plants. NLRs exist as large gene families prone to tandem duplication and transposition, with high sequence diversity among crops and their wild relatives. This diversity can be a source of new disease resistance, but difficulty in distinguishing specific sequences from homologous gene family members hinders characterization of resistance for improving crop varieties. Current genome sequencing and assembly technologies, especially those using long-read sequencing, are improving resolution of repeat-rich genomic regions and clarifying locations of duplicated genes, such as NLRs. Using the conserved NB-ARC domain as a model, 231 tentative NB-ARC loci were identified in a highly contiguous genome assembly of sugar beet, revealing diverged and truncated NB-ARC signatures as well as full-length sequences. The NB-ARC-associated proteins contained NLR resistance gene domains, including TIR, CC and LRR, as well as other integrated domains. Phylogenetic relationships of partial and complete domains were determined, and patterns of physical clustering in the genome were evaluated. Comparison of sugar beet NB-ARC domains to validated R-genes from monocots and eudicots suggested extensive Beta vulgaris-specific subfamily expansions. The NLR landscape in the rhizomania resistance conferring Rz region of Chromosome 3 was characterized, identifying 26 NLR-like sequences spanning 20 MB. This work presents the first detailed view of NLR family composition in a member of the Caryophyllales, builds a foundation for additional disease resistance work in B. vulgaris, and demonstrates an additional nucleic-acid-based method for NLR prediction in non-model plant species.
Collapse
Affiliation(s)
- Andrew Funk
- Department of Plant, Soil, and Microbial Science, Plant Breeding, Genetics, and Biotechnology Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Paul Galewski
- Department of Plant, Soil, and Microbial Science, Plant Breeding, Genetics, and Biotechnology Program, Michigan State University, East Lansing, MI, 48824, USA
| | - J Mitchell McGrath
- USDA-ARS, Sugarbeet and Bean Research Unit, 1066 Bogue Street, 494 PSSB, East Lansing, MI, 48824, USA
| |
Collapse
|
25
|
Verwaaijen B, Wibberg D, Nelkner J, Gordin M, Rupp O, Winkler A, Bremges A, Blom J, Grosch R, Pühler A, Schlüter A. Assembly of the Lactuca sativa, L. cv. Tizian draft genome sequence reveals differences within major resistance complex 1 as compared to the cv. Salinas reference genome. J Biotechnol 2018; 267:12-18. [PMID: 29278726 DOI: 10.1016/j.jbiotec.2017.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022]
Abstract
Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar.
Collapse
Affiliation(s)
- Bart Verwaaijen
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany; Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V., Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Johanna Nelkner
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Miriam Gordin
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Oliver Rupp
- Justus Liebig University, Bioinformatics and Systems Biology, Giessen, Germany
| | - Anika Winkler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Andreas Bremges
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Jochen Blom
- Justus Liebig University, Bioinformatics and Systems Biology, Giessen, Germany
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V., Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615 Bielefeld, Germany.
| |
Collapse
|
26
|
Song Y, Liu L, Wang Y, Valkenburg D, Zhang X, Zhu L, Thomma BPHJ. Transfer of tomato immune receptor Ve1 confers Ave1-dependent Verticillium resistance in tobacco and cotton. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:638-648. [PMID: 28796297 PMCID: PMC5787823 DOI: 10.1111/pbi.12804] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 05/24/2023]
Abstract
Verticillium wilts caused by soilborne fungal species of the Verticillium genus are economically important plant diseases that affect a wide range of host plants and are notoriously difficult to combat. Perception of pathogen(-induced) ligands by plant immune receptors is a key component of plant innate immunity. In tomato, race-specific resistance to Verticillium wilt is governed by the cell surface-localized immune receptor Ve1 through recognition of the effector protein Ave1 that is secreted by race 1 strains of Verticillium spp. It was previously demonstrated that transgenic expression of tomato Ve1 in the model plant Arabidopsis thaliana leads to Verticillium wilt resistance. Here, we investigated whether tomato Ve1 can confer Verticillium resistance when expressed in the crop species tobacco (Nicotiana tabcum) and cotton (Gossypium hirsutum). We show that transgenic tobacco and cotton plants constitutively expressing tomato Ve1 exhibit enhanced resistance against Verticillium wilt in an Ave1-dependent manner. Thus, we demonstrate that the functionality of tomato Ve1 in Verticillium wilt resistance through recognition of the Verticillium effector Ave1 is retained after transfer to tobacco and cotton, implying that the Ve1-mediated immune signalling pathway is evolutionary conserved across these plant species. Moreover, our results suggest that transfer of tomato Ve1 across sexually incompatible plant species can be exploited in breeding programmes to engineer Verticillium wilt resistance.
Collapse
Affiliation(s)
- Yin Song
- Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands
| | - Linlin Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yidong Wang
- Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | | |
Collapse
|
27
|
Song Y, Thomma BPHJ. Host-induced gene silencing compromises Verticillium wilt in tomato and Arabidopsis. MOLECULAR PLANT PATHOLOGY 2018; 19:77-89. [PMID: 27749994 PMCID: PMC6638114 DOI: 10.1111/mpp.12500] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 05/03/2023]
Abstract
Verticillium wilt, caused by soil-borne fungi of the genus Verticillium, is an economically important disease that affects a wide range of host plants. Unfortunately, host resistance against Verticillium wilts is not available for many plant species, and the disease is notoriously difficult to combat. Host-induced gene silencing (HIGS) is an RNA interference (RNAi)-based process in which small RNAs are produced by the host plant to target parasite transcripts. HIGS has emerged as a promising strategy for the improvement of plant resistance against pathogens by silencing genes that are essential for these pathogens. Here, we assessed whether HIGS can be utilized to suppress Verticillium wilt disease by silencing three previously identified virulence genes of V. dahliae (encoding Ave1, Sge1 and NLP1) through the host plants tomato and Arabidopsis. In transient assays, tomato plants were agroinfiltrated with Tobacco rattle virus (TRV) constructs to target V. dahliae transcripts. Subsequent V. dahliae inoculation revealed the suppression of Verticillium wilt disease on treatment with only one of the three TRV constructs. Next, expression of RNAi constructs targeting transcripts of the same three V. dahliae virulence genes was pursued in stable transgenic Arabidopsis thaliana plants. In this host, V. dahliae inoculation revealed reduced Verticillium wilt disease in two of the three targets. Thus, our study suggests that, depending on the target gene chosen, HIGS against V. dahliae is operational in tomato and A. thaliana plants and may be exploited to engineer resistance in Verticillium wilt-susceptible crops.
Collapse
Affiliation(s)
- Yin Song
- Laboratory of PhytopathologyWageningen University, Droevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Bart P. H. J. Thomma
- Laboratory of PhytopathologyWageningen University, Droevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
28
|
Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A. The Enhancement of Plant Disease Resistance Using CRISPR/Cas9 Technology. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30197654 DOI: 10.3389/fpls.2018.01245.s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Genome editing technologies have progressed rapidly and become one of the most important genetic tools in the implementation of pathogen resistance in plants. Recent years have witnessed the emergence of site directed modification methods using meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). Recently, CRISPR/Cas9 has largely overtaken the other genome editing technologies due to the fact that it is easier to design and implement, has a higher success rate, and is more versatile and less expensive. This review focuses on the recent advances in plant protection using CRISPR/Cas9 technology in model plants and crops in response to viral, fungal and bacterial diseases. As regards the achievement of viral disease resistance, the main strategies employed in model species such as Arabidopsis and Nicotiana benthamiana, which include the integration of CRISPR-encoding sequences that target and interfere with the viral genome and the induction of a CRISPR-mediated targeted mutation in the host plant genome, will be discussed. Furthermore, as regards fungal and bacterial disease resistance, the strategies based on CRISPR/Cas9 targeted modification of susceptibility genes in crop species such as rice, tomato, wheat, and citrus will be reviewed. After spending years deciphering and reading genomes, researchers are now editing and rewriting them to develop crop plants resistant to specific pests and pathogens.
Collapse
Affiliation(s)
- Virginia M G Borrelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy, University of Milan, Milan, Italy
| | - Peter Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Lyon, France
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
29
|
Giesbers AKJ, Pelgrom AJE, Visser RGF, Niks RE, Van den Ackerveken G, Jeuken MJW. Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species. THE NEW PHYTOLOGIST 2017; 216:915-926. [PMID: 28833168 PMCID: PMC5656935 DOI: 10.1111/nph.14741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 05/03/2023]
Abstract
Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high-throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding. Its cross-compatibility with the host species L. sativa enables the study of inheritance of nonhost resistance (NHR). We performed transient expression of candidate RXLR effector genes from B. lactucae in a diverse Lactuca germplasm set. Responses to two candidate effectors (BLR31 and BLN08) were genetically mapped and tested for co-segregation with disease resistance. BLN08 induced a hypersensitive response (HR) in 55% of the L. saligna accessions, but responsiveness did not co-segregate with resistance to Bl:24. BLR31 triggered an HR in 5% of the L. saligna accessions, and revealed a novel R gene providing complete B. lactucae race Bl:24 resistance. Resistant hybrid plants that were BLR31 nonresponsive indicated other unlinked R genes and/or nonhost QTLs. We have identified a candidate avirulence effector of B. lactucae (BLR31) and its cognate R gene in L. saligna. Concurrently, our results suggest that R genes are not required for NHR of L. saligna.
Collapse
Affiliation(s)
- Anne K. J. Giesbers
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| | - Alexandra J. E. Pelgrom
- Plant–Microbe InteractionsDepartment of BiologyUtrecht University3584CH Utrechtthe Netherlands
| | - Richard G. F. Visser
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| | - Rients E. Niks
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| | | | - Marieke J. W. Jeuken
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| |
Collapse
|
30
|
Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation. Sci Rep 2017; 7:5617. [PMID: 28717205 PMCID: PMC5514137 DOI: 10.1038/s41598-017-05085-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/24/2017] [Indexed: 11/12/2022] Open
Abstract
The genome sequence of globe artichoke (Cynara cardunculus L. var. scolymus, 2n = 2x = 34) is now available for use. A survey of C. cardunculus genetic resources is essential for understanding the evolution of the species, carrying out genetic studies and for application of breeding strategies. We report on the resequencing analyses (~35×) of four globe artichoke genotypes, representative of the core varietal types, as well as a genotype of the related taxa cultivated cardoon. The genomes were reconstructed at a chromosomal scale and structurally/functionally annotated. Gene prediction indicated a similar number of genes, while distinctive variations in miRNAs and resistance gene analogues (RGAs) were detected. Overall, 23,5 M SNP/indel were discovered (range 6,34 M –14,50 M). The impact of some missense SNPs on the biological functions of genes involved in the biosynthesis of phenylpropanoid and sesquiterpene lactone secondary metabolites was predicted. The identified variants contribute to infer on globe artichoke domestication of the different varietal types, and represent key tools for dissecting the path from sequence variation to phenotype. The new genomic sequences are fully searchable through independent Jbrowse interfaces (www.artichokegenome.unito.it), which allow the analysis of collinearity and the discovery of genomic variants, thus representing a one-stop resource for C. cardunculus genomics.
Collapse
|
31
|
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C, Xia L, Froenicke L, Lavelle DO, Truco MJ, Xia R, Zhu S, Xu C, Xu H, Xu X, Cox K, Korf I, Meyers BC, Michelmore RW. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun 2017; 8:14953. [PMID: 28401891 PMCID: PMC5394340 DOI: 10.1038/ncomms14953] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/15/2017] [Indexed: 01/03/2023] Open
Abstract
Lettuce (Lactuca sativa) is a major crop and a member of the large, highly successful Compositae family of flowering plants. Here we present a reference assembly for the species and family. This was generated using whole-genome shotgun Illumina reads plus in vitro proximity ligation data to create large superscaffolds; it was validated genetically and superscaffolds were oriented in genetic bins ordered along nine chromosomal pseudomolecules. We identify several genomic features that may have contributed to the success of the family, including genes encoding Cycloidea-like transcription factors, kinases, enzymes involved in rubber biosynthesis and disease resistance proteins that are expanded in the genome. We characterize 21 novel microRNAs, one of which may trigger phasiRNAs from numerous kinase transcripts. We provide evidence for a whole-genome triplication event specific but basal to the Compositae. We detect 26% of the genome in triplicated regions containing 30% of all genes that are enriched for regulatory sequences and depleted for genes involved in defence.
Collapse
Affiliation(s)
| | | | | | | | - Siwaret Arikit
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Chi Song
- BGI Shenzhen, Shenzhen 518083, China
| | | | | | | | | | - Rui Xia
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132, USA
| | | | | | - Huaqin Xu
- UC Davis Genome Center, Davis, California 95616, USA
| | - Xun Xu
- BGI Shenzhen, Shenzhen 518083, China
| | - Kyle Cox
- UC Davis Genome Center, Davis, California 95616, USA
| | - Ian Korf
- UC Davis Genome Center, Davis, California 95616, USA
- Department of Molecular & Cellular Biology, UC Davis, California 95616, USA
| | - Blake C. Meyers
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132, USA
| | - Richard W. Michelmore
- UC Davis Genome Center, Davis, California 95616, USA
- Department of Molecular & Cellular Biology, UC Davis, California 95616, USA
- Department of Plant Sciences, UC Davis, California 95616, USA
- Department of Medical Microbiology & Immunology, UC Davis, California 95616, USA
| |
Collapse
|
32
|
Morata J, Puigdomènech P. Variability among Cucurbitaceae species (melon, cucumber and watermelon) in a genomic region containing a cluster of NBS-LRR genes. BMC Genomics 2017; 18:138. [PMID: 28178932 PMCID: PMC5299730 DOI: 10.1186/s12864-017-3529-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cucurbitaceae species contain a significantly lower number of genes coding for proteins with similarity to plant resistance genes belonging to the NBS-LRR family than other plant species of similar genome size. A large proportion of these genes are organized in clusters that appear to be hotspots of variability. The genomes of the Cucurbitaceae species measured until now are intermediate in size (between 350 and 450 Mb) and they apparently have not undergone any genome duplications beside those at the origin of eudicots. The cluster containing the largest number of NBS-LRR genes has previously been analyzed in melon and related species and showed a high degree of interspecific and intraspecific variability. It was of interest to study whether similar behavior occurred in other cluster of the same family of genes. RESULTS The cluster of NBS-LRR genes located in melon chromosome 9 was analyzed and compared with the syntenic regions in other cucurbit genomes. This is the second cluster in number within this species and it contains nine sequences with a NBS-LRR annotation including two genes, Fom1 and Prv, providing resistance against Fusarium and Ppapaya ring-spot virus (PRSV). The variability within the melon species appears to consist essentially of single nucleotide polymorphisms. Clusters of similar genes are present in the syntenic regions of the two species of Cucurbitaceae that were sequenced, cucumber and watermelon. Most of the genes in the syntenic clusters can be aligned between species and a hypothesis of generation of the cluster is proposed. The number of genes in the watermelon cluster is similar to that in melon while a higher number of genes (12) is present in cucumber, a species with a smaller genome than melon. After comparing genome resequencing data of 115 cucumber varieties, deletion of a group of genes is observed in a group of varieties of Indian origin. CONCLUSIONS Clusters of genes coding for NBS-LRR proteins in cucurbits appear to have specific variability in different regions of the genome and between different species. This observation is in favour of considering that the adaptation of plant species to changing environments is based upon the variability that may occur at any location in the genome and that has been produced by specific mechanisms of sequence variation acting on plant genomes. This information could be useful both to understand the evolution of species and for plant breeding.
Collapse
Affiliation(s)
- Jordi Morata
- Molecular Genetics Department, Center for Research in Agricultural Genomics, (CSIC-IRTA-UAB-UB), Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), Barcelona, 08193, Spain
| | - Pere Puigdomènech
- Molecular Genetics Department, Center for Research in Agricultural Genomics, (CSIC-IRTA-UAB-UB), Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), Barcelona, 08193, Spain.
| |
Collapse
|
33
|
Song Y, Zhang Z, Seidl MF, Majer A, Jakse J, Javornik B, Thomma BPHJ. Broad taxonomic characterization of Verticillium wilt resistance genes reveals an ancient origin of the tomato Ve1 immune receptor. MOLECULAR PLANT PATHOLOGY 2017; 18:195-209. [PMID: 26946045 PMCID: PMC6638226 DOI: 10.1111/mpp.12390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/12/2016] [Accepted: 03/01/2016] [Indexed: 05/02/2023]
Abstract
Plant-pathogenic microbes secrete effector molecules to establish themselves on their hosts, whereas plants use immune receptors to try and intercept such effectors in order to prevent pathogen colonization. The tomato cell surface-localized receptor Ve1 confers race-specific resistance against race 1 strains of the soil-borne vascular wilt fungus Verticillium dahliae which secrete the Ave1 effector. Here, we describe the cloning and characterization of Ve1 homologues from tobacco (Nicotiana glutinosa), potato (Solanum tuberosum), wild eggplant (Solanum torvum) and hop (Humulus lupulus), and demonstrate that particular Ve1 homologues govern resistance against V. dahliae race 1 strains through the recognition of the Ave1 effector. Phylogenetic analysis shows that Ve1 homologues are widely distributed in land plants. Thus, our study suggests an ancient origin of the Ve1 immune receptor in the plant kingdom.
Collapse
Affiliation(s)
- Yin Song
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Zhao Zhang
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Michael F. Seidl
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Aljaz Majer
- Biotechnical Faculty, Agronomy Department, Centre for Plant Biotechnology and Breeding, University of LjubljanaJamnikarieva 1011000LjubljanaSlovenia
| | - Jernej Jakse
- Biotechnical Faculty, Agronomy Department, Centre for Plant Biotechnology and Breeding, University of LjubljanaJamnikarieva 1011000LjubljanaSlovenia
| | - Branka Javornik
- Biotechnical Faculty, Agronomy Department, Centre for Plant Biotechnology and Breeding, University of LjubljanaJamnikarieva 1011000LjubljanaSlovenia
| | - Bart P. H. J. Thomma
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| |
Collapse
|
34
|
Chen Z, Han Y, Ning K, Ding Y, Zhao W, Yan S, Luo C, Jiang X, Ge D, Liu R, Wang Q, Zhang X. Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:2248. [PMID: 29403510 PMCID: PMC5778503 DOI: 10.3389/fpls.2017.02248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/21/2017] [Indexed: 05/18/2023]
Abstract
Lettuce (Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Yingyan Han
- New Technological Laboratory in Agriculture Application in Beijing, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Kang Ning
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Yunyu Ding
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Shuangshuang Yan
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Chen Luo
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaotang Jiang
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Danfeng Ge
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Wang
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
- *Correspondence: Xiaolan Zhang, Qian Wang,
| | - Xiaolan Zhang
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
- *Correspondence: Xiaolan Zhang, Qian Wang,
| |
Collapse
|