1
|
Lampar A, Farkas A, Ivanizs L, Szőke‐Pázsi K, Gaál E, Said M, Bartoš J, Doležel J, Korol A, Valárik M, Molnár I. A linkage map of Aegilops biuncialis reveals significant genomic rearrangements compared to bread wheat. THE PLANT GENOME 2025; 18:e70009. [PMID: 40008795 PMCID: PMC11863542 DOI: 10.1002/tpg2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025]
Abstract
Goatgrasses with U- and M-genomes are important sources of new alleles for wheat breeding to maintain yield and quality under extreme conditions. However, the introgression of beneficial traits from wild Aegilops species into wheat has been limited by poor knowledge of their genomes and scarcity of molecular tools. Here, we present the first linkage map of allotetraploid Aegilops biuncialis Vis., developed using 224 F2 individuals derived from a cross between MvGB382 and MvGB642 accessions. The map comprises 5663 DArTseq markers assigned to 15 linkage groups corresponding to 13 chromosomes. Chromosome 1Mb could not be constructed due to a lack of recombination caused by rearrangements in the MvGB382 accession. The genetic map spans 2518 cM with an average marker density of 2.79 cM. The skeleton map contains 920 segregating markers, divided between the Mb sub-genome (425 markers) and the Ub sub-genome (495 markers). Chromosomes of the Mb sub-genome, originating from Aegilops comosa Sm. in Sibth. et Sm., show well-preserved collinearity with Triticum aestivum L. chromosomes. In contrast, chromosomes of the Ub sub-genome, originating from Aegilops umbellulata Zhuk., exhibit a varying degree of collinearity, with 1Ub, 3Ub, and 5Ub retaining a substantial level of collinearity with Triticum aestivum, while 2Ub, 4Ub, 6Ub, and 7Ub show significant rearrangements. A quantitative trait locus affecting fertility was identified near the centromere on the long arm of chromosome 3Mb, explaining 23.5% of the variance. The genome structure of Aegilops biuncialis, highlighted by the genetic map, provides insights into the speciation within the species and will support alien gene transfer into wheat.
Collapse
Affiliation(s)
- Adam Lampar
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
- Department of Cell Biology and Genetics, Faculty of SciencePalacký UniversityOlomoucCzech Republic
| | - András Farkas
- Department of Biological Resources, Agricultural InstituteHUN‐REN Centre for Agricultural ResearchMartonvásárHungary
| | - László Ivanizs
- Department of Biological Resources, Agricultural InstituteHUN‐REN Centre for Agricultural ResearchMartonvásárHungary
| | - Kitti Szőke‐Pázsi
- Department of Biological Resources, Agricultural InstituteHUN‐REN Centre for Agricultural ResearchMartonvásárHungary
| | - Eszter Gaál
- Department of Biological Resources, Agricultural InstituteHUN‐REN Centre for Agricultural ResearchMartonvásárHungary
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
- Field Crops Research InstituteAgricultural Research CentreGizaEgypt
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
| | - Abraham Korol
- Institute of EvolutionUniversity of HaifaMount CarmelIsrael
| | - Miroslav Valárik
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
- Department of Biological Resources, Agricultural InstituteHUN‐REN Centre for Agricultural ResearchMartonvásárHungary
| |
Collapse
|
2
|
Son I, Kasazumi N, Okada M, Takumi S, Yoshida K. Discrepancy of flowering time between genetically close sublineages of Aegilops umbellulata Zhuk. Sci Rep 2024; 14:7437. [PMID: 38548857 PMCID: PMC10978908 DOI: 10.1038/s41598-024-57935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/22/2024] [Indexed: 04/01/2024] Open
Abstract
Aegilops umbellulata Zhuk., a wild diploid wheat-related species, has been used as a genetic resource for several important agronomic traits. However, its genetic variations have not been comprehensively studied. We sequenced RNA from 114 accessions of Ae. umbellulata to evaluate DNA polymorphisms and phenotypic variations. Bayesian clustering and phylogenetic analysis based on SNPs detected by RNA sequencing revealed two divergent lineages, UmbL1 and UmbL2. The main differences between them were in the sizes of spikes and spikelets, and culm diameter. UmbL1 is divided into two sublineages, UmbL1e and UmbL1w. These genetic differences corresponded to geographic distributions. UmbL1e, UmbL1w, and UmbL2 are found in Turkey, Iran/Iraq, and Greece, respectively. Although UmbL1e and UmbL1w were genetically similar, flowering time and other morphological traits were more distinct between these sublineages than those between the lineages. This discrepancy can be explained by the latitudinal and longitudinal differences in habitats. Specifically, latitudinal clines of flowering time were clearly observed in Ae. umbellulata, strongly correlated with solar radiation in the winter season. This observation implies that latitudinal differences are a factor in differences in the flowering times of Ae. umbellulata. Differences in flowering time could influence other morphological differences and promote genetic divergence between sublineages.
Collapse
Affiliation(s)
- In Son
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Nozomi Kasazumi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Moeko Okada
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kentaro Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Wang Y, Abrouk M, Gourdoupis S, Koo DH, Karafiátová M, Molnár I, Holušová K, Doležel J, Athiyannan N, Cavalet-Giorsa E, Jaremko Ł, Poland J, Krattinger SG. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat Genet 2023:10.1038/s41588-023-01401-2. [PMID: 37217716 DOI: 10.1038/s41588-023-01401-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
The introgression of chromosome segments from wild relatives is an established strategy to enrich crop germplasm with disease-resistance genes1. Here we use mutagenesis and transcriptome sequencing to clone the leaf rust resistance gene Lr9, which was introduced into bread wheat from the wild grass species Aegilops umbellulata2. We established that Lr9 encodes an unusual tandem kinase fusion protein. Long-read sequencing of a wheat Lr9 introgression line and the putative Ae. umbellulata Lr9 donor enabled us to assemble the ~28.4-Mb Lr9 translocation and to identify the translocation breakpoint. We likewise cloned Lr58, which was reportedly introgressed from Aegilops triuncialis3, but has an identical coding sequence compared to Lr9. Cytogenetic and haplotype analyses corroborate that the two genes originate from the same translocation event. Our work sheds light on the emerging role of kinase fusion proteins in wheat disease resistance, expanding the repertoire of disease-resistance genes for breeding.
Collapse
Affiliation(s)
- Yajun Wang
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Spyridon Gourdoupis
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Emile Cavalet-Giorsa
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Türkösi E, Ivanizs L, Farkas A, Gaál E, Kruppa K, Kovács P, Szakács É, Szőke-Pázsi K, Said M, Cápal P, Griffiths S, Doležel J, Molnár I. Transfer of the ph1b Deletion Chromosome 5B From Chinese Spring Wheat Into a Winter Wheat Line and Induction of Chromosome Rearrangements in Wheat- Aegilops biuncialis Hybrids. FRONTIERS IN PLANT SCIENCE 2022; 13:875676. [PMID: 35769292 PMCID: PMC9234525 DOI: 10.3389/fpls.2022.875676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 06/10/2023]
Abstract
Effective utilization of genetic diversity in wild relatives to improve wheat requires recombination between wheat and alien chromosomes. However, this is suppressed by the Pairing homoeologous gene, Ph1, on the long arm of wheat chromosome 5B. A deletion mutant of the Ph1 locus (ph1b) has been used widely to induce homoeologous recombination in wheat × alien hybrids. However, the original ph1b mutation, developed in Chinese Spring (CS) background has poor agronomic performance. Hence, alien introgression lines are first backcrossed with adapted wheat genotypes and after this step, alien chromosome segments are introduced into breeding lines. In this work, the ph1b mutation was transferred from two CSph1b mutants into winter wheat line Mv9kr1. Homozygous genotypes Mv9kr1 ph1b/ph1b exhibited improved plant and spike morphology compared to Chinese Spring. Flow cytometric chromosome analysis confirmed reduced DNA content of the mutant 5B chromosome in both wheat genotype relative to the wild type chromosome. The ph1b mutation in the Mv9kr1 genotype allowed wheat-alien chromosome pairing in meiosis of Mv9kr1ph1b_K × Aegilops biuncialis F1 hybrids, predominantly with the Mb-genome chromosomes of Aegilops relative to those of the Ub genome. High frequency of wheat-Aegilops chromosome interactions resulted in rearranged chromosomes identified in the new Mv9kr1ph1b × Ae. Biuncialis amphiploids, making these lines valuable sources for alien introgressions. The new Mv9kr1ph1b mutant genotype is a unique resource to support alien introgression breeding of hexaploid wheat.
Collapse
Affiliation(s)
- Edina Türkösi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - László Ivanizs
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - András Farkas
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Péter Kovács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
- Institute of Genetics and Biotechnology, Szent István Campus, MATE, Gödöllő, Hungary
| | - Éva Szakács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Kitti Szőke-Pázsi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Mahmoud Said
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute for Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Petr Cápal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute for Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | | | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute for Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - István Molnár
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| |
Collapse
|
5
|
Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis. Int J Mol Sci 2022; 23:ijms23073821. [PMID: 35409181 PMCID: PMC8999039 DOI: 10.3390/ijms23073821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high β-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain β-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with β-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain β-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.
Collapse
|
6
|
Abed A, Badea A, Beattie A, Khanal R, Tucker J, Belzile F. A high-resolution consensus linkage map for barley based on GBS-derived genotypes. Genome 2021; 65:83-94. [PMID: 34870479 DOI: 10.1139/gen-2021-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As genotyping-by-sequencing (GBS) is widely used in barley genetic studies, the translation of the physical position of GBS-derived SNPs into accurate genetic positions has become relevant. The main aim of this study was to develop a high-resolution consensus linkage map based on GBS-derived SNPs. The construction of this integrated map involved 11 bi-parental populations composed of 3743 segregating progenies. We adopted a uniform set of SNP-calling and filtering conditions to identify 50 875 distinct SNPs segregating in at least one population. These SNPs were grouped into 18 580 non-redundant SNPs (bins). The resulting consensus linkage map spanned 1050.1 cM, providing an average density of 17.7 bins and 48.4 SNPs per cM. The consensus map is characterized by the absence of large intervals devoid of marker coverage (significant gaps), the largest interval between bins was only 3.7 cM and the mean distance between adjacent bins was 0.06 cM. This high-resolution linkage map will contribute to several applications in genomic research, such as providing useful information on the recombination landscape for QTLs/genes identified via GWAS or ensuring a uniform distribution of SNPs when developing low-cost genotyping tools offering a limited number of markers.
Collapse
Affiliation(s)
- Amina Abed
- Département de Phytologie, Université Laval, Pavillon Charles-Eugène Marchand 1030, Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - Aaron Beattie
- Barley and Oat Breeding Program Crop Development Centre, University of Saskatchewan, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Raja Khanal
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - James Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Pavillon Charles-Eugène Marchand 1030, Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6123-6139. [PMID: 34114599 DOI: 10.1093/jxb/erab276] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 05/08/2023]
Abstract
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K,India
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| |
Collapse
|
8
|
Said M, Holušová K, Farkas A, Ivanizs L, Gaál E, Cápal P, Abrouk M, Martis-Thiele MM, Kalapos B, Bartoš J, Friebe B, Doležel J, Molnár I. Development of DNA Markers From Physically Mapped Loci in Aegilops comosa and Aegilops umbellulata Using Single-Gene FISH and Chromosome Sequences. FRONTIERS IN PLANT SCIENCE 2021; 12:689031. [PMID: 34211490 PMCID: PMC8240756 DOI: 10.3389/fpls.2021.689031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/19/2021] [Indexed: 05/31/2023]
Abstract
Breeding of agricultural crops adapted to climate change and resistant to diseases and pests is hindered by a limited gene pool because of domestication and thousands of years of human selection. One way to increase genetic variation is chromosome-mediated gene transfer from wild relatives by cross hybridization. In the case of wheat (Triticum aestivum), the species of genus Aegilops are a particularly attractive source of new genes and alleles. However, during the evolution of the Aegilops and Triticum genera, diversification of the D-genome lineage resulted in the formation of diploid C, M, and U genomes of Aegilops. The extent of structural genome alterations, which accompanied their evolution and speciation, and the shortage of molecular tools to detect Aegilops chromatin hamper gene transfer into wheat. To investigate the chromosome structure and help develop molecular markers with a known physical position that could improve the efficiency of the selection of desired introgressions, we developed single-gene fluorescence in situ hybridization (FISH) maps for M- and U-genome progenitors, Aegilops comosa and Aegilops umbellulata, respectively. Forty-three ortholog genes were located on 47 loci in Ae. comosa and on 52 loci in Ae. umbellulata using wheat cDNA probes. The results obtained showed that M-genome chromosomes preserved collinearity with those of wheat, excluding 2 and 6M containing an intrachromosomal rearrangement and paracentric inversion of 6ML, respectively. While Ae. umbellulata chromosomes 1, 3, and 5U maintained collinearity with wheat, structural reorganizations in 2, 4, 6, and 7U suggested a similarity with the C genome of Aegilops markgrafii. To develop molecular markers with exact physical positions on chromosomes of Aegilops, the single-gene FISH data were validated in silico using DNA sequence assemblies from flow-sorted M- and U-genome chromosomes. The sequence similarity search of cDNA sequences confirmed 44 out of the 47 single-gene loci in Ae. comosa and 40 of the 52 map positions in Ae. umbellulata. Polymorphic regions, thus, identified enabled the development of molecular markers, which were PCR validated using wheat-Aegilops disomic chromosome addition lines. The single-gene FISH-based approach allowed the development of PCR markers specific for cytogenetically mapped positions on Aegilops chromosomes, substituting as yet unavailable segregating map. The new knowledge and resources will support the efforts for the introgression of Aegilops genes into wheat and their cloning.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Agricultural Research Centre, Field Crops Research Institute, Cairo, Egypt
| | - Katerina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - András Farkas
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - László Ivanizs
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - Eszter Gaál
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Michael Abrouk
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mihaela M. Martis-Thiele
- NBIS (National Bioinformatics Infrastructure Sweden, Science for Life Laboratory), Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Balázs Kalapos
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| |
Collapse
|
9
|
Martina M, Tikunov Y, Portis E, Bovy AG. The Genetic Basis of Tomato Aroma. Genes (Basel) 2021; 12:genes12020226. [PMID: 33557308 PMCID: PMC7915847 DOI: 10.3390/genes12020226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Tomato (Solanum lycopersicum L.) aroma is determined by the interaction of volatile compounds (VOCs) released by the tomato fruits with receptors in the nose, leading to a sensorial impression, such as "sweet", "smoky", or "fruity" aroma. Of the more than 400 VOCs released by tomato fruits, 21 have been reported as main contributors to the perceived tomato aroma. These VOCs can be grouped in five clusters, according to their biosynthetic origins. In the last decades, a vast array of scientific studies has investigated the genetic component of tomato aroma in modern tomato cultivars and their relatives. In this paper we aim to collect, compare, integrate and summarize the available literature on flavour-related QTLs in tomato. Three hundred and 5ifty nine (359) QTLs associated with tomato fruit VOCs were physically mapped on the genome and investigated for the presence of potential candidate genes. This review makes it possible to (i) pinpoint potential donors described in literature for specific traits, (ii) highlight important QTL regions by combining information from different populations, and (iii) pinpoint potential candidate genes. This overview aims to be a valuable resource for researchers aiming to elucidate the genetics underlying tomato flavour and for breeders who aim to improve tomato aroma.
Collapse
Affiliation(s)
- Matteo Martina
- DISAFA, Plant Genetics and Breeding, University of Turin, 10095 Grugliasco, Italy;
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
| | - Ezio Portis
- DISAFA, Plant Genetics and Breeding, University of Turin, 10095 Grugliasco, Italy;
- Correspondence: (E.P.); (A.G.B.); Tel.: +39-011-6708807 (E.P.); +31-317-480762 (A.G.B.)
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
- Correspondence: (E.P.); (A.G.B.); Tel.: +39-011-6708807 (E.P.); +31-317-480762 (A.G.B.)
| |
Collapse
|
10
|
Zaïm M, Kabbaj H, Kehel Z, Gorjanc G, Filali-Maltouf A, Belkadi B, Nachit MM, Bassi FM. Combining QTL Analysis and Genomic Predictions for Four Durum Wheat Populations Under Drought Conditions. Front Genet 2020; 11:316. [PMID: 32435259 PMCID: PMC7218065 DOI: 10.3389/fgene.2020.00316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/16/2020] [Indexed: 11/28/2022] Open
Abstract
Durum wheat is an important crop for the human diet and its consumption is gaining popularity. In order to ensure that durum wheat production maintains the pace with the increase in demand, it is necessary to raise productivity by approximately 1.5% per year. To deliver this level of annual genetic gain the incorporation of molecular strategies has been proposed as a key solution. Here, four RILs populations were used to conduct QTL discovery for grain yield (GY) and 1,000 kernel weight (TKW). A total of 576 individuals were sown at three locations in Morocco and one in Lebanon. These individuals were genotyped by sequencing with 3,202 high-confidence polymorphic markers, to derive a consensus genetic map of 2,705.7 cM, which was used to impute any missing data. Six QTLs were found to be associated with GY and independent from flowering time on chromosomes 2B, 4A, 5B, 7A and 7B, explaining a phenotypic variation (PV) ranging from 4.3 to 13.4%. The same populations were used to train genomic prediction models incorporating the relationship matrix, the genotype by environment interaction, and marker by environment interaction, to reveal significant advantages for models incorporating the marker effect. Using training populations (TP) in full sibs relationships with the validation population (VP) was shown to be the only effective strategy, with accuracies reaching 0.35–0.47 for GY. Reducing the number of markers to 10% of the whole set, and the TP size to 20% resulted in non-significant changes in accuracies. The QTLs identified were also incorporated in the models as fixed effects, showing significant accuracy gain for all four populations. Our results confirm that the prediction accuracy depends considerably on the relatedness between TP and VP, but not on the number of markers and size of TP used. Furthermore, feeding the model with information on markers associated with QTLs increased the overall accuracy.
Collapse
Affiliation(s)
- Meryem Zaïm
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,ICARDA, Biodiversity and Integrated Gene Management, Rabat, Morocco
| | - Hafssa Kabbaj
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,ICARDA, Biodiversity and Integrated Gene Management, Rabat, Morocco
| | - Zakaria Kehel
- ICARDA, Biodiversity and Integrated Gene Management, Rabat, Morocco
| | - Gregor Gorjanc
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelkarim Filali-Maltouf
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Bouchra Belkadi
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Miloudi M Nachit
- ICARDA, Biodiversity and Integrated Gene Management, Rabat, Morocco
| | - Filippo M Bassi
- ICARDA, Biodiversity and Integrated Gene Management, Rabat, Morocco
| |
Collapse
|
11
|
Okada M, Michikawa A, Yoshida K, Nagaki K, Ikeda TM, Takumi S. Phenotypic effects of the U-genome variation in nascent synthetic hexaploids derived from interspecific crosses between durum wheat and its diploid relative Aegilops umbellulata. PLoS One 2020; 15:e0231129. [PMID: 32240263 PMCID: PMC7117738 DOI: 10.1371/journal.pone.0231129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Aegilops umbellulata is a wild diploid wheat species with the UU genome that is an important genetic resource for wheat breeding. To exploit new synthetic allohexaploid lines available as bridges for wheat breeding, a total of 26 synthetic hexaploid lines were generated through crossing between the durum wheat cultivar Langdon and 26 accessions of Ae. umbellulata. In nascent synthetic hexaploids with the AABBUU genome, the presence of the set of seven U-genome chromosomes was confirmed with U-genome chromosome-specific markers developed based on RNA-seq-derived data from Ae. umbellulata. The AABBUU synthetic hexaploids showed large variations in flowering- and morphology-related traits, and these large variations transmitted well from the parental Ae. umbellulata accessions. However, the variation ranges in most traits examined were reduced under the AABBUU hexaploid background compared with under the diploid parents. The AABBUU and AABBDD synthetic hexaploids were clearly discriminated by several morphological traits, and an increase of plant height and in the number of spikes and a decrease of spike length were commonly observed in the AABBUU synthetics. Thus, interspecific differences in several morphological traits between Ae. umbellulata and A. tauschii largely affected the basic plant architecture of the synthetic hexaploids. In conclusion, the AABBUU synthetic hexaploid lines produced in the present study are useful resources for the introgression of desirable genes from Ae. umbellulata to common wheat.
Collapse
Affiliation(s)
- Moeko Okada
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Asami Michikawa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Tatsuya M. Ikeda
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Fukuyama, Hiroshima, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
12
|
Maximising recombination across macadamia populations to generate linkage maps for genome anchoring. Sci Rep 2020; 10:5048. [PMID: 32193408 PMCID: PMC7081209 DOI: 10.1038/s41598-020-61708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 01/02/2023] Open
Abstract
The Proteaceae genus Macadamia has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of >4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the Macadamia haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus.
Collapse
|
13
|
Blake VC, Woodhouse MR, Lazo GR, Odell SG, Wight CP, Tinker NA, Wang Y, Gu YQ, Birkett CL, Jannink JL, Matthews DE, Hane DL, Michel SL, Yao E, Sen TZ. GrainGenes: centralized small grain resources and digital platform for geneticists and breeders. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5513438. [PMID: 31210272 DOI: 10.1093/database/baz065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/13/2022]
Abstract
GrainGenes (https://wheat.pw.usda.gov or https://graingenes.org) is an international centralized repository for curated, peer-reviewed datasets useful to researchers working on wheat, barley, rye and oat. GrainGenes manages genomic, genetic, germplasm and phenotypic datasets through a dynamically generated web interface for facilitated data discovery. Since 1992, GrainGenes has served geneticists and breeders in both the public and private sectors on six continents. Recently, several new datasets were curated into the database along with new tools for analysis. The GrainGenes homepage was enhanced by making it more visually intuitive and by adding links to commonly used pages. Several genome assemblies and genomic tracks are displayed through the genome browsers at GrainGenes, including the Triticum aestivum (bread wheat) cv. 'Chinese Spring' IWGSC RefSeq v1.0 genome assembly, the Aegilops tauschii (D genome progenitor) Aet v4.0 genome assembly, the Triticum turgidum ssp. dicoccoides (wild emmer wheat) cv. 'Zavitan' WEWSeq v.1.0 genome assembly, a T. aestivum (bread wheat) pangenome, the Hordeum vulgare (barley) cv. 'Morex' IBSC genome assembly, the Secale cereale (rye) select 'Lo7' assembly, a partial hexaploid Avena sativa (oat) assembly and the Triticum durum cv. 'Svevo' (durum wheat) RefSeq Release 1.0 assembly. New genetic maps and markers were added and can be displayed through CMAP. Quantitative trait loci, genetic maps and genes from the Wheat Gene Catalogue are indexed and linked through the Wheat Information System (WheatIS) portal. Training videos were created to help users query and reach the data they need. GSP (Genome Specific Primers) and PIECE2 (Plant Intron Exon Comparison and Evolution) tools were implemented and are available to use. As more small grains reference sequences become available, GrainGenes will play an increasingly vital role in helping researchers improve crops.
Collapse
Affiliation(s)
- Victoria C Blake
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Margaret R Woodhouse
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Gerard R Lazo
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Sarah G Odell
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA.,Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charlene P Wight
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Nicholas A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Yi Wang
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Yong Q Gu
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Clay L Birkett
- Robert Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| | - Jean-Luc Jannink
- Robert Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA.,Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Dave E Matthews
- Robert Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| | - David L Hane
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Steve L Michel
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Eric Yao
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Taner Z Sen
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA.,Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
14
|
Bulked segregant analysis RNA-seq (BSR-Seq) validated a stem resistance locus in Aegilops umbellulata, a wild relative of wheat. PLoS One 2019; 14:e0215492. [PMID: 31539379 PMCID: PMC6754143 DOI: 10.1371/journal.pone.0215492] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/04/2019] [Indexed: 11/19/2022] Open
Abstract
Many disease resistance genes that have been transferred from wild relatives to cultivated wheat have played a significant role in wheat production worldwide. Ae. umbellulata is one of the species within the genus Aegilops that have been successfully used as sources of resistance genes to leaf rust, stem rust and powdery mildew. The objectives of the current work was to validate the map position of a major QTL that confers resistance to the stem rust pathogen races Ug99 (TTKSK) and TTTTF with an independent bi-parental mapping population and to refine the QTL region with a bulk segregant analysis approach. Two F2 bi-parental mapping populations were developed from stem rust resistant Ae. umbellulata accessions (PI 298905 and PI 5422375) and stem rust susceptible accessions (PI 542369 and PI 554395). Firstly, one of the two populations was used to map the chromosome location of the resistance gene. Later on, the 2nd population was used to validate the chromosome location in combination with a bulk segregant analysis approach. For the bulk segregant analysis, RNA was extracted from a bulk of leaf tissues of 12 homozygous resistant F3 families, and a separate bulk of 11 susceptible homozygous F3 families derived from the PI 5422375 and PI 554395 cross. The RNA samples of the two bulks and the two parents were sequenced for SNPs identification. Stem rust resistance QTL was validated on chromosome 2U of Ae. umbellulata in the same region in both populations. With bulk segregant analysis, the QTL position was delimited within 3.2 Mbp. Although there were a large number of genes in the orthologous region of the detected QTL on chromosome 2D of Ae. tauschii, we detected only two Ae. umbellulata NLR genes which can be considered as a potential candidate genes.
Collapse
|
15
|
Tello J, Roux C, Chouiki H, Laucou V, Sarah G, Weber A, Santoni S, Flutre T, Pons T, This P, Péros JP, Doligez A. A novel high-density grapevine (Vitis vinifera L.) integrated linkage map using GBS in a half-diallel population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2237-2252. [PMID: 31049634 DOI: 10.1007/s00122-019-03351-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/20/2019] [Indexed: 05/21/2023]
Abstract
A half-diallel population involving five elite grapevine cultivars was generated and genotyped by GBS, and highly-informative segregation data was used to construct a high-density genetic map for Vitis vinifera L. Grapevine is one of the most relevant fruit crops in the world. Deeper genetic knowledge could assist modern grapevine breeding programs to develop new wine grape varieties able to face climate change effects. To assist in the rapid identification of markers for crop yield components, grape quality traits and adaptation potential, we generated a large Vitis vinifera L. population (N = 624) by crossing five red wine cultivars in a half-diallel scheme, which was subsequently sequenced by an efficient GBS procedure. A high number of fully informative genetic variants was detected using a novel mapping approach capable of reconstructing local haplotypes from adjacent biallelic SNPs, which were subsequently used to construct the densest consensus genetic map available for the cultivated grapevine to date. This 1378.3-cM map integrates 10 bi-parental consensus maps and orders 4437 markers in 3353 unique positions on 19 chromosomes. Markers are well distributed all along the grapevine reference genome, covering up to 98.8% of its genomic sequence. Additionally, a good agreement was observed between genetic and physical orders, adding confidence in the quality of this map. Collectively, our results pave the way for future genetic studies (such as fine QTL mapping) aimed to understand the complex relationship between genotypic and phenotypic variation in the cultivated grapevine. In addition, the method used (which efficiently delivers a high number of fully informative markers) could be of interest to other outbred organisms, notably perennial fruit crops.
Collapse
Affiliation(s)
- Javier Tello
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Catherine Roux
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Hajar Chouiki
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Valérie Laucou
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Gautier Sarah
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Audrey Weber
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Sylvain Santoni
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
| | - Timothée Flutre
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Thierry Pons
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Patrice This
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Jean-Pierre Péros
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France
| | - Agnès Doligez
- UMR AGAP, University of Montpellier-CIRAD-INRA-Montpellier SupAgro, Montpellier, France.
- UMT Geno-Vigne®, IFV-INRA-Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
16
|
Kishii M. An Update of Recent Use of Aegilops Species in Wheat Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:585. [PMID: 31143197 PMCID: PMC6521781 DOI: 10.3389/fpls.2019.00585] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 05/16/2023]
Abstract
Aegilops species have significantly contributed to wheat breeding despite the difficulties involved in the handling of wild species, such as crossability and incompatibility. A number of biotic resistance genes have been identified and incorporated into wheat varieties from Aegilops species, and this genus is also contributing toward improvement of complex traits such as yield and abiotic tolerance for drought and heat. The D genome diploid species of Aegilops tauschii has been utilized most often in wheat breeding programs. Other Aegilops species are more difficult to utilize in the breeding because of lower meiotic recombination frequencies; generally they can be utilized only after extensive and time-consuming procedures in the form of translocation/introgression lines. After the emergence of Ug99 stem rust and wheat blast threats, Aegilops species gathered more attention as a form of new resistance sources. This article aims to update recent progress on Aegilops species, as well as to cover new topics around their use in wheat breeding.
Collapse
Affiliation(s)
- Masahiro Kishii
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
17
|
Ferreira RCU, Lara LADC, Chiari L, Barrios SCL, do Valle CB, Valério JR, Torres FZV, Garcia AAF, de Souza AP. Genetic Mapping With Allele Dosage Information in Tetraploid Urochloa decumbens (Stapf) R. D. Webster Reveals Insights Into Spittlebug ( Notozulia entreriana Berg) Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:92. [PMID: 30873183 PMCID: PMC6401981 DOI: 10.3389/fpls.2019.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/21/2019] [Indexed: 05/08/2023]
Abstract
Urochloa decumbens (Stapf) R. D. Webster is one of the most important African forage grasses in Brazilian beef production. Currently available genetic-genomic resources for this species are restricted mainly due to polyploidy and apomixis. Therefore, crucial genomic-molecular studies such as the construction of genetic maps and the mapping of quantitative trait loci (QTLs) are very challenging and consequently affect the advancement of molecular breeding. The objectives of this work were to (i) construct an integrated U. decumbens genetic map for a full-sibling progeny using GBS-based markers with allele dosage information, (ii) detect QTLs for spittlebug (Notozulia entreriana) resistance, and (iii) seek putative candidate genes involved in defense against biotic stresses. We used the Setaria viridis genome a reference to align GBS reads and selected 4,240 high-quality SNP markers with allele dosage information. Of these markers, 1,000 were distributed throughout nine homologous groups with a cumulative map length of 1,335.09 cM and an average marker density of 1.33 cM. We detected QTLs for resistance to spittlebug, an important pasture insect pest, that explained between 4.66 and 6.24% of the phenotypic variation. These QTLs are in regions containing putative candidate genes related to defense against biotic stresses. Because this is the first genetic map with SNP autotetraploid dosage data and QTL detection in U. decumbens, it will be useful for future evolutionary studies, genome assembly, and other QTL analyses in Urochloa spp. Moreover, the results might facilitate the isolation of spittlebug-related candidate genes and help clarify the mechanism of spittlebug resistance. These approaches will improve selection efficiency and accuracy in U. decumbens molecular breeding and shorten the breeding cycle.
Collapse
Affiliation(s)
| | | | - Lucimara Chiari
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - José Raul Valério
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
- *Correspondence: Anete Pereira de Souza,
| |
Collapse
|
18
|
Olivera PD, Rouse MN, Jin Y. Identification of New Sources of Resistance to Wheat Stem Rust in Aegilops spp. in the Tertiary Genepool of Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1719. [PMID: 30524466 PMCID: PMC6262079 DOI: 10.3389/fpls.2018.01719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/05/2018] [Indexed: 05/28/2023]
Abstract
Recent stem rust epidemics in eastern Africa and elsewhere demonstrated that wheat stem rust is a re-emerging disease posing a threat to wheat production worldwide. The cultivated wheat gene pool has a narrow genetic base for resistance to virulent races, such as races in the Ug99 race group. Wild relatives of wheat are a tractable source of stem rust resistance genes. Aegilops species in the tertiary genepool have not been exploited to any great extent as a source of stem rust resistance. We evaluated 1,422 accessions of Aegilops spp. for resistance to three highly virulent races (TTKSK, TRTTF, and TTTTF) of Puccinia graminis f. sp. tritici. Species studied include Ae. biuncialis, Ae. caudata, Ae. comosa, Ae. cylindrica, Ae. geniculata, Ae. neglecta, Ae. peregrina, Ae. triuncialis, and Ae. umbellulata that do not share common genomes with cultivated wheat. High frequencies of resistance were observed as 977 (68.8%), 927 (65.2%), and 850 (59.8%) accessions exhibited low infection types to races TTKSK, TTTTF, and TRTTF, respectively. Contingency table analyses showed strong association for resistance to different races in several Aegilops spp., indicating that for a given species, the resistance genes effective against multiple races. Inheritance studies in selected accessions showed that resistance to race TTKSK is simply inherited.
Collapse
Affiliation(s)
- Pablo D. Olivera
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Matthew N. Rouse
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, St. Paul, MN, United States
| | - Yue Jin
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, St. Paul, MN, United States
| |
Collapse
|
19
|
Okada M, Yoshida K, Nishijima R, Michikawa A, Motoi Y, Sato K, Takumi S. RNA-seq analysis reveals considerable genetic diversity and provides genetic markers saturating all chromosomes in the diploid wild wheat relative Aegilops umbellulata. BMC PLANT BIOLOGY 2018; 18:271. [PMID: 30409135 PMCID: PMC6225718 DOI: 10.1186/s12870-018-1498-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 10/25/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Aegilops umbellulata Zhuk. (2n = 14), a wild diploid wheat relative, has been the source of trait improvement in wheat breeding. Intraspecific genetic variation of Ae. umbellulata, however, has not been well studied and the genomic information in this species is limited. RESULTS To develop novel genetic markers distributed over all chromosomes of Ae. umbellulata and to evaluate its genetic diversity, we performed RNA sequencing of 12 representative accessions and reconstructed transcripts by de novo assembly of reads for each accession. A large number of single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were obtained and anchored to the pseudomolecules of Ae. tauschii and barley (Hordeum vulgare L.), which were regarded as virtual chromosomes of Ae. umbellulata. Interestingly, genetic diversity in Ae. umbellulata was higher than in Ae. tauschii, despite the narrow habitat of Ae. umbellulata. Comparative analyses of nucleotide polymorphisms between Ae. umbellulata and Ae. tauschii revealed no clear lineage differentiation and existence of alleles with rarer frequencies predominantly in Ae. umbellulata, with patterns clearly distinct from those in Ae. tauschii. CONCLUSIONS The anchored SNPs, covering all chromosomes, provide sufficient genetic markers between Ae. umbellulata accessions. The alleles with rarer frequencies might be the main source of the high genetic diversity in Ae. umbellulata.
Collapse
Affiliation(s)
- Moeko Okada
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan.
| | - Ryo Nishijima
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Asami Michikawa
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Yuka Motoi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
20
|
Elbasyoni IS, Lorenz AJ, Guttieri M, Frels K, Baenziger PS, Poland J, Akhunov E. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:123-130. [PMID: 29576064 DOI: 10.1016/j.plantsci.2018.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/29/2018] [Accepted: 02/17/2018] [Indexed: 05/26/2023]
Abstract
The utilization of DNA molecular markers in plant breeding to maximize selection response via marker-assisted selection (MAS) and genomic selection (GS) has revolutionized plant breeding. A key factor affecting GS applicability is the choice of molecular marker platform. Genotyping-by-sequencing scored SNPs (GBS-scored SNPs) provides a large number of markers, albeit with high rates of missing data. Array scored SNPs are of high quality, but the cost per sample is substantially higher. The objectives of this study were 1) compare GBS-scored SNPs, and array scored SNPs for genomic selection applications, and 2) compare estimates of genomic kinship and population structure calculated using the two marker platforms. SNPs were compared in a diversity panel consisting of 299 hard winter wheat (Triticum aestivum L.) accessions that were part of a multi-year, multi-environments association mapping study. The panel was phenotyped in Ithaca, Nebraska for heading date, plant height, days to physiological maturity and grain yield in 2012 and 2013. The panel was genotyped using GBS-scored SNPs, and array scored SNPs. Results indicate that GBS-scored SNPs is comparable to or better than Array-scored SNPs for genomic prediction application. Both platforms identified the same genetic patterns in the panel where 90% of the lines were classified to common genetic groups. Overall, we concluded that GBS-scored SNPs have the potential to be the marker platform of choice for genetic diversity and genomic selection in winter wheat.
Collapse
Affiliation(s)
| | - A J Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, United States
| | - M Guttieri
- USDA Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506-5502, United States
| | - K Frels
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, United States
| | - P S Baenziger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583-0915, United States
| | - J Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, United States
| | - E Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, United States
| |
Collapse
|
21
|
Danilova TV, Akhunova AR, Akhunov ED, Friebe B, Gill BS. Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:317-330. [PMID: 28776783 DOI: 10.1111/tpj.13657] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 05/19/2023]
Abstract
During evolutionary history many grasses from the tribe Triticeae have undergone interspecific hybridization, resulting in allopolyploidy; whereas homoploid hybrid speciation was found only in rye. Homoeologous chromosomes within the Triticeae preserved cross-species macrocolinearity, except for a few species with rearranged genomes. Aegilops markgrafii, a diploid wild relative of wheat (2n = 2x = 14), has a highly asymmetrical karyotype that is indicative of chromosome rearrangements. Molecular cytogenetics and next-generation sequencing were used to explore the genome organization. Fluorescence in situ hybridization with a set of wheat cDNAs allowed the macrostructure and cross-genome homoeology of the Ae. markgrafii chromosomes to be established. Two chromosomes maintained colinearity, whereas the remaining were highly rearranged as a result of inversions and inter- and intrachromosomal translocations. We used sets of barley and wheat orthologous gene sequences to compare discrete parts of the Ae. markgrafii genome involved in the rearrangements. Analysis of sequence identity profiles and phylogenic relationships grouped chromosome blocks into two distinct clusters. Chromosome painting revealed the distribution of transposable elements and differentiated chromosome blocks into two groups consistent with the sequence analyses. These data suggest that introgressive hybridization accompanied by gross chromosome rearrangements might have had an impact on karyotype evolution and homoploid speciation in Ae. markgrafii.
Collapse
Affiliation(s)
- Tatiana V Danilova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Alina R Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Eduard D Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bernd Friebe
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|