1
|
Peppercorn K, Edgar CD, Al Momani S, Rodger EJ, Tate WP, Chatterjee A. Application of DNA Methylome Analysis to Patients with ME/CFS. Methods Mol Biol 2025; 2920:141-160. [PMID: 40372682 DOI: 10.1007/978-1-0716-4498-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is a post-viral/stressor syndrome that has a complex pathophysiology reflecting multiple changes in many cell transcripts and proteins. These changes imply a change in the regulation of gene expression at the level of the DNA. A significant contributor to this is the modulation of the methylation at specific sites within regulatory regions throughout the genome that can either enhance or dampen expression depending on whether methylation is reduced or increased, respectively. DNA methylation can be analyzed by array technology or by reduced representation bisulfite sequencing (RRBS) or whole genome bisulfite sequencing (WGBS). This chapter describes RRBS, which has been very effective at analyzing the methylation states of ME/CFS patients both in single time point studies and in longitudinal studies with individual patients, for example, following a relapse recovery cycle. Here, we describe the step-by-step experimental methodology of how RRBS has been applied to DNA samples from ME/CFS patients and the analytical platforms used to detect the methylation changes that are statistically significant between patients and health controls. It has the potential to provide molecular biomarkers for a diagnostic test or to follow the progression of the condition in patients or through relapse/recovery fluctuations that occur frequently through the ongoing course of the disease. When effective therapies become available it has the potential to monitor the effectiveness on individual patients under treatment.
Collapse
Affiliation(s)
- Katie Peppercorn
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Christina D Edgar
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Suzan Al Momani
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Warren P Tate
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
- UPES University, Dehradun, Uttarakhand, India.
| |
Collapse
|
2
|
Meng Y, Meng Y, Li L, Li Y, He J, Shan Y. The role of DNA methylation in placental development and its implications for preeclampsia. Front Cell Dev Biol 2024; 12:1494072. [PMID: 39691449 PMCID: PMC11649665 DOI: 10.3389/fcell.2024.1494072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Preeclampsia (PE) is a prevalent and multifaceted pregnancy disorder, characterized by high blood pressure, edema, proteinuria, and systemic organ dysfunction. It remains one of the leading causes of pregnancy complications, yet its exact origins and pathophysiological mechanisms are not fully understood. Currently, the only definitive treatment is delivery, often requiring preterm termination of pregnancy, which increases neonatal and maternal morbidity and mortality rates, particularly in severe cases. This highlights the urgent need for further research to elucidate its underlying mechanisms and develop targeted interventions. PE is thought to result from a combination of factors, including inflammatory cytokines, trophoblast dysfunction, and environmental influences, which may trigger epigenetic changes, particularly DNA methylation. The placenta, a vital organ for fetal and maternal exchange, plays a central role in the onset of PE. Increasing evidence suggests a strong association between DNA methylation, placental function, and the development of PE. This review focuses on the impact of DNA methylation on placental development and its contribution to PE pathophysiology. It aims to clarify the epigenetic processes essential for normal placental development and explore potential epigenetic biomarkers and therapeutic targets for PE. Such insights could lead to the development of novel preventive and therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Yizi Meng
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yimei Meng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Li
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yuan Li
- Department of General Gynecology I, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Stockwell PA, Rodger EJ, Gimenez G, Morison IM, Chatterjee A. DMAP2: A Pipeline for Analysis of Whole-Genome-Scale DNA Methylation Sequencing Data. Curr Protoc 2024; 4:e70003. [PMID: 39258384 DOI: 10.1002/cpz1.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
DNA methylation is well-established as a major epigenetic mechanism that can control gene expression and is involved in both normal development and disease. Analysis of high-throughput-sequencing-based DNA methylation data is a step toward understanding the relationship between disease and phenotype. Analysis of CpG methylation at single-base resolution is routinely done by bisulfite sequencing, in which methylated Cs remain as C while unmethylated Cs are converted to U, subsequently seen as T nucleotides. Sequence reads are aligned to the reference genome using mapping tools that accept the C-T ambiguity. Then, various statistical packages are used to identify differences in methylation between (groups of) samples. We have previously developed the Differential Methylation Analysis Pipeline (DMAP) as an efficient, fast, and flexible tool for this work, both for whole-genome bisulfite sequencing (WGBS) and reduced-representation bisulfite sequencing (RRBS). The protocol described here includes a series of scripts that simplify the use of DMAP tools and that can accommodate the wider range of input formats now in use to perform analysis of whole-genome-scale DNA methylation sequencing data in various biological and clinical contexts. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: DMAP2 workflow for whole-genome bisulfite sequencing (WGBS) and reduced-representation bisulfite sequencing (RRBS).
Collapse
Affiliation(s)
- Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ian M Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun, India
| |
Collapse
|
4
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
5
|
Ackerman WE, Rigo MM, DaSilva-Arnold SC, Do C, Tariq M, Salas M, Castano A, Zamudio S, Tycko B, Illsley NP. Epigenetic changes regulating the epithelial-mesenchymal transition in human trophoblast differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601748. [PMID: 39005325 PMCID: PMC11244995 DOI: 10.1101/2024.07.02.601748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The phenotype of human placental extravillous trophoblast (EVT) at the end of pregnancy reflects both first trimester differentiation from villous cytotrophoblast (CTB) and later gestational changes, including loss of proliferative and invasive capacity. Invasion abnormalities are central to two major placental pathologies, preeclampsia and placenta accreta spectrum, so characterization of the corresponding normal processes is crucial. In this report, our gene expression analysis, using purified human CTB and EVT cells, highlights an epithelial-mesenchymal transition (EMT) mechanism underlying CTB-EVT differentiation and provides a trophoblast-specific EMT signature. In parallel, DNA methylation profiling shows that CTB cells, already hypomethylated relative to non-trophoblast cell lineages, show further genome-wide hypomethylation in the transition to EVT. However, a small subgroup of genes undergoes gains of methylation (GOM) in their regulatory regions or gene bodies, associated with differential mRNA expression (DE). Prominent in this GOM-DE group are genes involved in the EMT, including multiple canonical EMT markers and the EMT-linked transcription factor RUNX1, for which we demonstrate a functional role in modulating the migratory and invasive capacities of JEG3 trophoblast cells. This analysis of DE associated with locus-specific GOM, together with functional studies of an important GOM-DE gene, highlights epigenetically regulated genes and pathways acting in human EVT differentiation and invasion, with implications for obstetric disorders in which these processes are dysregulated.
Collapse
Affiliation(s)
- William E. Ackerman
- Department of Obstetrics and Gynecology and AI.Health4All Center for Health Equity Using Machine Learning and Artificial Intelligence, University of Illinois College of Medicine, Chicago, USA
| | - Mauricio M. Rigo
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Sonia C. DaSilva-Arnold
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack NJ
| | - Catherine Do
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Mariam Tariq
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Martha Salas
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Angelica Castano
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack NJ
| | - Benjamin Tycko
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Nicholas P. Illsley
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack NJ
| |
Collapse
|
6
|
Rodger EJ, Stockwell PA, Almomani S, Eccles MR, Chatterjee A. Protocol for generating high-quality genome-scale DNA methylation sequencing data from human cancer biospecimens. STAR Protoc 2023; 4:102714. [PMID: 37950864 PMCID: PMC10682265 DOI: 10.1016/j.xpro.2023.102714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/13/2023] Open
Abstract
Aberrant DNA methylation is a universal feature of cancer. Here, we present a protocol for generating high-quality genome-scale DNA methylation sequencing data from a variety of human cancer biospecimens including immortalized cell lines, fresh-frozen surgical resections, and formalin-fixed paraffin-embedded tissues. We describe steps for DNA extraction considerations, reduced representation bisulfite sequencing, data processing and quality control, and downstream data analysis and integration. This protocol is also applicable for other human diseases and methylome profiling in other organisms. For complete details on the use and execution of this protocol, please refer to Rodger et al. (2023).1.
Collapse
Affiliation(s)
- Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Suzan Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Honorary Professor, UPES University, Dehradun, India.
| |
Collapse
|
7
|
Yassi M, Chatterjee A, Parry M. Application of deep learning in cancer epigenetics through DNA methylation analysis. Brief Bioinform 2023; 24:bbad411. [PMID: 37985455 PMCID: PMC10661960 DOI: 10.1093/bib/bbad411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
DNA methylation is a fundamental epigenetic modification involved in various biological processes and diseases. Analysis of DNA methylation data at a genome-wide and high-throughput level can provide insights into diseases influenced by epigenetics, such as cancer. Recent technological advances have led to the development of high-throughput approaches, such as genome-scale profiling, that allow for computational analysis of epigenetics. Deep learning (DL) methods are essential in facilitating computational studies in epigenetics for DNA methylation analysis. In this systematic review, we assessed the various applications of DL applied to DNA methylation data or multi-omics data to discover cancer biomarkers, perform classification, imputation and survival analysis. The review first introduces state-of-the-art DL architectures and highlights their usefulness in addressing challenges related to cancer epigenetics. Finally, the review discusses potential limitations and future research directions in this field.
Collapse
Affiliation(s)
- Maryam Yassi
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Honorary Professor, UPES University, Dehradun, India
| | - Matthew Parry
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
- Te Pūnaha Matatini Centre of Research Excellence, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Gong S, Gaccioli F, Aye ILMH, Avellino G, Cook E, Lawson ARJ, Harvey LMR, Smith GCS, Charnock-Jones DS. The human placenta exhibits a unique transcriptomic void. Cell Rep 2023; 42:112800. [PMID: 37453066 DOI: 10.1016/j.celrep.2023.112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/08/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
The human placenta exhibits a unique genomic architecture with an unexpectedly high mutation burden and many uniquely expressed genes. The aim of this study is to identify transcripts that are uniquely absent or depleted in the placenta. Here, we show that 40 of 46 of the other organs have no selectively depleted transcripts and that, of the remaining six, the liver has the largest number, with 26. In contrast, the term placenta has 762 depleted transcripts. Gene Ontology analysis of this depleted set highlighted multiple pathways reflecting known unique elements of placental physiology. For example, transcripts associated with neuronal function are in the depleted set-as expected given the lack of placental innervation. However, this demonstrated overrepresentation of genes involved in mitochondrial function (p = 5.8 × 10-10), including PGC-1α, the master regulator of mitochondrial biogenesis, and genes involved in polyamine metabolism (p = 2.1 × 10-4).
Collapse
Affiliation(s)
- Sungsam Gong
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Francesca Gaccioli
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Irving L M H Aye
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Giulia Avellino
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma Cook
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | | | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Islam M, Strawn M, Behura SK. Fetal origin of sex‐bias brain aging. FASEB J 2022; 36:e22463. [DOI: 10.1096/fj.202200255rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences University of Missouri Columbia Missouri USA
| | - Monica Strawn
- Division of Animal Sciences University of Missouri Columbia Missouri USA
| | - Susanta K. Behura
- Division of Animal Sciences University of Missouri Columbia Missouri USA
- MU Institute for Data Science and Informatics University of Missouri Columbia Missouri USA
- Interdisciplinary Neuroscience Program University of Missouri Columbia Missouri USA
| |
Collapse
|
10
|
Association between placental global DNA methylation and blood pressure during human pregnancy. J Hypertens 2022; 40:1002-1009. [DOI: 10.1097/hjh.0000000000003103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Hossain SM, Lynch-Sutherland CF, Chatterjee A, Macaulay EC, Eccles MR. Can Immune Suppression and Epigenome Regulation in Placenta Offer Novel Insights into Cancer Immune Evasion and Immunotherapy Resistance? EPIGENOMES 2021; 5:16. [PMID: 34968365 PMCID: PMC8594685 DOI: 10.3390/epigenomes5030016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of mortality and morbidity in the developed world. Cancer progression involves genetic and epigenetic alterations, accompanied by aggressive changes, such as increased immune evasion, onset of metastasis, and drug resistance. Similar to cancer, DNA hypomethylation, immune suppression, and invasive cell behaviours are also observed in the human placenta. Mechanisms that lead to the acquisition of invasive behaviour, immune evasion, and drug and immunotherapy resistance are presently under intense investigations to improve patient outcomes. Here, we review current knowledge regarding the similarities between immune suppression and epigenome regulation, including the expression of repetitive elements (REs), endogenous retroviruses (ERVs) and transposable elements (TEs) in cells of the placenta and in cancer, which are associated with changes in immune regulation and invasiveness. We explore whether immune suppression and epigenome regulation in placenta offers novel insights into immunotherapy resistance in cancer, and we also discuss the implications and the knowledge gaps relevant to these findings, which are rapidly being accrued in these quite disparate research fields. Finally, we discuss potential linkages between TE, ERV and RE activation and expression, regarding mechanisms of immune regulation in placenta and cancer. A greater understanding of the role of immune suppression and associated epigenome regulation in placenta could help to elucidate some comparable mechanisms operating in cancer, and identify potential new therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Chiemi F. Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Erin C. Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
12
|
Extensive Placental Methylation Profiling in Normal Pregnancies. Int J Mol Sci 2021; 22:ijms22042136. [PMID: 33669975 PMCID: PMC7924820 DOI: 10.3390/ijms22042136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
The placental methylation pattern is crucial for the regulation of genes involved in trophoblast invasion and placental development, both key events for fetal growth. We investigated LINE-1 methylation and methylome profiling using a methylation EPIC array and the targeted methylation sequencing of 154 normal, full-term pregnancies, stratified by birth weight percentiles. LINE-1 methylation showed evidence of a more pronounced hypomethylation in small neonates compared with normal and large for gestational age. Genome-wide methylation, performed in two subsets of pregnancies, showed very similar methylation profiles among cord blood samples while placentae from different pregnancies appeared very variable. A unique methylation profile emerged in each placenta, which could represent the sum of adjustments that the placenta made during the pregnancy to preserve the epigenetic homeostasis of the fetus. Investigations into the 1000 most variable sites between cord blood and the placenta showed that promoters and gene bodies that are hypermethylated in the placenta are associated with blood-specific functions, whereas those that are hypomethylated belong mainly to pathways involved in cancer. These features support the functional analogies between a placenta and cancer. Our results, which provide a comprehensive analysis of DNA methylation profiling in the human placenta, suggest that its peculiar dynamicity can be relevant for understanding placental plasticity in response to the environment.
Collapse
|
13
|
Winship A, Donoghue J, Houston BJ, Martin JH, Lord T, Adwal A, Gonzalez M, Desroziers E, Ahmad G, Richani D, Bromfield EG. Reproductive health research in Australia and New Zealand: highlights from the Annual Meeting of the Society for Reproductive Biology, 2019. Reprod Fertil Dev 2021; 32:637-647. [PMID: 32234188 DOI: 10.1071/rd19449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022] Open
Abstract
The 2019 meeting of the Society for Reproductive Biology (SRB) provided a platform for the dissemination of new knowledge and innovations to improve reproductive health in humans, enhance animal breeding efficiency and understand the effect of the environment on reproductive processes. The effects of environment and lifestyle on fertility and animal behaviour are emerging as the most important modern issues facing reproductive health. Here, we summarise key highlights from recent work on endocrine-disrupting chemicals and diet- and lifestyle-induced metabolic changes and how these factors affect reproduction. This is particularly important to discuss in the context of potential effects on the reproductive potential that may be imparted to future generations of humans and animals. In addition to key summaries of new work in the male and female reproductive tract and on the health of the placenta, for the first time the SRB meeting included a workshop on endometriosis. This was an important opportunity for researchers, healthcare professionals and patient advocates to unite and provide critical updates on efforts to reduce the effect of this chronic disease and to improve the welfare of the women it affects. These new findings and directions are captured in this review.
Collapse
Affiliation(s)
- Amy Winship
- Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Stem Cells and Development Program, Monash University, Vic. 3800, Australia
| | - Jacqueline Donoghue
- The University of Melbourne, Department of Obstetrics and Gynaecology, Gynaecology Research Centre, Royal Women's Hospital, Parkville, Vic. 3052, Australia
| | - Brendan J Houston
- School of Biological Sciences, Monash University, Vic. 3800, Australia
| | - Jacinta H Martin
- Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia
| | - Tessa Lord
- Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia; and Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2300, Australia
| | - Alaknanda Adwal
- The University of Adelaide Robinson Research Institute, Adelaide Medical School, North Adelaide, SA 5005, Australia
| | - Macarena Gonzalez
- The University of Adelaide Robinson Research Institute, School of Medicine, Faculty of Health and Medical Sciences, Adelaide, SA 5005, Australia
| | - Elodie Desroziers
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Gulfam Ahmad
- The University of Sydney Medical School, Discipline of Pathology, School of Medical Sciences, Sydney, NSW 2006, Australia
| | - Dulama Richani
- School of Women's and Children's Health, Fertility and Research Centre, University of New South Wales, Sydney, NSW 2052 Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2300, Australia; and Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Netherlands; and Corresponding author:
| |
Collapse
|
14
|
Zhou JD, Zhang TJ, Xu ZJ, Deng ZQ, Gu Y, Ma JC, Wen XM, Leng JY, Lin J, Chen SN, Qian J. Genome-wide methylation sequencing identifies progression-related epigenetic drivers in myelodysplastic syndromes. Cell Death Dis 2020; 11:997. [PMID: 33219204 PMCID: PMC7679421 DOI: 10.1038/s41419-020-03213-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
The potential mechanism of myelodysplastic syndromes (MDS) progressing to acute myeloid leukemia (AML) remains poorly elucidated. It has been proved that epigenetic alterations play crucial roles in the pathogenesis of cancer progression including MDS. However, fewer studies explored the whole-genome methylation alterations during MDS progression. Reduced representation bisulfite sequencing was conducted in four paired MDS/secondary AML (MDS/sAML) patients and intended to explore the underlying methylation-associated epigenetic drivers in MDS progression. In four paired MDS/sAML patients, cases at sAML stage exhibited significantly increased methylation level as compared with the matched MDS stage. A total of 1090 differentially methylated fragments (DMFs) (441 hypermethylated and 649 hypomethylated) were identified involving in MDS pathogenesis, whereas 103 DMFs (96 hypermethylated and 7 hypomethylated) were involved in MDS progression. Targeted bisulfite sequencing further identified that aberrant GFRA1, IRX1, NPY, and ZNF300 methylation were frequent events in an additional group of de novo MDS and AML patients, of which only ZNF300 methylation was associated with ZNF300 expression. Subsequently, ZNF300 hypermethylation in larger cohorts of de novo MDS and AML patients was confirmed by real-time quantitative methylation-specific PCR. It was illustrated that ZNF300 methylation could act as a potential biomarker for the diagnosis and prognosis in MDS and AML patients. Functional experiments demonstrated the anti-proliferative and pro-apoptotic role of ZNF300 overexpression in MDS-derived AML cell-line SKM-1. Collectively, genome-wide DNA hypermethylation were frequent events during MDS progression. Among these changes, ZNF300 methylation, a regulator of ZNF300 expression, acted as an epigenetic driver in MDS progression. These findings provided a theoretical basis for the usage of demethylation drugs in MDS patients against disease progression.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
| | - Su-Ning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China. .,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Legault LM, Doiron K, Lemieux A, Caron M, Chan D, Lopes FL, Bourque G, Sinnett D, McGraw S. Developmental genome-wide DNA methylation asymmetry between mouse placenta and embryo. Epigenetics 2020; 15:800-815. [PMID: 32056496 PMCID: PMC7518706 DOI: 10.1080/15592294.2020.1722922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/27/2022] Open
Abstract
In early embryos, DNA methylation is remodelled to initiate the developmental program but for mostly unknown reasons, methylation marks are acquired unequally between embryonic and placental cells. To better understand this, we generated high-resolution DNA methylation maps of mouse mid-gestation (E10.5) embryo and placenta. We uncovered specific subtypes of differentially methylated regions (DMRs) that contribute directly to the developmental asymmetry existing between mid-gestation embryonic and placental DNA methylation patterns. We show that the asymmetry occurs rapidly during the acquisition of marks in the post-implanted conceptus (E3.5-E6.5), and that these patterns are long-lasting across subtypes of DMRs throughout prenatal development and in somatic tissues. We reveal that at the peri-implantation stages, the de novo methyltransferase activity of DNMT3B is the main driver of methylation marks on asymmetric DMRs, and that DNMT3B can largely compensate for lack of DNMT3A in the epiblast and extraembryonic ectoderm, whereas DNMT3A can only partially compensate in the absence of DNMT3B. However, as development progresses and as DNMT3A becomes the principal de novo methyltransferase, the compensatory DNA methylation mechanism of DNMT3B on DMRs becomes less effective.
Collapse
Affiliation(s)
- LM Legault
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
| | - K Doiron
- Research Center of the CHU Sainte-Justine, Montreal, Canada
| | - A Lemieux
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
| | - M Caron
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - D Chan
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - FL Lopes
- School of Veterinary Medicine, São Paulo State University (Unesp), Aracatuba, Brazil
| | - G Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
- Canadian Center for Computational Genomics, Montreal, Quebec, Canada
| | - D Sinnett
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Pediatrics, Université De Montréal, Montreal, Canada
| | - S McGraw
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
- Department of Obstetrics and Gynecology, Université De Montréal, Montreal, Canada
| |
Collapse
|
16
|
Lynch-Sutherland CF, Chatterjee A, Stockwell PA, Eccles MR, Macaulay EC. Reawakening the Developmental Origins of Cancer Through Transposable Elements. Front Oncol 2020; 10:468. [PMID: 32432029 PMCID: PMC7214541 DOI: 10.3389/fonc.2020.00468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) have an established role as important regulators of early human development, functioning as tissue-specific genes and regulatory elements. Functional TEs are highly active during early development, and interact with important developmental genes, some of which also function as oncogenes. Dedifferentiation is a hallmark of cancer, and is characterized by genetic and epigenetic changes that enable proliferation, self-renewal and a metabolism reminiscent of embryonic stem cells. There is also compelling evidence suggesting that the path to dedifferentiation in cancer can contribute to invasion and metastasis. TEs are frequently expressed in cancer, and recent work has identified a newly proposed mechanism involving extensive recruitment of TE-derived promoters to drive expression of oncogenes and subsequently promote oncogenesis—a process termed onco-exaptation. However, the mechanism by which this phenomenon occurs, and the extent to which it contributes to oncogenesis remains unknown. Initial hypotheses have proposed that onco-exaptation events are cancer-specific and arise randomly due to the dysregulated and hypomethylated state of cancer cells and abundance of TEs across the genome. However, we suspect that exaptation-like events may not just arise due to chance activation of novel regulatory relationships as proposed previously, but as a result of the reestablishment of early developmental regulatory relationships. Dedifferentiation in cancer is well-documented, along with expression of TEs. The known interactions between TEs and pluripotency factors such as NANOG and OCTt4 during early development, along with the expression of some placental-specific TE-derived transcripts in cancer support a possible link between TEs and dedifferentiation of tumor cells. Thus, we hypothesize that onco-exaptation events can be associated with the epigenetic reawakening of early developmental TEs to regulate expression of oncogenes and promote oncogenesis. We also suspect that activation of these early developmental regulatory TEs may promote dedifferentiation, although at this stage it is hard to predict whether TE activation is one of the initial drivers of dedifferentiation. We expect that developmental TE activation occurs as a result of the establishment of an epigenetic landscape in cancer that resembles that of early development and that developmental TE activation may also enable cancers to exploit early developmental pathways, repurposing them to promote malignancy.
Collapse
Affiliation(s)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Narapareddy L, Wildman DE, Armstrong DL, Weckle A, Bell AF, Patil CL, Tardif SD, Ross CN, Rutherford JN. Maternal weight affects placental DNA methylation of genes involved in metabolic pathways in the common marmoset monkey (Callithrix jacchus). Am J Primatol 2020; 82:e23101. [PMID: 32020652 PMCID: PMC7154656 DOI: 10.1002/ajp.23101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests that dysregulation of placental DNA methylation (DNAm) is a mechanism linking maternal weight during pregnancy to metabolic programming outcomes. The common marmoset, Callithrix jaccus, is a platyrrhine primate species that has provided much insight into studies of the primate placenta, maternal condition, and metabolic programming, yet the relationships between maternal weight and placental DNAm are unknown. Here, we report genome‐wide DNAm from term marmoset placentas using reduced representation bisulfite sequencing. We identified 74 genes whose DNAm pattern is associated with maternal weight during gestation. These genes are predominantly involved in energy metabolism and homeostasis, including the regulation of glycolytic and lipid metabolic processes pathways. The placental DNA methylation (DNAm) landscape of the marmoset placenta presents unique differences and similarities with human placental methylation patterns. Maternal weight is associated with placental DNAm in genes that are predominantly involved in energy metabolism and homeostasis. The impact of altered placental DNAm on placental function and development may also contribute to the potential role of placental DNAm in developmental programming in the marmoset monkey.
Collapse
Affiliation(s)
- Laren Narapareddy
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia
| | - Derek E Wildman
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida
| | - Don L Armstrong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Amy Weckle
- Illinois Water Resources Center, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Aleeca F Bell
- Department of Women, Children and Family Health Science, College of Nursing, University of Illinois at Chicago, Chicago, Illinois
| | - Crystal L Patil
- Department of Women, Children and Family Health Science, College of Nursing, University of Illinois at Chicago, Chicago, Illinois
| | - Suzette D Tardif
- Texas Biomedical Research Institute, Southwest National Primate Research Center, San Antonio, Texas
| | - Corinna N Ross
- Program of Biology, College of Arts and Sciences, Texas A&M University-San Antonio, San Antonio, Texas
| | - Julienne N Rutherford
- Department of Women, Children and Family Health Science, College of Nursing, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Dwi Putra SE, Reichetzeder C, Hasan AA, Slowinski T, Chu C, Krämer BK, Kleuser B, Hocher B. Being Born Large for Gestational Age is Associated with Increased Global Placental DNA Methylation. Sci Rep 2020; 10:927. [PMID: 31969597 PMCID: PMC6976643 DOI: 10.1038/s41598-020-57725-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/31/2019] [Indexed: 02/01/2023] Open
Abstract
Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p < 0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p < 0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p = 0.001).
Collapse
Affiliation(s)
- S E Dwi Putra
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - C Reichetzeder
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| | - A A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,UP Transfer GmbH, University of Potsdam, Potsdam, Germany
| | - T Slowinski
- Department of Nephrology, Campus Charité Mitte, University Hospital Charité, Berlin, Germany
| | - C Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - B K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - B Kleuser
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - B Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany. .,Department of Basic Medicine, Medical College of Hunan Normal University, Changsha, China. .,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| |
Collapse
|
19
|
Urbano A, Smith J, Weeks RJ, Chatterjee A. Gene-Specific Targeting of DNA Methylation in the Mammalian Genome. Cancers (Basel) 2019; 11:cancers11101515. [PMID: 31600992 PMCID: PMC6827012 DOI: 10.3390/cancers11101515] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is the most widely-studied epigenetic modification, playing a critical role in the regulation of gene expression. Dysregulation of DNA methylation is implicated in the pathogenesis of numerous diseases. For example, aberrant DNA methylation in promoter regions of tumor-suppressor genes has been strongly associated with the development and progression of many different tumors. Accordingly, technologies designed to manipulate DNA methylation at specific genomic loci are very important, especially in the context of cancer therapy. Traditionally, epigenomic editing technologies have centered around zinc finger proteins (ZFP)- and transcription activator-like effector protein (TALE)-based targeting. More recently, however, the emergence of clustered regulatory interspaced short palindromic repeats (CRISPR)-deactivated Cas9 (dCas9)-based editing systems have shown to be a more specific and efficient method for the targeted manipulation of DNA methylation. Here, we describe the regulation of the DNA methylome, its significance in cancer and the current state of locus-specific editing technologies for altering DNA methylation.
Collapse
Affiliation(s)
- Arthur Urbano
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, 3A Symonds Street, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
20
|
Del Gobbo GF, Konwar C, Robinson WP. The significance of the placental genome and methylome in fetal and maternal health. Hum Genet 2019; 139:1183-1196. [PMID: 31555906 DOI: 10.1007/s00439-019-02058-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023]
Abstract
The placenta is a crucial organ for supporting a healthy pregnancy, and defective development or function of the placenta is implicated in a number of complications of pregnancy that affect both maternal and fetal health, including maternal preeclampsia, fetal growth restriction, and spontaneous preterm birth. In this review, we highlight the role of the placental genome in mediating fetal and maternal health by discussing the impact of a variety of genetic alterations, from large whole-chromosome aneuploidies to single-nucleotide variants, on placental development and function. We also discuss the placental methylome in relation to its potential applications for refining diagnosis, predicting pathology, and identifying genetic variants with potential functional significance. We conclude that understanding the influence of the placental genome on common placental-mediated pathologies is critical to improving perinatal health outcomes.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Chaini Konwar
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada. .,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada.
| |
Collapse
|
21
|
Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome. PLoS Genet 2019; 15:e1008236. [PMID: 31369552 PMCID: PMC6675049 DOI: 10.1371/journal.pgen.1008236] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The placenta is the interface between maternal and fetal circulations, integrating maternal and fetal signals to selectively regulate nutrient, gas, and waste exchange, as well as secrete hormones. In turn, the placenta helps create the in utero environment and control fetal growth and development. The unique epigenetic profile of the human placenta likely reflects its early developmental separation from the fetus proper and its role in mediating maternal–fetal exchange that leaves it open to a range of exogenous exposures in the maternal circulation. In this review, we cover recent advances in DNA methylation in the context of placental function and development, as well as the interaction between the pregnancy and the environment.
Collapse
|
22
|
Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int J Mol Sci 2019; 20:ijms20112837. [PMID: 31212604 PMCID: PMC6600551 DOI: 10.3390/ijms20112837] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
In this review, we comprehensively present the function of epigenetic regulations in normal placental development as well as in a prominent disease of placental origin, preeclampsia (PE). We describe current progress concerning the impact of DNA methylation, non-coding RNA (with a special emphasis on long non-coding RNA (lncRNA) and microRNA (miRNA)) and more marginally histone post-translational modifications, in the processes leading to normal and abnormal placental function. We also explore the potential use of epigenetic marks circulating in the maternal blood flow as putative biomarkers able to prognosticate the onset of PE, as well as classifying it according to its severity. The correlation between epigenetic marks and impacts on gene expression is systematically evaluated for the different epigenetic marks analyzed.
Collapse
Affiliation(s)
- Clara Apicella
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Camino S M Ruano
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Céline Méhats
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Francisco Miralles
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| |
Collapse
|
23
|
Gamage TKJB, Schierding W, Tsai P, Ludgate JL, Chamley LW, Weeks RJ, Macaulay EC, James JL. Human trophoblasts are primarily distinguished from somatic cells by differences in the pattern rather than the degree of global CpG methylation. Biol Open 2018; 7:bio.034884. [PMID: 30026266 PMCID: PMC6124577 DOI: 10.1242/bio.034884] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The placenta is a fetal exchange organ connecting mother and baby that facilitates fetal growth in utero. DNA methylation is thought to impact placental development and function. Global DNA methylation studies using human placental lysates suggest that the placenta is uniquely hypomethylated compared to somatic tissue lysates, and this hypomethylation is thought to be important in conserving the unique placental gene expression patterns required for successful function. In the placental field, methylation has frequently been examined in tissue lysates, which contain mixed cell types that can confound results. To better understand how DNA methylation influences placentation, DNA from isolated first trimester trophoblast populations underwent reduced representation bisulfite sequencing and was compared to publicly available data of blastocyst-derived and somatic cell populations. First, this revealed that, unlike murine blastocysts, human trophectoderm and inner cell mass samples did not have significantly different levels of global methylation. Second, our work suggests that differences in global CpG methylation between trophoblasts and somatic cells are much smaller than previously reported. Rather, our findings suggest that different patterns of CpG methylation may be more important in epigenetically distinguishing the placenta from somatic cell populations, and these patterns of methylation may contribute to successful placental/trophoblast function. Summary: The placenta may not be as uniquely hypomethylated as previously reported, rather differences in the pattern of CpG methylation are what make it epigenetically distinct.
Collapse
Affiliation(s)
- Teena K J B Gamage
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1142, New Zealand
| | - William Schierding
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1142, New Zealand
| | - Peter Tsai
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1142, New Zealand
| | - Jackie L Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1142, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
24
|
Midic U, Goheen B, Vincent KA, VandeVoort CA, Latham KE. Changes in gene expression following long-term in vitro exposure of Macaca mulatta trophoblast stem cells to biologically relevant levels of endocrine disruptors. Reprod Toxicol 2018; 77:154-165. [PMID: 29505797 PMCID: PMC5898618 DOI: 10.1016/j.reprotox.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Trophoblast stem cells (TSCs) are crucial for embryo implantation and placentation. Environmental toxicants that compromise TSC function could impact fetal viability, pregnancy, and progeny health. Understanding the effects of low, chronic EDC exposures on TSCs and pregnancy is a priority in developmental toxicology. Differences in early implantation between primates and other mammals make a nonhuman primate model ideal. We examined effects of chronic low-level exposure to atrazine, tributyltin, bisphenol A, bis(2-ethylhexyl) phthalate, and perfluorooctanoic acid on rhesus monkey TSCs in vitro by RNA sequencing. Pathway analysis of affected genes revealed negative effects on cytokine signaling related to anti-viral response, most strongly for atrazine and tributyltin, but shared with the other three EDCs. Other affected processes included metabolism, DNA repair, and cell migration. Low-level chronic exposure of primate TSCs to EDCs may thus compromise trophoblast development in vivo, inhibit responses to infection, and negatively affect embryo implantation and pregnancy.
Collapse
Affiliation(s)
- Uros Midic
- Department of Animal Science, Department of Obstetrics, Gynecology and Reproductive Biology, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, United States
| | - Benjamin Goheen
- Department of Animal Science, Department of Obstetrics, Gynecology and Reproductive Biology, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, United States
| | - Kailey A Vincent
- Department of Animal Science, Department of Obstetrics, Gynecology and Reproductive Biology, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, United States
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, CA 95616, United States
| | - Keith E Latham
- Department of Animal Science, Department of Obstetrics, Gynecology and Reproductive Biology, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
25
|
Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech Ageing Dev 2018; 174:30-46. [PMID: 29458070 DOI: 10.1016/j.mad.2018.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Endogenous retroelements, transposons that mobilize through RNA intermediates, include some of the most abundant repetitive sequences of the human genome, such as Alu and LINE-1 sequences, and human endogenous retroviruses. Recent discoveries demonstrate that these mobile genetic elements not only act as intragenomic parasites, but also exert regulatory roles in living cells. The risk of genomic instability represented by endogenous retroelements is normally counteracted by a series of epigenetic control mechanisms which include, among the most important, CpG DNA methylation. Indeed, most of the genomic CpG sites subjected to DNA methylation in the nuclear DNA are carried by these repetitive elements. As other parts of the genome, endogenous retroelements and other transposable elements are subjected to deep epigenetic alterations during aging, repeatedly observed in the context of organismal and cellular senescence, in human and other species. This review summarizes the current status of knowledge about the epigenetic alterations occurring in this large, non-genic portion of the genome in aging and age-related conditions, with a focus on the causes and the possible functional consequences of these alterations.
Collapse
Affiliation(s)
- Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, Italian National Research Center on Aging (INRCA), via Birarelli 8, 60121 Ancona, Italy.
| |
Collapse
|
26
|
Mor-Shaked H, Eiges R. Reevaluation of FMR1 Hypermethylation Timing in Fragile X Syndrome. Front Mol Neurosci 2018; 11:31. [PMID: 29467618 PMCID: PMC5808132 DOI: 10.3389/fnmol.2018.00031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Fragile X syndrome (FXS) is one of the most common heritable forms of cognitive impairment. It results from a fragile X mental retardation protein (FMRP) protein deficiency caused by a CGG repeat expansion in the 5'-UTR of the X-linked FMR1 gene. Whereas in most individuals the number of CGGs is steady and ranges between 5 and 44 units, in patients it becomes extensively unstable and expands to a length exceeding 200 repeats (full mutation). Interestingly, this disease is exclusively transmitted by mothers who carry a premutation allele (55-200 CGG repeats). When the CGGs reach the FM range, they trigger the spread of abnormal DNA methylation, which coincides with a switch from active to repressive histone modifications. This results in epigenetic gene silencing of FMR1 presumably by a multi-stage, developmentally regulated process. The timing of FMR1 hypermethylation and transcription silencing is still hotly debated. There is evidence that hypermethylation varies considerably between and within the tissues of patients as well as during fetal development, thus supporting the view that FMR1 silencing is a post-zygotic event that is developmentally structured. On the other hand, it may be established in the female germ line and transmitted to the fetus as an integral part of the mutation. This short review summarizes the data collected to date concerning the timing of FMR1 epigenetic gene silencing and reassess the evidence in favor of the theory that gene inactivation takes place by a developmentally regulated process around the 10th week of gestation.
Collapse
Affiliation(s)
- Hagar Mor-Shaked
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Hebrew University Medical School, Jerusalem, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
27
|
The Genes of Life and Death: A Potential Role for Placental-Specific Genes in Cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201700091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/20/2017] [Indexed: 12/17/2022]
|
28
|
Ludgate JL, Wright J, Stockwell PA, Morison IM, Eccles MR, Chatterjee A. A streamlined method for analysing genome-wide DNA methylation patterns from low amounts of FFPE DNA. BMC Med Genomics 2017; 10:54. [PMID: 28859641 PMCID: PMC5580311 DOI: 10.1186/s12920-017-0290-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Methods Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. Results The main features and advantages of this protocol are:An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing.
Conclusions We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue. Electronic supplementary material The online version of this article (10.1186/s12920-017-0290-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jackie L Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand
| | - James Wright
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand.,School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Peter A Stockwell
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin, 9054, New Zealand
| | - Ian M Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| |
Collapse
|
29
|
Chatterjee A, Stockwell PA, Ahn A, Rodger EJ, Leichter AL, Eccles MR. Genome-wide methylation sequencing of paired primary and metastatic cell lines identifies common DNA methylation changes and a role for EBF3 as a candidate epigenetic driver of melanoma metastasis. Oncotarget 2017; 8:6085-6101. [PMID: 28030832 PMCID: PMC5351615 DOI: 10.18632/oncotarget.14042] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Epigenetic alterations are increasingly implicated in metastasis, whereas very few genetic mutations have been identified as authentic drivers of cancer metastasis. Yet, to date, few studies have identified metastasis-related epigenetic drivers, in part because a framework for identifying driver epigenetic changes in metastasis has not been established. Using reduced representation bisulfite sequencing (RRBS), we mapped genome-wide DNA methylation patterns in three cutaneous primary and metastatic melanoma cell line pairs to identify metastasis-related epigenetic drivers. Globally, metastatic melanoma cell lines were hypomethylated compared to the matched primary melanoma cell lines. Using whole genome RRBS we identified 75 shared (10 hyper- and 65 hypomethylated) differentially methylated fragments (DMFs), which were associated with 68 genes showing significant methylation differences. One gene, Early B Cell Factor 3 (EBF3), exhibited promoter hypermethylation in metastatic cell lines, and was validated with bisulfite sequencing and in two publicly available independent melanoma cohorts (n = 40 and 458 melanomas, respectively). We found that hypermethylation of the EBF3 promoter was associated with increased EBF3 mRNA levels in metastatic melanomas and subsequent inhibition of DNA methylation reduced EBF3 expression. RNAi-mediated knockdown of EBF3 mRNA levels decreased proliferation, migration and invasion in primary and metastatic melanoma cell lines. Overall, we have identified numerous epigenetic changes characterising metastatic melanoma cell lines, including EBF3-induced aggressive phenotypic behaviour with elevated EBF3 expression in metastatic melanoma, suggesting that EBF3 promoter hypermethylation may be a candidate epigenetic driver of metastasis.
Collapse
Affiliation(s)
- Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter A Stockwell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Antonio Ahn
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Anna L Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
30
|
Rodger EJ, Chatterjee A. The epigenomic basis of common diseases. Clin Epigenetics 2017; 9:5. [PMID: 28149333 PMCID: PMC5270348 DOI: 10.1186/s13148-017-0313-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/13/2017] [Indexed: 12/24/2022] Open
Abstract
A report of the 6th Epigenomics of Common Diseases Conference held at the Wellcome Genome Campus in Hinxton, Cambridge, UK, on 1-4 November 2016.
Collapse
Affiliation(s)
- Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Hanover Street, P.O. Box 56, Dunedin, 9054 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Hanover Street, P.O. Box 56, Dunedin, 9054 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| |
Collapse
|
31
|
Jordà M, Díez-Villanueva A, Mallona I, Martín B, Lois S, Barrera V, Esteller M, Vavouri T, Peinado MA. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome Res 2016; 27:118-132. [PMID: 27999094 PMCID: PMC5204336 DOI: 10.1101/gr.207522.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%–4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome.
Collapse
Affiliation(s)
- Mireia Jordà
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Anna Díez-Villanueva
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Izaskun Mallona
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Berta Martín
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Sergi Lois
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Víctor Barrera
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona 08907, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
| | - Tanya Vavouri
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona 08916, Catalonia, Spain
| | - Miguel A Peinado
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| |
Collapse
|
32
|
Reichetzeder C, Dwi Putra SE, Pfab T, Slowinski T, Neuber C, Kleuser B, Hocher B. Increased global placental DNA methylation levels are associated with gestational diabetes. Clin Epigenetics 2016; 8:82. [PMID: 27462376 PMCID: PMC4960714 DOI: 10.1186/s13148-016-0247-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/11/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with adverse pregnancy outcomes. It is known that GDM is associated with an altered placental function and changes in placental gene regulation. More recent studies demonstrated an involvement of epigenetic mechanisms. So far, the focus regarding placental epigenetic changes in GDM was set on gene-specific DNA methylation analyses. Studies that robustly investigated placental global DNA methylation are lacking. However, several studies showed that tissue-specific alterations in global DNA methylation are independently associated with type 2 diabetes. Thus, the aim of this study was to characterize global placental DNA methylation by robustly measuring placental DNA 5-methylcytosine (5mC) content and to examine whether differences in placental global DNA methylation are associated with GDM. METHODS Global DNA methylation was quantified by the current gold standard method, LC-MS/MS. In total, 1030 placental samples were analyzed in this single-center birth cohort study. RESULTS Mothers with GDM displayed a significantly increased global placental DNA methylation (3.22 ± 0.63 vs. 3.00 ± 0.46 %; p = 0.013; ±SD). Bivariate logistic regression showed a highly significant positive correlation between global placental DNA methylation and the presence of GDM (p = 0.0009). Quintile stratification according to placental DNA 5mC levels revealed that the frequency of GDM was evenly distributed in quintiles 1-4 (2.9-5.3 %), whereas the frequency in the fifth quintile was significantly higher (10.7 %; p = 0.003). Bivariate logistic models adjusted for maternal age, BMI, ethnicity, recurrent miscarriages, and familiar diabetes predisposition clearly demonstrated an independent association between global placental DNA hypermethylation and GDM. Furthermore, an ANCOVA model considering known predictors of DNA methylation substantiated an independent association between GDM and placental DNA methylation. CONCLUSIONS This is the first study that employed a robust quantitative assessment of placental global DNA methylation in over a thousand placental samples. The study provides large scale evidence that placental global DNA hypermethylation is associated with GDM, independent of established risk factors.
Collapse
Affiliation(s)
- C. Reichetzeder
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Center for Cardiovascular Research (CCR), Campus Charité Mitte, University Hospital Charité, Berlin, Germany
| | - S. E. Dwi Putra
- Department of Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, Potsdam 14558 Germany
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - T. Pfab
- Center for Cardiovascular Research (CCR), Campus Charité Mitte, University Hospital Charité, Berlin, Germany
- Diaverum Deutschland, Potsdam, Germany
| | - T. Slowinski
- Department of Nephrology, Campus Charité Mitte, University Hospital Charité, Berlin, Germany
| | - C. Neuber
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - B. Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - B. Hocher
- Department of Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, Potsdam 14558 Germany
- Institut für Laboratoriumsmedizin, Berlin, Germany
- Department of Basic Medicine, Medical College of Hunan Normal University, Changsha, China
| |
Collapse
|