1
|
Yin L, Zhang G, Zhou C, Ou Z, Qu B, Zhao H, Zuo E, Liu B, Wan F, Qian W. Chromosome-level genome of Ambrosia trifida provides insights into adaptation and the evolution of pollen allergens. Int J Biol Macromol 2024; 259:129232. [PMID: 38191104 DOI: 10.1016/j.ijbiomac.2024.129232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Ambrosia trifida (giant ragweed) is an invasive plant that can cause serious damage to natural ecosystems and severe respiratory allergies. However, the genomic basis of invasive adaptation and pollen allergens in Ambrosia species remain largely unknown. Here, we present a 1.66 Gb chromosome-scale reference genome for giant ragweed and identified multiple types of genome duplications, which are responsible for its rapid environmental adaptation and pollen development. The largest copies number and species-specific expansions of resistance-related gene families compared to Heliantheae alliance might contribute to resist stresses, pathogens and rapid adaptation. To extend the knowledge of evolutionary process of allergic pollen proteins, we predicted 26 and 168 potential pollen allergen candidates for giant ragweed and other Asteraceae plant species by combining machine learning and identity screening. Interestingly, we observed a specific tandemly repeated array for potential allergenic pectate lyases among Ambrosia species. Rapid evolutionary rates on putative pectate lyase allergens may imply a crucial role of nonsynonymous mutations on amino acid residues for plant biological function and allergenicity. Altogether, this study provides insight into the molecular ecological adaptation and putative pollen allergens prediction that will be helpful in promoting invasion genomic research and evolution of putative pollen allergy in giant ragweed.
Collapse
Affiliation(s)
- Lijuan Yin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guangzhong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chikai Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, China
| | - Zhenghui Ou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bo Qu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang 110016, Liaoning Province, China
| | - Haoyu Zhao
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
2
|
De la Cruz G, Blas R, Pérez W, Neyra E, Ortiz R. Foliar transcriptomes reveal candidate genes for late blight resistance in cultivars of diploid potato Solanum tuberosum L. Andigenum Group. FRONTIERS IN PLANT SCIENCE 2023; 14:1210046. [PMID: 37780511 PMCID: PMC10535101 DOI: 10.3389/fpls.2023.1210046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023]
Abstract
Characterization of major resistance (R) genes to late blight (LB) -caused by the oomycete Phytophthora infestans- is very important for potato breeding. The objective of this study was to identify novel genes for resistance to LB from diploid Solanum tuberosum L. Andigenum Group (StAG) cultivar accessions. Using comparative analysis with a edgeR bioconductor package for differential expression analysis of transcriptomes, two of these accessions with contrasting levels of resistance to LB were analyzed using digital gene expression data. As a result, various differentially expressed genes (P ≤ 0.0001, Log2FC ≥ 2, FDR < 0.001) were noted. The combination of transcriptomic analysis provided 303 candidate genes that are overexpressed and underexpressed, thereby giving high resistance to LB. The functional analysis showed differential expression of R genes and their corresponding proteins related to disease resistance, NBS-LRR domain proteins, and specific disease resistance proteins. Comparative analysis of specific tissue transcriptomes in resistant and susceptible genotypes can be used for rapidly identifying candidate R genes, thus adding novel genes from diploid StAG cultivar accessions for host plant resistance to P. infestans in potato.
Collapse
Affiliation(s)
- Germán De la Cruz
- Laboratorio de Genética y Biotecnología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de San Cristóbal de Huamanga (UNSCH), Ayacucho, Peru
| | - Raúl Blas
- Instituto de Biotecnologia (IBT), Facultad de Agronomia, Universidad Nacional Agraria La Molina (UNALM), Lima, Peru
| | - Willmer Pérez
- Plant Pathology Laboratory, Crop and Systems Sciences Division, International Potato Center, Lima, Peru
| | - Edgar Neyra
- Unidad de Genómica, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento Académico de Tecnología Médica, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
3
|
Teng L, Liang M, Wang C, Li Y, Urbach JM, Kobe B, Xing Q, Han W, Ye N. Exon shuffling potentiates a diverse repertoire of brown algal NB-ARC-TPR candidate immune receptor proteins via alternative splicing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:246-261. [PMID: 36738111 DOI: 10.1111/tpj.16131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Like other organisms, brown algae are subject to diseases caused by bacteria, fungi, and viruses. Brown algal immunity mechanisms are not well characterized; however, there is evidence suggesting that pathogen receptors exist in brown algae. One key protein family likely associated with brown algal innate immunity possesses an NB-ARC domain analogous to innate immune proteins in plants and animals. In this study, we conducted an extensive survey of NB-ARC genes in brown algae and obtained insights into the domain organization and evolutionary history of the encoded proteins. Our data show that brown algae possess an ancient NB-ARC-tetratricopeptide repeat (NB-TPR) domain architecture. We identified an N-terminal effector domain, the four-helix bundle, which was not previously found associated with NB-ARC domains. The phylogenetic tree including NB-ARC domains from all kingdoms of life suggests the three clades of brown algal NB-TPRs are likely monophyletic, whereas their TPRs seem to have distinct origins. One group of TPRs exhibit intense exon shuffling, with various alternative splicing and diversifying selection acting on them, suggesting exon shuffling is an important mechanism for evolving ligand-binding specificities. The reconciliation of gene duplication and loss events of the NB-ARC genes reveals that more independent gene gains than losses have occurred during brown algal evolution, and that tandem duplication has played a major role in the expansion of NB-ARC genes. Our results substantially enhance our understanding of the evolutionary history and exon shuffling mechanisms of the candidate innate immune repertoire of brown algae.
Collapse
Affiliation(s)
- Linhong Teng
- College of Life Sciences, Dezhou University, Dezhou, 253023, China
| | - Miao Liang
- College of Life Sciences, Dezhou University, Dezhou, 253023, China
| | - Chenghui Wang
- College of Life Sciences, Dezhou University, Dezhou, 253023, China
| | - Yan Li
- College of Life Sciences, Dezhou University, Dezhou, 253023, China
| | - Jonathan M Urbach
- Ragon Institute, 400 Technology Square, Cambridge, Massachusetts, 02139, USA
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Qikun Xing
- Department of Marine Science, Incheon National University, Incheon, 22012, South Korea
| | - Wentao Han
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Naihao Ye
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| |
Collapse
|
4
|
Yin T, Han P, Xi D, Yu W, Zhu L, Du C, Yang N, Liu X, Zhang H. Genome-wide identification, characterization, and expression profile ofNBS-LRRgene family in sweet orange (Citrussinensis). Gene 2023; 854:147117. [PMID: 36526123 DOI: 10.1016/j.gene.2022.147117] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The NBS-LRR (nucleotide-binding site-leucine-rich repeat gene) gene family, known as the plant R (resistance) gene family with the most members, plays a significant role in plant resistance to various external adversity stresses. The NBS-LRR gene family has been researched in many plant species. Citrus is one of the most vital global cash crops, the number one fruit group, and the third most traded agricultural product world wild. However, as one of the largest citrus species, a comprehensive study of the NBS-LRR gene family has not been reported on sweet oranges. METHODS In this study, NBS-LRR genes were identified from the Citrus sinensis genome (v3.0), with a comprehensive analysis of this gene family performed, including phylogenetic analysis, gene structure, cis-acting element of a promoter, and chromosomal localization, among others. The expression pattern of NBS-LRR genes was analyzed when sweet orange fruits were infected by Penicillium digitatum, employing experimental data from our research group. It first reported the expression patterns of NBS-LRR genes under abiotic stresses, using three transcript data from NCBI (National Center for Biotechnology Information). RESULTS In this study, 111 NBS-LRR genes were identified in the C. sinensis genome (v3.0) and classified into seven subfamilies according to their N-terminal and C-terminal domains. The phylogenetic tree results indicate that genes containing only the NBS structural domain are more ancient in the sweet orange NBS-LRR gene family. The chromosome localization results showed that 111 NBS-LRR genes were distributed unevenly on nine chromosomes, with the most genes distributed on chromosome 1. In addition, we identified a total of 18 tandem duplication gene pairs in the sweet orange NBS-LRR gene family, and based on the Ka/Ks ratio, all of the tandem duplication genes underwent purifying selection. Transcriptome data analysis showed a significant number of NBS-LRR genes expressed under biotic and abiotic stresses, and some reached significantly different levels of expression. It indicates that the NBS-LRR gene family is vital in resistance to biotic and abiotic stresses in sweet oranges. CONCLUSION Our study provides the first comprehensive framework on the NBS-LRR family of genes, which provides a basis for further in-depth studies on the biological functions of NBS-LRR in growth, development, and response to abiotic stresses in sweet orange.
Collapse
Affiliation(s)
- Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Peichen Han
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Dengxian Xi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Wencai Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Ling Zhu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Chaojin Du
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Na Yang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Hanyao Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
5
|
Rogozina EV, Gurina AA, Chalaya NA, Zoteyeva NM, Kuznetsova MA, Beketova MP, Muratova OA, Sokolova EA, Drobyazina PE, Khavkin EE. Diversity of Late Blight Resistance Genes in the VIR Potato Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:273. [PMID: 36678985 PMCID: PMC9862067 DOI: 10.3390/plants12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans (Mont.) de Bary is the greatest threat to potato production worldwide. Current potato breeding for LB resistance heavily depends on the introduction of new genes for resistance to P. infestans (Rpi genes). Such genes have been discovered in highly diverse wild, primitive, and cultivated species of tuber-bearing potatoes (Solanum L. section Petota Dumort.) and introgressed into the elite potato cultivars by hybridization and transgenic complementation. Unfortunately, even the most resistant potato varieties have been overcome by LB due to the arrival of new pathogen strains and their rapid evolution. Therefore, novel sources for germplasm enhancement comprising the broad-spectrum Rpi genes are in high demand with breeders who aim to provide durable LB resistance. The Genbank of the N.I. Vavilov Institute of Plant Genetic Resources (VIR) in St. Petersburg harbors one of the world's largest collections of potato and potato relatives. In this study, LB resistance was evaluated in a core selection representing 20 species of seven Petota series according to the Hawkes (1990) classification: Bulbocastana (Rydb.) Hawkes, Demissa Buk., Longipedicellata Buk., Maglia Bitt., Pinnatisecta (Rydb.) Hawkes, Tuberosa (Rydb.) Hawkes (wild and cultivated species), and Yungasensa Corr. LB resistance was assessed in 96 accessions representing 18 species in the laboratory test with detached leaves using a highly virulent and aggressive isolate of P. infestans. The Petota species notably differed in their LB resistance: S. bulbocastanum Dun., S. demissum Lindl., S. cardiophyllum Lindl., and S. berthaultii Hawkes stood out at a high frequency of resistant accessions (7-9 points on a 9-point scale). Well-established specific SCAR markers of ten Rpi genes-Rpi-R1, Rpi-R2/Rpi-blb3, Rpi-R3a, Rpi-R3b, Rpi-R8, Rpi-blb1/Rpi-sto1, Rpi-blb2, and Rpi-vnt1-were used to mine 117 accessions representing 20 species from seven Petota series. In particular, our evidence confirmed the diverse Rpi gene location in two American continents. The structural homologs of the Rpi-R2, Rpi-R3a, Rpi-R3b, and Rpi-R8 genes were found in the North American species other than S. demissum, the species that was the original source of these genes for early potato breeding, and in some cases, in the South American Tuberosa species. The Rpi-blb1/Rpi-sto1 orthologs from S. bulbocastanum and S. stoloniferum Schlechtd et Bché were restricted to genome B in the Mesoamerican series Bulbocastana, Pinnatisecta, and Longipedicellata. The structural homologs of the Rpi-vnt1 gene that were initially identified in the South American species S. venturii Hawkes and Hjert. were reported, for the first time, in the North American series of Petota species.
Collapse
Affiliation(s)
- Elena V. Rogozina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Alyona A. Gurina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda A. Chalaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda M. Zoteyeva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | | | | | | | | | | | - Emil E. Khavkin
- Institute of Agricultural Biotechnology, Moscow 127550, Russia
| |
Collapse
|
6
|
Liang X, Dong J. Comparative-genomic analysis reveals dynamic NLR gene loss and gain across Apiaceae species. Front Genet 2023; 14:1141194. [PMID: 36936422 PMCID: PMC10017999 DOI: 10.3389/fgene.2023.1141194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Nucleotide-binding leucine-rich repeat (NLR) genes play a crucial role in green plants' responding to various pathogens. Genome-scale evolutionary studies of NLR genes are important for discovering and applying functional NLR genes. However, little is known about the evolution of NLR genes in the Apiaceae family including agricultural and medical plants. Methods: In this study, comparative genomic analysis was performed in four Apiaceae species to trace the dynamic evolutionary patterns of NLR genes during speciation in this family. Results: The results revealed different number of NLR genes in these four Apiaceae species, namely, Angelica sinensis (95), Coriandrum sativum (183), Apium graveolens (153) and Daucus carota (149). Phylogenetic analysis demonstrated that NLR genes in these four species were derived from 183 ancestral NLR lineages and experienced different levels of gene-loss and gain events. The contraction pattern of the ancestral NLR lineages was discovered during the evolution of D. carota, whereas a different pattern of contraction after first expansion of NLR genes was observed for A. sinensis, C. sativum and A. graveolens. Discussion: Taken together, rapid and dynamic gene content variation has shaped evolutionary history of NLR genes in Apiaceae species.
Collapse
|
7
|
Bashir S, Rehman N, Fakhar Zaman F, Naeem MK, Jamal A, Tellier A, Ilyas M, Silva Arias GA, Khan MR. Genome-wide characterization of the NLR gene family in tomato ( Solanum lycopersicum) and their relatedness to disease resistance. Front Genet 2022; 13:931580. [PMID: 36544493 PMCID: PMC9760929 DOI: 10.3389/fgene.2022.931580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleotide-binding leucine-rich-repeat receptors (NLR), the largest group of genes associated with plant disease resistance (R), have attracted attention due to their crucial role in protecting plants from pathogens. Genome-wide studies of NLRs have revealed conserved domains in the annotated tomato genome. The 321 NLR genes identified in the tomato genome have been randomly mapped to 12 chromosomes. Phylogenetic analysis and classification of NLRs have revealed that 211 genes share full-length domains categorized into three major clades (CNL, TNL, and RNL); the remaining 110 NLRs share partial domains and are classified in CN, TN, and N according to their motifs and gene structures. The cis-regulatory elements of NLRs exhibit the maximum number of these elements and are involved in response to biotic and abiotic stresses, pathogen recognition, and resistance. Analysis of the phylogenetic relationship between tomato NLRs and orthologs in other species has shown conservation among Solanaceae members and variation with A. thaliana. Synteny and Ka/Ks analyses of Solanum lycopersicum and Solanum tuberosum orthologs have underscored the importance of NLR conservation and diversification from ancestral species millions of years ago. RNA-seq data and qPCR analysis of early and late blight diseases in tomatoes revealed consistent NLR expression patterns, including upregulation in infected compared to control plants (with some exceptions), suggesting the role of NLRs as key regulators in early blight resistance. Moreover, the expression levels of NLRs associated with late blight resistance (Solyc04g007060 [NRC4] and Solyc10g008240 [RIB12]) suggested that they regulate S. lycopersicum resistance to P. infestans. These findings provide important fundamental knowledge for understanding NLR evolution and diversity and will empower the broader characterization of disease resistance genes for pyramiding through speed cloning to develop disease-tolerant varieties.
Collapse
Affiliation(s)
- Sehrish Bashir
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan,PARC Institute for Advanced Studies in Agriculture, NARC, Islamabad, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan,PARC Institute for Advanced Studies in Agriculture, NARC, Islamabad, Pakistan,*Correspondence: Nazia Rehman, ; Muhammad Ramzan Khan,
| | - Fabia Fakhar Zaman
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan,PARC Institute for Advanced Studies in Agriculture, NARC, Islamabad, Pakistan
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - Atif Jamal
- Crop Disease Research Institute, National Agricultural Research Center, Islamabad, Pakistan
| | - Aurélien Tellier
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Muhammad Ilyas
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gustavo Adolfo Silva Arias
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan,PARC Institute for Advanced Studies in Agriculture, NARC, Islamabad, Pakistan,*Correspondence: Nazia Rehman, ; Muhammad Ramzan Khan,
| |
Collapse
|
8
|
Yang J, Xiong C, Li S, Zhou C, Li L, Xue Q, Liu W, Niu Z, Ding X. Evolution patterns of NBS genes in the genus Dendrobium and NBS-LRR gene expression in D. officinale by salicylic acid treatment. BMC PLANT BIOLOGY 2022; 22:529. [PMID: 36376794 PMCID: PMC9661794 DOI: 10.1186/s12870-022-03904-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo, which contains rich polysaccharides, flavonoids and alkaloids, is a Traditional Chinese Medicine (TCM) with important economic benefits, while various pathogens have brought huge losses to its industrialization. NBS gene family is the largest class of plant disease resistance (R) genes, proteins of which are widely distributed in the upstream and downstream of the plant immune systems and are responsible for receiving infection signals and regulating gene expression respectively. It is of great significance for the subsequent disease resistance breeding of D. officinale to identify NBS genes by using the newly published high-quality chromosome-level D. officinale genome. RESULTS In this study, a total of 655 NBS genes were uncovered from the genomes of D. officinale, D. nobile, D. chrysotoxum, V. planifolia, A. shenzhenica, P. equestris and A. thaliana. The phylogenetic results of CNL-type protein sequences showed that orchid NBS-LRR genes have significantly degenerated on branches a and b. The Dendrobium NBS gene homology analysis showed that the Dendrobium NBS genes have two obvious characteristics: type changing and NB-ARC domain degeneration. Because the NBS-LRR genes have both NB-ARC and LRR domains, 22 D. officinale NBS-LRR genes were used for subsequent analyses, such as gene structures, conserved motifs, cis-elements and functional annotation analyses. All these results suggested that D. officinale NBS-LRR genes take part in the ETI system, plant hormone signal transduction pathway and Ras signaling pathway. Finally, there were 1,677 DEGs identified from the salicylic acid (SA) treatment transcriptome data of D. officinale. Among them, six NBS-LRR genes (Dof013264, Dof020566, Dof019188, Dof019191, Dof020138 and Dof020707) were significantly up-regulated. However, only Dof020138 was closely related to other pathways from the results of WGCNA, such as pathogen identification pathways, MAPK signaling pathways, plant hormone signal transduction pathways, biosynthetic pathways and energy metabolism pathways. CONCLUSION Our results revealed that the NBS gene degenerations are common in the genus Dendrobium, which is the main reason for the diversity of NBS genes, and the NBS-LRR genes generally take part in D. officinale ETI system and signal transduction pathways. In addition, the D. officinale NBS-LRR gene Dof020138, which may have an important breeding value, is indirectly activated by SA in the ETI system.
Collapse
Affiliation(s)
- Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Caijun Xiong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Siyuan Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng Zhou
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lingli Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| |
Collapse
|
9
|
Guo L, You C, Zhang H, Wang Y, Zhang R. Genome-wide analysis of NBS-LRR genes in Rosaceae species reveals distinct evolutionary patterns. Front Genet 2022; 13:1052191. [PMID: 36437946 PMCID: PMC9685399 DOI: 10.3389/fgene.2022.1052191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes, one of the largest gene families in plants, are evolving rapidly and playing a critical role in plant resistance to pathogens. In this study, a genome-wide search in 12 Rosaceae genomes screened out 2188 NBS-LRR genes, with the gene number varied distinctively across different species. The reconciled phylogeny revealed 102 ancestral genes (7 RNLs, 26 TNLs, and 69 CNLs), which underwent independent gene duplication and loss events during the divergence of the Rosaceae. The NBS-LRR genes exhibited dynamic and distinct evolutionary patterns in the 12 Rosaceae species due to independent gene duplication/loss events, which resulted the discrepancy of NBS-LRR gene number among Rosaceae species. Specifically, Rubus occidentalis, Potentilla micrantha, Fragaria iinumae and Gillenia trifoliata, displayed a “first expansion and then contraction” evolutionary pattern; Rosa chinensis exhibited a “continuous expansion” pattern; F. vesca had a “expansion followed by contraction, then a further expansion” pattern, three Prunus species and three Maleae species shared a “early sharp expanding to abrupt shrinking” pattern. Overall, this study elucidated the dynamic and complex evolutionary patterns of NBS-LRR genes in the 12 Rosaceae species, and could assist further investigation of mechanisms driving these evolutionary patterns.
Collapse
Affiliation(s)
- Liping Guo
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Chen You
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Hanghang Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Yukun Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- *Correspondence: Yukun Wang, ; Rui Zhang,
| | - Rui Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- *Correspondence: Yukun Wang, ; Rui Zhang,
| |
Collapse
|
10
|
Moncada MM, Elvir MA, Lopez JR, Ortiz AS. Predicción bioinformática de proteínas NBS-LRR en el genoma de Coffea arabica. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.03.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gracias al acceso al genoma completo de Coffea arabica y el Desarrollo de multiples herramientas de bioinformartica que permite la búsqueda de genes de resistencia de plantas (R-genes), ha sido posible implementar estas estrategias en programas de mejora genética. En las plantas, los R-genes codifican proteínas involucradas en mecanismos de defensa contra patógenos. Los genes con dominios tipo Nucleotide-Binding-Site Leucine-Rich-Repeat (NBS-LRR) forman la familia de R-genes de plantas más grande. El objetivo de este estudio fue identificar genes de proteínas NBS-LRR en el genoma de C. arabica utilizando un enfoque bioinformático. Identificamos motivos conservados de R-genes de C. arabica relacionados con genes similares encontrados en Coffea canephora y Coffea eugenoides, dos especies evolutivas relacionadas con C. arabica. Los resultados de estos análisis revelaron proteínas con origen evolutivo provenientes de dicotiledóneo ancestrales, así como proteínas de resistencia específicas del género Coffea. Además, todas las secuencias de los R-genes de C. arabica mostraron una gran similitud con proteína CNL de Arabidopsis thaliana. Finalmente, la presencia de motivos altamente conservados, la distribución cromosómica y las relaciones filogenéticas de los R-genes de C. arabica muestran procesos de coevolución con patógenos adaptados, demostrando de esta manera la importancia del estudio de estos genes en la inmunidad del café.
Palabras clave: Café, NBS-LRR, Proteínas de Resistencia, Bioinformática.
Collapse
Affiliation(s)
| | | | | | - Andrés S. Ortiz
- Universidad Nacional Autónoma de Honduras Instituto de Investigaciones en Microbiología
| |
Collapse
|
11
|
Qian Z, Li Y, Yang J, Shi T, Li Z, Chen J. The chromosome-level genome of a free-floating aquatic weed Pistia stratiotes provides insights into its rapid invasion. Mol Ecol Resour 2022; 22:2732-2743. [PMID: 35620935 DOI: 10.1111/1755-0998.13653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Pistia stratiotes (Araceae), commonly referred to as water lettuce, is one of the most notorious weeds that cause severe damage to the economy and natural ecosystems of infested areas. In order to explore the mechanism of its rapid invasion, here, we assembled a high-quality chromosome-level genome for P. stratiotes based on the Illumina sequencing, PacBio sequencing, and Hi-C scaffolding technology. The assembled genome is 311.87 Mb in size with a contig N50 of 1.08 Mb. The contigs were further anchored on 14 pseudochromosomes with a scaffold N50 of 21.21 Mb. A total of 20,356 protein-coding genes were predicted, of which 79.35% were functionally annotated here. Evolutionary analysis showed that P. stratiotes and Colocasia esculenta were clustered together as sister lineages that diverged approximately 61 Mya. The synteny analyses indicated that two whole-genome duplication (WGD) events occurred within a short period in P. stratiotes. Moreover, comparative genome analysis indicated that the expansion of gene families corresponding to disease resistance might contribute to rapid invasion in P. stratiotes. Also, we analyzed the disease-resistance gene family (NBS-LRR) involved in plant defense. A genome-wide search in P. stratiotes genome identified 85 NBS-LRR genes in this study. In conclusion, our present study provides some new insights into the evolution of the invasive aquatic plant P. stratiotes. Our reference genome will also provide valuable resources for future invasion genomics research programs.
Collapse
Affiliation(s)
- Zhihao Qian
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingshan Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Zhizhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Qian LH, Wu JY, Wang Y, Zou X, Zhou GC, Sun XQ. Genome-Wide Analysis of NBS-LRR Genes From an Early-Diverging Angiosperm Euryale ferox. Front Genet 2022; 13:880071. [PMID: 35646106 PMCID: PMC9140740 DOI: 10.3389/fgene.2022.880071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
NBS-LRR genes are the largest gene family in plants conferring resistance to pathogens. At present, studies on the evolution of NBS-LRR genes in angiosperms mainly focused on monocots and eudicots, while studies on NBS-LRR genes in the basal angiosperms are limited. Euryale ferox represents an early-diverging angiosperm order, Nymphaeales, and confronts various pathogens during its lifetime, which can cause serious economic losses in terms of yield and quality. In this study, we performed a genome-wide identification and analysis of NBS-LRR genes in E. ferox. All 131 identified NBS-LRR genes could be divided into three subclasses according to different domain combinations, including 18 RNLs, 40 CNLs, and 73 TNLs. The E. ferox NBS-LRR genes are unevenly distributed on 29 chromosomes; 87 genes are clustered at 18 multigene loci, and 44 genes are singletons. Gene duplication analysis revealed that segmental duplications acted as a major mechanism for NBS-LRR gene expansions but not for RNL genes, because 18 RNL genes were scattered over 11 chromosomes without synteny loci, indicating that the expansion of RNL genes could have been caused by ectopic duplications. Ancestral gene reconciliation based on phylogenetic analysis revealed that there were at least 122 ancestral NBS-LRR lineages in the common ancestor of the three Nymphaeaceae species, suggesting that NBS-LRR genes expanded slightly during speciation in E. ferox. Transcriptome analysis showed that the majority of NBS-LRR genes were at a low level of expression without pathogen stimulation. Overall, this study characterized the profile of NBS-LRR genes in E. ferox and should serve as a valuable resource for disease resistance breeding in E. ferox.
Collapse
Affiliation(s)
- Lan-Hua Qian
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Jia-Yi Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xin Zou
- Seed Administrative Station of Suzhou, Suzhou, China
| | - Guang-Can Zhou
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
- *Correspondence: Guang-Can Zhou, ; Xiao-Qin Sun,
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- *Correspondence: Guang-Can Zhou, ; Xiao-Qin Sun,
| |
Collapse
|
13
|
Si Z, Qiao Y, Zhang K, Ji Z, Han J. Genome-wide identification and characterization of NBS-encoding genes in the sweet potato wild ancestor Ipomoea trifida (H.B.K.). Open Life Sci 2022; 17:497-511. [PMID: 35647293 PMCID: PMC9102303 DOI: 10.1515/biol-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Abstract
The most predominant type of resistance (R) genes contain nucleotide-binding sites and leucine-rich repeat (NBS-LRR) domains, characterization of which is helpful for plant resistance improvement. However, the NBS genes of Ipomoea trifida (H.B.K.) remain insufficient to date. In this study, a genome-wide analysis of the NBS-encoding gene in I. trifida (H.B.K.) was carried out. A total of 442 NBS encoding genes were identified, amounting to 1.37% of the total genes of I. trifida (H.B.K.). Based on the analysis of the domains, the identified ItfNBS genes were further classified into seven groups: CNL, NL, CN, N, TNL, TN, and RNL. Phylogenetic analysis showed that the I. trifida NBS genes clustered into three independent clades: RNL, TNL, and CNL. Chromosome location analysis revealed that the distribution of ItfNBS genes in chromosomes was uneven, with a number ranging from 3 to 45. Multiple stress-related regulatory elements were detected in the promoters of the NBS-encoding genes, and their expression profiles were obtained. The qRT-PCR analysis revealed that IbNBS10, IbNBS20, IbNBS258, and IbNBS88 responded to stem nematode infection. These results provide critical proof for further characterization and analysis of NBS-encoding genes with important functions.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| |
Collapse
|
14
|
Adhikari TB, Aryal R, Redpath LE, Van den Broeck L, Ashrafi H, Philbrick AN, Jacobs RL, Sozzani R, Louws FJ. RNA-Seq and Gene Regulatory Network Analyses Uncover Candidate Genes in the Early Defense to Two Hemibiotrophic Colletorichum spp. in Strawberry. Front Genet 2022; 12:805771. [PMID: 35360413 PMCID: PMC8960243 DOI: 10.3389/fgene.2021.805771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/29/2021] [Indexed: 12/02/2022] Open
Abstract
Two hemibiotrophic pathogens, Colletotrichum acutatum (Ca) and C. gloeosporioides (Cg), cause anthracnose fruit rot and anthracnose crown rot in strawberry (Fragaria × ananassa Duchesne), respectively. Both Ca and Cg can initially infect through a brief biotrophic phase, which is associated with the production of intracellular primary hyphae that can infect host cells without causing cell death and establishing hemibiotrophic infection (HBI) or quiescent (latent infections) in leaf tissues. The Ca and Cg HBI in nurseries and subsequent distribution of asymptomatic infected transplants to fruit production fields is the major source of anthracnose epidemics in North Carolina. In the absence of complete resistance, strawberry varieties with good fruit quality showing rate-reducing resistance have frequently been used as a source of resistance to Ca and Cg. However, the molecular mechanisms underlying the rate-reducing resistance or susceptibility to Ca and Cg are still unknown. We performed comparative transcriptome analyses to examine how rate-reducing resistant genotype NCS 10-147 and susceptible genotype ‘Chandler’ respond to Ca and Cg and identify molecular events between 0 and 48 h after the pathogen-inoculated and mock-inoculated leaf tissues. Although plant response to both Ca and Cg at the same timepoint was not similar, more genes in the resistant interaction were upregulated at 24 hpi with Ca compared with those at 48 hpi. In contrast, a few genes were upregulated in the resistant interaction at 48 hpi with Cg. Resistance response to both Ca and Cg was associated with upregulation of MLP-like protein 44, LRR receptor-like serine/threonine-protein kinase, and auxin signaling pathway, whereas susceptibility was linked to modulation of the phenylpropanoid pathway. Gene regulatory network inference analysis revealed candidate transcription factors (TFs) such as GATA5 and MYB-10, and their downstream targets were upregulated in resistant interactions. Our results provide valuable insights into transcriptional changes during resistant and susceptible interactions, which can further facilitate assessing candidate genes necessary for resistance to two hemibiotrophic Colletotrichum spp. in strawberry.
Collapse
Affiliation(s)
- Tika B. Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Tika B. Adhikari, ; Frank J. Louws,
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Lauren E. Redpath
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Lisa Van den Broeck
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Ashley N. Philbrick
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Raymond L. Jacobs
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Frank J. Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Tika B. Adhikari, ; Frank J. Louws,
| |
Collapse
|
15
|
Huang Z, Qiao F, Yang B, Liu J, Liu Y, Wulff BBH, Hu P, Lv Z, Zhang R, Chen P, Xing L, Cao A. Genome-wide identification of the NLR gene family in Haynaldia villosa by SMRT-RenSeq. BMC Genomics 2022; 23:118. [PMID: 35144544 PMCID: PMC8832786 DOI: 10.1186/s12864-022-08334-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/24/2022] [Indexed: 01/19/2023] Open
Abstract
Background Nucleotide-binding and leucine-rich repeat (NLR) genes have attracted wide attention due to their crucial role in protecting plants from pathogens. SMRT-RenSeq, combining PacBio sequencing after resistance gene enrichment sequencing (RenSeq), is a powerful method for selectively capturing and sequencing full-length NLRs. Haynaldia villosa, a wild grass species with a proven potential for wheat improvement, confers resistance to multiple diseases. So, genome-wide identification of the NLR gene family in Haynaldia villosa by SMRT-RenSeq can facilitate disease resistance genes exploration. Results In this study, SMRT-RenSeq was performed to identify the genome-wide NLR complement of H. villosa. In total, 1320 NLRs were annotated in 1169 contigs, including 772 complete NLRs. All the complete NLRs were phylogenetically analyzed and 11 main clades with special characteristics were derived. NLRs could be captured with high efficiency when aligned with cloned R genes, and cluster expansion in some specific gene loci was observed. The physical location of NLRs to individual chromosomes in H. villosa showed a perfect homoeologous relationship with group 1, 2, 3, 5 and 6 of other Triticeae species, however, NLRs physically located on 4VL were largely in silico predicted to be located on the homoeologous group 7. Fifteen types of integrated domains (IDs) were integrated in 52 NLRs, and Kelch and B3 NLR-IDs were found to have expanded in H. villosa, while DUF948, NAM-associated and PRT_C were detected as unique integrated domains implying the new emergence of NLR-IDs after H. villosa diverged from other species. Conclusion SMRT-RenSeq is a powerful tool to identify NLR genes from wild species using the baits of the evolutionary related species with reference sequences. The availability of the NLRs from H. villosa provide a valuable library for R gene mining and transfer of disease resistance into wheat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08334-w.
Collapse
Affiliation(s)
- Zhenpu Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Fangyuan Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Boming Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Jiaqian Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Yangqi Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Brande B H Wulff
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ping Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Zengshuai Lv
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Ruiqi Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Peidu Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China
| | - Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China.
| | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/CIC-MCP, Nanjing, 210095, China.
| |
Collapse
|
16
|
Si Z, Wang L, Qiao Y, Roychowdhury R, Ji Z, Zhang K, Han J. Genome-wide comparative analysis of the nucleotide-binding site-encoding genes in four Ipomoea species. FRONTIERS IN PLANT SCIENCE 2022; 13:960723. [PMID: 36061812 PMCID: PMC9434374 DOI: 10.3389/fpls.2022.960723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/27/2022] [Indexed: 05/14/2023]
Abstract
The nucleotide-binding site (NBS)-encoding gene is a major type of resistance (R) gene, and its diverse evolutionary patterns were analyzed in different angiosperm lineages. Until now, no comparative studies have been done on the NBS encoding genes in Ipomoea species. In this study, various numbers of NBS-encoding genes were identified across the whole genome of sweet potato (Ipomoea batatas) (#889), Ipomoea trifida (#554), Ipomoea triloba (#571), and Ipomoea nil (#757). Gene analysis showed that the CN-type and N-type were more common than the other types of NBS-encoding genes. The phylogenetic analysis revealed that the NBS-encoding genes formed three monophyletic clades: CNL, TNL, and RNL, which were distinguished by amino acid motifs. The distribution of the NBS-encoding genes among the chromosomes was non-random and uneven; 83.13, 76.71, 90.37, and 86.39% of the genes occurred in clusters in sweet potato, I. trifida, I. triloba, and I. nil, respectively. The duplication pattern analysis reveals the presence of higher segmentally duplicated genes in sweet potatoes than tandemly duplicated ones. The opposite trend was found for the other three species. A total of 201 NBS-encoding orthologous genes were found to form synteny gene pairs between any two of the four Ipomea species, suggesting that each of the synteny gene pairs was derived from a common ancestor. The gene expression patterns were acquired by analyzing using the published datasets. To explore the candidate resistant genes in sweet potato, transcriptome analysis has been carried out using two resistant (JK20 and JK274) and susceptible cultivars (Tengfei and Santiandao) of sweet potato for stem nematodes and Ceratocystis fimbriata pathogen, respectively. A total of 11 differentially expressed genes (DEGs) were found in Tengfei and JK20 for stem nematodes and 19 DEGs in Santiandao and JK274 for C. fimbriata. Moreover, six DEGs were further selected for quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis, and the results were consistent with the transcriptome analysis. The results may provide new insights into the evolution of NBS-encoding genes in the Ipomoea genome and contribute to the future molecular breeding of sweet potatoes.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- *Correspondence: Zengzhi Si,
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)–Volcani Center, Rishon LeZion, Israel
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
17
|
Frequent Gene Duplication/Loss Shapes Distinct Evolutionary Patterns of NLR Genes in Arecaceae Species. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) genes play a key role in plant immune responses and have co-evolved with pathogens since the origin of green plants. Comparative genomic studies on the evolution of NLR genes have been carried out in several angiosperm lineages. However, most of these lineages come from the dicot clade. In this study, comparative analysis was performed on NLR genes from five Arecaceae species to trace the dynamic evolutionary pattern of the gene family during species speciation in this monocot lineage. The results showed that NLR genes from the genomes of Elaeis guineensis (262), Phoenix dactylifera (85), Daemonorops jenkinsiana (536), Cocos nucifera (135) and Calamus simplicifolius (399) are highly variable. Frequent domain loss and alien domain integration have occurred to shape the NLR protein structures. Phylogenetic analysis revealed that NLR genes from the five genomes were derived from dozens of ancestral genes. D. jenkinsiana and E. guineensis genomes have experienced “consistent expansion” of the ancestral NLR lineages, whereas a pattern of “first expansion and then contraction” of NLR genes was observed for P. dactylifera, C. nucifera and C. simplicifolius. The results suggest that rapid and dynamic gene content and structure variation have shaped the NLR profiles of Arecaceae species.
Collapse
|
18
|
Yu X, Zhong S, Yang H, Chen C, Chen W, Yang H, Guan J, Fu P, Tan F, Ren T, Shen J, Zhang M, Luo P. Identification and Characterization of NBS Resistance Genes in Akebia trifoliata. FRONTIERS IN PLANT SCIENCE 2021; 12:758559. [PMID: 34777439 PMCID: PMC8585750 DOI: 10.3389/fpls.2021.758559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 05/26/2023]
Abstract
Akebia trifoliata is an important multiuse perennial plant that often suffers attacks from various pathogens due to its long growth cycle, seriously affecting its commercial value. The absence of research on the resistance (R) genes of A. trifoliata has greatly limited progress in the breeding of resistant varieties. Genes encoding proteins containing nucleotide binding sites (NBSs) and C-terminal leucine-rich repeats (LRRs), the largest family of plant resistance (R) genes, are vital for plant disease resistance. A comprehensive genome-wide analysis showed that there were only 73 NBS genes in the A. trifoliata genome, including three main subfamilies (50 coiled coil (CC)-NBS-LRR (CNL), 19 Toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) and four resistance to powdery mildew8 (RPW8)-NBS-LRR (RNL) genes). Additionally, 64 mapped NBS candidates were unevenly distributed on 14 chromosomes, most of which were assigned to the chromosome ends; 41 of these genes were located in clusters, and the remaining 23 genes were singletons. Both the CNLs and TNLs were further divided into four subgroups, and the CNLs had fewer exons than the TNLs. Structurally, all eight previously reported conserved motifs were identified in the NBS domains, and both their order and their amino acid sequences exhibited high conservation. Evolutionarily, tandem and dispersed duplications were shown to be the two main forces responsible for NBS expansion, producing 33 and 29 genes, respectively. A transcriptome analysis of three fruit tissues at four developmental stages showed that NBS genes were generally expressed at low levels, while a few of these genes showed relatively high expression during later development in rind tissues. Overall, this research is the first to identify and characterize A. trifoliata NBS genes and is valuable for both the development of new resistant cultivars and the study of molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Xiaojiao Yu
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Shengfu Zhong
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Huai Yang
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chen Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu, China
| | - Hao Yang
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu, China
| | - Ju Guan
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Peng Fu
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Feiquan Tan
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
| | - Tianheng Ren
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Min Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Peigao Luo
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Shi JL, Zai WS, Xiong ZL, Wan HJ, Wu WR. NB-LRR genes: characteristics in three Solanum species and transcriptional response to Ralstonia solanacearum in tomato. PLANTA 2021; 254:96. [PMID: 34655339 DOI: 10.1007/s00425-021-03745-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
NB-LRR genes in the three Solanum species showed specific constitution characteristics and evolved multiple clusters and duplicates. Some genes could respond to biotic stresses such as tomato bacterial wilt. Nucleotide-binding and leucine-rich repeat (NB-LRR, NLR) is a largest resistance gene family in plants, which plays a key role in response to biotic stresses. In this study, NB-LRR genes in cultivated tomato Solanum lycopersicum (Sl) and its wild relatives S. pennellii (Spe) and S. pimpinellifolium (Spi) were analyzed using bioinformatics approaches. In total, 238, 202 and 217 NB-LRR genes of 8 different types were found in Sl, Spe and Spi, respectively. The three species showed similar genomic characteristics. The NB-LRR genes were mainly distributed on chromosomes 4, 5 and 11 and located at the distal zones, forming multiple clusters and tandem duplicates. A large number of homologs appeared through gene expansion, with most Ka/Ks values being less than 1, indicating that purifying selection had occurred in evolution. These genes were mainly expressed in root and could respond to different biotic stresses. RT-qPCR analysis revealed that SlNLR genes could respond to tomato bacterial wilt, with SlNLR1 probably involved in the resistance response, whereas others being the opposite. The transcription factors (TFs) and interaction proteins that regulate target genes were mainly Dof, NAC and MYB families and kinases. The results provide a basis for the isolation and application of related genes in plant disease resistance breeding.
Collapse
Affiliation(s)
- Jian Lei Shi
- Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Wen Shan Zai
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Zhi Li Xiong
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Hong Jian Wan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Ren Wu
- Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
20
|
Zhu H, Deng M, Yang Z, Mao L, Jiang S, Yue Y, Zhao K. Two Tomato (S olanum lycopersicum) Thaumatin-Like Protein Genes Confer Enhanced Resistance to Late Blight ( Phytophthora infestans). PHYTOPATHOLOGY 2021; 111:1790-1799. [PMID: 33616418 DOI: 10.1094/phyto-06-20-0237-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Late blight (caused by Phytophthora infestans) poses a serious threat to tomato production but the number of late blight resistance genes isolated from tomato is limited, making resistance gene mining a high research priority. In this study, highly resistant CLN2037E and susceptible No. 5 tomato inbred lines were used to identify late blight resistance genes. Using transcriptome sequencing, we discovered 36 differentially expressed genes (DEGs), including 21 nucleotide binding site-leucine-rich repeat and 15 pathogenesis-related (PR) disease resistance genes. Cluster analysis and real-time quantitative PCR showed that these 36 genes possessed similar expression patterns in different inbred lines after inoculation with P. infestans. Moreover, two PR genes with unique responses were chosen to verify their functions when exposed to P. infestans: Solyc08g080660 and Solyc08g080670, both of which were thaumatin-like protein genes and were clustered in the tomato genome. Functions of these two genes were identified by gene overexpression and gene editing technology. Overexpression and knockout of single Solyc08g080660 and Solyc08g080670 corresponded to an increase and decrease in resistance to late blight, respectively, and Solyc08g080660 led to a greater change in disease resistance compared with Solyc08g080670. Cotransformation of dual genes resulted in a much greater effect than any single gene. This study provides novel candidate resistance genes for tomato breeding against late blight and insights into the interaction mechanisms between tomato and P. infestans.
Collapse
Affiliation(s)
- Haishan Zhu
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Minghua Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Zhengan Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Lianzhen Mao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Shurui Jiang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yanling Yue
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Kai Zhao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
21
|
Si Z, Qiao Y, Zhang K, Ji Z, Han J. Characterization of Nucleotide Binding -Site-Encoding Genes in Sweetpotato, Ipomoea batatas(L.) Lam., and Their Response to Biotic and Abiotic Stresses. Cytogenet Genome Res 2021; 161:257-271. [PMID: 34320507 DOI: 10.1159/000515834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 11/19/2022] Open
Abstract
Sweetpotato, Ipomoea batatas (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes' expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that IbNBS75, IbNBS219, and IbNBS256 respond to stem nematode infection; Ib-NBS240, IbNBS90, and IbNBS80 respond to cold stress, while IbNBS208, IbNBS71, and IbNBS159 respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
22
|
Andolfo G, D’Agostino N, Frusciante L, Ercolano MR. The Tomato Interspecific NB-LRR Gene Arsenal and Its Impact on Breeding Strategies. Genes (Basel) 2021; 12:genes12020184. [PMID: 33514027 PMCID: PMC7911644 DOI: 10.3390/genes12020184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) is a model system for studying the molecular basis of resistance in plants. The investigation of evolutionary dynamics of tomato resistance (R)-loci provides unique opportunities for identifying factors that promote or constrain genome evolution. Nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors belong to one of the most plastic and diversified families. The vast amount of genomic data available for Solanaceae and wild tomato relatives provides unprecedented insights into the patterns and mechanisms of evolution of NB-LRR genes. Comparative analysis remarked a reshuffling of R-islands on chromosomes and a high degree of adaptive diversification in key R-loci induced by species-specific pathogen pressure. Unveiling NB-LRR natural variation in tomato and in other Solanaceae species offers the opportunity to effectively exploit genetic diversity in genomic-driven breeding programs with the aim of identifying and introducing new resistances in tomato cultivars. Within this motivating context, we reviewed the repertoire of NB-LRR genes available for tomato improvement with a special focus on signatures of adaptive processes. This issue is still relevant and not thoroughly investigated. We believe that the discovery of mechanisms involved in the generation of a gene with new resistance functions will bring great benefits to future breeding strategies.
Collapse
|
23
|
Wu JY, Xue JY, Van de Peer Y. Evolution of NLR Resistance Genes in Magnoliids: Dramatic Expansions of CNLs and Multiple Losses of TNLs. FRONTIERS IN PLANT SCIENCE 2021; 12:777157. [PMID: 34992620 PMCID: PMC8724549 DOI: 10.3389/fpls.2021.777157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/24/2021] [Indexed: 05/05/2023]
Abstract
Magnoliids are the third-largest group of angiosperms and occupy a critical position in angiosperm evolution. In the past years, due to the lack of sequenced genomes, the disease resistance gene (R gene) profile of magnoliids remains poorly understood. By the genome-wide identification of 1,832 NLR genes from seven magnoliid genomes, we built a framework for the evolution of magnoliid R genes. TNL genes were completely absent from five magnoliids, presumably due to immune pathway deficiencies. A total of 74 ancestral R genes (70 CNLs, 3 TNLs, and 1 RNL) were recovered in a common ancestor of magnoliids, from which all current NLR gene repertoires were derived. Tandem duplication served as the major drive for NLR genes expansion in seven magnoliid genomes, as most surveyed angiosperms. Due to recent rapid expansions, most magnoliids exhibited "a first expansion followed by a slight contraction and a further stronger expansion" evolutionary pattern, while both Litsea cubeba and Persea americana showed a two-times-repeated pattern of "expansion followed by contraction." The transcriptome analysis of seven different tissues of Saururus chinensis revealed a low expression of most NLR genes, with some R genes displaying a relatively higher expression in roots and fruits. Overall, our study sheds light on the evolution of NLR genes in magnoliids, compensates for insufficiency in major angiosperm lineages, and provides an important reference for a better understanding of angiosperm NLR genes.
Collapse
Affiliation(s)
- Jia-Yi Wu
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology (CAS), Nanjing, China
- *Correspondence: Jia-Yu Xue, ;
| | - Yves Van de Peer
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- Department of Plant Biotechnology and Bioinformatics, VIB-UGent Center for Plant Systems Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Yves Van de Peer, ;
| |
Collapse
|
24
|
Zhou GC, Li W, Zhang YM, Liu Y, Zhang M, Meng GQ, Li M, Wang YL. Distinct Evolutionary Patterns of NBS-Encoding Genes in Three Soapberry Family (Sapindaceae) Species. Front Genet 2020; 11:737. [PMID: 32754204 PMCID: PMC7365912 DOI: 10.3389/fgene.2020.00737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Nucleotide-binding site (NBS)-type disease resistance genes (R genes) play key roles in plant immune responses and have co-evolved with pathogens over the course of plant lifecycles. Comparative genomic studies tracing the dynamic evolution of NBS-encoding genes have been conducted using many important plant lineages. However, studies on Sapindaceae species have not been performed. In this study, a discrepant number of NBS-encoding genes were identified in the genomes of Xanthoceras sorbifolium (180), Dinnocarpus longan (568), and Acer yangbiense (252). These genes were unevenly distributed and usually clustered as tandem arrays on chromosomes, with few existed as singletons. The phylogenetic analysis revealed that NBS-encoding genes formed three monophyletic clades, RPW8-NBS-LRR (RNL), TIR-NBS-LRR (TNL), and CC-NBS-LRR (CNL), which were distinguished by amino acid motifs. The NBS-encoding genes of the X. sorbifolium, D. longan, and A. yangbiense genomes were derived from 181 ancestral genes (three RNL, 23 TNL, and 155 CNL), which exhibited dynamic and distinct evolutionary patterns due to independent gene duplication/loss events. Specifically, X. sorbifolium exhibited a “first expansion and then contraction” evolutionary pattern, while A. yangbiense and D. longan exhibited a “first expansion followed by contraction and further expansion” evolutionary pattern. However, further expansion in D. longan was stronger than in A. yangbiense after divergence, suggesting that D. longan gained more genes in response to various pathogens. Additionally, the ancient and recent expansion of CNL genes generated the dominance of this subclass in terms of gene numbers, while the low copy number status of RNL genes was attributed to their conserved functions.
Collapse
Affiliation(s)
- Guang-Can Zhou
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Wen Li
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ming Zhang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Guo-Qing Meng
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Min Li
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Yi-Lei Wang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| |
Collapse
|
25
|
Wang J, Tian W, Tao F, Wang J, Shang H, Chen X, Xu X, Hu X. TaRPM1 Positively Regulates Wheat High-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2020; 10:1679. [PMID: 32010164 PMCID: PMC6974556 DOI: 10.3389/fpls.2019.01679] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/28/2019] [Indexed: 05/13/2023]
Abstract
RPM1 is a CC-NBS-LRR protein that was first shown to be required for resistance to Pseudomonas syringae pv. maculicola in Arabidopsis thaliana. Our previous study showed that TaRPM1 gene in wheat was upregulated about six times following infection by Puccinia striiformis f. sp. tritici (Pst) under high temperature, compared with normal temperature. To study the function of TaRPM1 in wheat high-temperature seedling-plant (HTSP) resistance to Pst, the full length of TaRPM1 was cloned, with three copies each located on chromosomes 1A, 1B, and 1D. Transient expression of the TaRPM1-GFP fusion protein in Nicotiana benthamiana indicated that TaRPM1 localizes in the cytoplasm and nucleus. Profiling TaRPM1 expression indicated that TaRPM1 transcription was rapidly upregulated upon Pst inoculation under high temperature. In addition, TaRPM1 was induced by exogenous salicylic acid hormone application. Silencing TaRPM1 in wheat cultivar Xiaoyan 6 (XY 6) resulted in reduced HTSP resistance to Pst in terms of reduced number of necrotic cells and increased uredinial length, whereas no obvious phenotypic changes were observed in TaRPM1-silenced leaves under normal temperature. Related defense genes TaPR1 and TaPR2 were downregulated in TaRPM1-silenced plants under high temperature. We conclude that TaRPM1 is involved in HTSP resistance to Pst in XY 6.
Collapse
Affiliation(s)
- Jiahui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wei Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Fei Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jingjing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB East Malling Research, Kent, United Kingdom
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Xue JY, Zhao T, Liu Y, Liu Y, Zhang YX, Zhang GQ, Chen H, Zhou GC, Zhang SZ, Shao ZQ. Genome- Wide Analysis of the Nucleotide Binding Site Leucine-Rich Repeat Genes of Four Orchids Revealed Extremely Low Numbers of Disease Resistance Genes. Front Genet 2020; 10:1286. [PMID: 31998358 PMCID: PMC6960632 DOI: 10.3389/fgene.2019.01286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022] Open
Abstract
Orchids are one of the most diverse flowering plant families, yet possibly maintain the smallest number of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) type plant resistance (R) genes among the angiosperms. In this study, a genome-wide search in four orchid taxa identified 186 NBS-LRR genes. Furthermore, 214 NBS-LRR genes were identified from seven orchid transcriptomes. A phylogenetic analysis recovered 30 ancestral lineages (29 CNL and one RNL), far fewer than other angiosperm families. From the genetics aspect, the relatively low number of ancestral R genes is unlikely to explain the low number of R genes in orchids alone, as historical gene loss and scarce gene duplication has continuously occurred, which also contributes to the low number of R genes. Due to recent sharp expansions, Phalaenopsis equestris and Dendrobium catenatum having 52 and 115 genes, respectively, and exhibited an “early shrinking to recent expanding” evolutionary pattern, while Gastrodia elata and Apostasia shenzhenica both exhibit a “consistently shrinking” evolutionary pattern and have retained only five and 14 NBS-LRR genes, respectively. RNL genes remain in extremely low numbers with only one or two copies per genome. Notably, all of the orchid RNL genes belong to the ADR1 lineage. A separate lineage, NRG1, was entirely absent and was likely lost in the common ancestor of all monocots. All of the TNL genes were absent as well, coincident with the RNL NRG1 lineage, which supports the previously proposed notion that a potential functional association between the TNL and RNL NRG1 genes.
Collapse
Affiliation(s)
- Jia-Yu Xue
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China.,Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,VIB-UGent Center for Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Tao Zhao
- VIB-UGent Center for Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yang Liu
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yong-Xia Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guo-Qiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongfeng Chen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guang-Can Zhou
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Shou-Zhou Zhang
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Van Ghelder C, Parent GJ, Rigault P, Prunier J, Giguère I, Caron S, Stival Sena J, Deslauriers A, Bousquet J, Esmenjaud D, MacKay J. The large repertoire of conifer NLR resistance genes includes drought responsive and highly diversified RNLs. Sci Rep 2019; 9:11614. [PMID: 31406137 PMCID: PMC6691002 DOI: 10.1038/s41598-019-47950-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022] Open
Abstract
The NLRs or NBS-LRRs (nucleotide-binding, leucine-rich-repeat) form the largest resistance gene family in plants, with lineage-specific contingents of TNL, CNL and RNL subfamilies and a central role in resilience to stress. The origin, evolution and distribution of NLR sequences has been unclear owing in part to the variable size and diversity of the RNL subfamily and a lack of data in Gymnosperms. We developed, searched and annotated transcriptomes assemblies of seven conifers and identified a resource of 3816 expressed NLR sequences. Our analyses encompassed sequences data spanning the major groups of land plants and determinations of NLR transcripts levels in response to drought in white spruce. We showed that conifers have among the most diverse and numerous RNLs in tested land plants. We report an evolutionary swap in the formation of RNLs, which emerged from the fusion of an RPW8 domain to a NB-ARC domain of CNL. We uncovered a quantitative relationship between RNLs and TNLs across all land plants investigated, with an average ratio of 1:10. The conifer RNL repertoire harbours four distinct groups, with two that differ from Angiosperms, one of which contained several upregulated sequences in response to drought while the majority of responsive NLRs are downregulated.
Collapse
Affiliation(s)
- Cyril Van Ghelder
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France. .,Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Geneviève J Parent
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.,Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Philippe Rigault
- Gydle Inc., 1135 Grande Allée Ouest Suite 220, Québec, QC, G1S 1E7, Canada.,Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Julien Prunier
- Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Isabelle Giguère
- Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Sébastien Caron
- Gydle Inc., 1135 Grande Allée Ouest Suite 220, Québec, QC, G1S 1E7, Canada
| | - Juliana Stival Sena
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, G1V 4C7, Canada
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - Jean Bousquet
- Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada.,Canada Research Chair in Forest Genomics, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Daniel Esmenjaud
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France
| | - John MacKay
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.,Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
28
|
Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, McKain MR, Smith RD, Teresi SJ, Nelson ADL, Wai CM, Alger EI, Bird KA, Yocca AE, Pumplin N, Ou S, Ben-Zvi G, Brodt A, Baruch K, Swale T, Shiue L, Acharya CB, Cole GS, Mower JP, Childs KL, Jiang N, Lyons E, Freeling M, Puzey JR, Knapp SJ. Origin and evolution of the octoploid strawberry genome. Nat Genet 2019; 51:541-547. [PMID: 30804557 PMCID: PMC6882729 DOI: 10.1038/s41588-019-0356-4] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/15/2019] [Indexed: 01/19/2023]
Abstract
Cultivated strawberry emerged from the hybridization of two wild octoploid species, both descendants from the merger of four diploid progenitor species into a single nucleus more than 1 million years ago. Here we report a near-complete chromosome-scale assembly for cultivated octoploid strawberry (Fragaria × ananassa) and uncovered the origin and evolutionary processes that shaped this complex allopolyploid. We identified the extant relatives of each diploid progenitor species and provide support for the North American origin of octoploid strawberry. We examined the dynamics among the four subgenomes in octoploid strawberry and uncovered the presence of a single dominant subgenome with significantly greater gene content, gene expression abundance, and biased exchanges between homoeologous chromosomes, as compared with the other subgenomes. Pathway analysis showed that certain metabolomic and disease-resistance traits are largely controlled by the dominant subgenome. These findings and the reference genome should serve as a powerful platform for future evolutionary studies and enable molecular breeding in strawberry.
Collapse
Affiliation(s)
- Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA.
| | - Thomas J Poorten
- Department of Plant Sciences, University of California-Davis, Davis, California, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Michael A Hardigan
- Department of Plant Sciences, University of California-Davis, Davis, California, USA
| | - Marivi Colle
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Michael R McKain
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Ronald D Smith
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Scott J Teresi
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | | | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Elizabeth I Alger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA
| | - Alan E Yocca
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Nathan Pumplin
- Department of Plant Sciences, University of California-Davis, Davis, California, USA
| | - Shujun Ou
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | - Charlotte B Acharya
- Department of Plant Sciences, University of California-Davis, Davis, California, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California-Davis, Davis, California, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Center for Genomics Enabled Plant Science, Michigan State University, East Lansing, MI, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Joshua R Puzey
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California-Davis, Davis, California, USA.
| |
Collapse
|
29
|
Fu Y, Zhang Y, Mason AS, Lin B, Zhang D, Yu H, Fu D. NBS-Encoding Genes in Brassica napus Evolved Rapidly After Allopolyploidization and Co-localize With Known Disease Resistance Loci. FRONTIERS IN PLANT SCIENCE 2019; 10:26. [PMID: 30761170 PMCID: PMC6363714 DOI: 10.3389/fpls.2019.00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/09/2019] [Indexed: 05/19/2023]
Abstract
Genes containing nucleotide-binding sites (NBS) play an important role in pathogen resistance in plants. However, the evolutionary fate of NBS-encoding genes after formation of allotetraploid Brassica napus (AnAnCnCn, 2n = 38) is still unknown. We performed a genome-wide comparison of putatively functional NBS-encoding genes in B. napus and its progenitor species Brassica rapa (ArAr, 2n = 20) and Brassica oleracea (CoCo, 2n = 18), identifying 464, 202, and 146 putatively functional NBS-encoding genes respectively, with genes unevenly distributed in several clusters. The An-subgenome of B. napus possessed similar numbers of NBS-encoding genes (191 genes) to the Ar genome of B. rapa (202 genes) and similar clustering patterns. However, the Cn genome of B. napus had many more genes (273) than the B. oleracea Co genome (146), with different clustering trends. Only 97 NBS-encoding genes (66.4%) in B. oleracea were homologous with NBS-encoding genes in B. napus, while 176 NBS-encoding genes (87.1%) were homologous between B. rapa and B. napus. These results suggest a greater diversification of NBS-encoding genes in the C genome may have occurred after formation of B. napus. Although most NBS-encoding genes in B. napus appeared to derive from the progenitors, the birth and death of several NBS-encoding genes was also putatively mediated by non-homologous recombination. The Ka/Ks values of most homologous pairs between B. napus and the progenitor species were less than 1, suggesting purifying selection during B. napus evolution. The majority of NBS-encoding genes (60% in all species) showed higher expression levels in root tissue (out of root, leaf, stem, seed and flower tissue types). Comparative analysis of NBS-encoding genes with mapped resistance QTL against three major diseases of B. napus (blackleg, clubroot and Sclerotinia stem rot) found 204 NBS-encoding genes in B. napus located within 71 resistance QTL intervals. The majority of NBS-encoding genes were co-located with resistance QTLs against a single disease, while 47 genes were co-located with QTLs against two diseases and 3 genes were co-located with QTLs against all three. Our results revealed significant variation as well as interesting evolutionary trajectories of NBS-encoding genes in the different Brassica subgenomes, while co-localization of NBS-encoding genes and resistance QTL may facilitate resistance breeding in oilseed rape.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Annaliese S. Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dongqing Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Huasheng Yu, Donghui Fu,
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Huasheng Yu, Donghui Fu,
| |
Collapse
|
30
|
Jiang N, Cui J, Meng J, Luan Y. A Tomato Nucleotide Binding Sites-Leucine-Rich Repeat Gene Is Positively Involved in Plant Resistance to Phytophthora infestans. PHYTOPATHOLOGY 2018; 108:980-987. [PMID: 29595084 DOI: 10.1094/phyto-12-17-0389-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The nucleotide binding sites-leucine-rich repeat (NBS-LRR) genes are key regulatory components of plant to pathogens. Phytophthora infestans-inducible coding sequence encoding an NBS-LRR (SpNBS-LRR) protein in tomato (Solanum pimpinellifolium L3708) was cloned and characterized based on our RNA-Seq data and tomato genome. After sequence analysis, SpNBS-LRR was identified as a hydrophilic protein with no transmembrane topological structure and no signal peptide. SpNBS-LRR had a close genetic relationship to RPS2 of Arabidopsis thaliana by phylogenetic analysis. In addition, SpNBS-LRR gene was mainly expressed in root, with low expression observed in leaf and stem. To further investigate the role of SpNBS-LRR in tomato-P. infestans interaction, SpNBS-LRR was introduced in susceptible tomatoes and three transgenic lines with higher expression level of SpNBS-LRR were selected. These transgenic tomato plants that overexpressed SpNBS-LRR displayed greater resistance than wild-type tomato plants after infection with P. infestans, as shown by decreased disease index, lesion diameters, number of necrotic cells, P. infestans abundance, and higher expression levels of the defense-related genes. This information provides insight into SpNBS-LRR involved in the resistance of tomato to P. infestans infection and candidate for breeding to enhance biotic stress-resistance in tomato.
Collapse
Affiliation(s)
- Ning Jiang
- First, second, and fourth authors: School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China; and third author: School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- First, second, and fourth authors: School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China; and third author: School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- First, second, and fourth authors: School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China; and third author: School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- First, second, and fourth authors: School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China; and third author: School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Neupane S, Andersen EJ, Neupane A, Nepal MP. Genome-Wide Identification of NBS-Encoding Resistance Genes in Sunflower (Helianthus annuus L.). Genes (Basel) 2018; 9:genes9080384. [PMID: 30061549 PMCID: PMC6115920 DOI: 10.3390/genes9080384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
Nucleotide Binding Site—Leucine-Rich Repeat (NBS-LRR) genes encode disease resistance proteins involved in plants’ defense against their pathogens. Although sunflower is affected by many diseases, only a few molecular details have been uncovered regarding pathogenesis and resistance mechanisms. Recent availability of sunflower whole genome sequences in publicly accessible databases allowed us to accomplish a genome-wide identification of Toll-interleukin-1 receptor-like Nucleotide-binding site Leucine-rich repeat (TNL), Coiled Coil (CC)-NBS-LRR (CNL), Resistance to powdery mildew8 (RPW8)-NBS-LRR (RNL) and NBS-LRR (NL) protein encoding genes. Hidden Markov Model (HMM) profiling of 52,243 putative protein sequences from sunflower resulted in 352 NBS-encoding genes, among which 100 genes belong to CNL group including 64 genes with RX_CC like domain, 77 to TNL, 13 to RNL, and 162 belong to NL group. We also identified signal peptides and nuclear localization signals present in the identified genes and their homologs. We found that NBS genes were located on all chromosomes and formed 75 gene clusters, one-third of which were located on chromosome 13. Phylogenetic analyses between sunflower and Arabidopsis NBS genes revealed a clade-specific nesting pattern in CNLs, with RNLs nested in the CNL-A clade, and species-specific nesting pattern for TNLs. Surprisingly, we found a moderate bootstrap support (BS = 50%) for CNL-A clade being nested within TNL clade making both the CNL and TNL clades paraphyletic. Arabidopsis and sunflower showed 87 syntenic blocks with 1049 high synteny hits between chromosome 5 of Arabidopsis and chromosome 6 of sunflower. Expression data revealed functional divergence of the NBS genes with basal level tissue-specific expression. This study represents the first genome-wide identification of NBS genes in sunflower paving avenues for functional characterization and potential crop improvement.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
32
|
Liu Q, Chang S, Hartman GL, Domier LL. Assembly and annotation of a draft genome sequence for Glycine latifolia, a perennial wild relative of soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:71-85. [PMID: 29671916 DOI: 10.1111/tpj.13931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 05/14/2023]
Abstract
Glycine latifolia (Benth.) Newell & Hymowitz (2n = 40), one of the 27 wild perennial relatives of soybean, possesses genetic diversity and agronomically favorable traits that are lacking in soybean. Here, we report the 939-Mb draft genome assembly of G. latifolia (PI 559298) using exclusively linked-reads sequenced from a single Chromium library. We organized scaffolds into 20 chromosome-scale pseudomolecules utilizing two genetic maps and the Glycine max (L.) Merr. genome sequence. High copy numbers of putative 91-bp centromere-specific tandem repeats were observed in consecutive blocks within predicted pericentromeric regions on several pseudomolecules. No 92-bp putative centromeric repeats, which are abundant in G. max, were detected in G. latifolia or Glycine tomentella. Annotation of the assembled genome and subsequent filtering yielded a high confidence gene set of 54 475 protein-coding loci. In comparative analysis with five legume species, genes related to defense responses were significantly overrepresented in Glycine-specific orthologous gene families. A total of 304 putative nucleotide-binding site (NBS)-leucine-rich-repeat (LRR) genes were identified in this genome assembly. Different from other legume species, we observed a scarcity of TIR-NBS-LRR genes in G. latifolia. The G. latifolia genome was also predicted to contain genes encoding 367 LRR-receptor-like kinases, a family of proteins involved in basal defense responses and responses to abiotic stress. The genome sequence and annotation of G. latifolia provides a valuable source of alternative alleles and novel genes to facilitate soybean improvement. This study also highlights the efficacy and cost-effectiveness of the application of Chromium linked-reads in diploid plant genome de novo assembly.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Sungyul Chang
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
- USDA ARS, Urbana, IL, 61801, USA
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
- USDA ARS, Urbana, IL, 61801, USA
| |
Collapse
|
33
|
Kochetov AV, Glagoleva AY, Strygina KV, Khlestkina EK, Gerasimova SV, Ibragimova SM, Shatskaya NV, Vasilyev GV, Afonnikov DA, Shmakov NA, Antonova OY, Gavrilenko TA, Alpatyeva NV, Khiutti A, Afanasenko OS. Differential expression of NBS-LRR-encoding genes in the root transcriptomes of two Solanum phureja genotypes with contrasting resistance to Globodera rostochiensis. BMC PLANT BIOLOGY 2017; 17:251. [PMID: 29297325 PMCID: PMC5751396 DOI: 10.1186/s12870-017-1193-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND The characterization of major resistance genes (R genes) in the potato remains an important task for molecular breeding. However, R genes are rapidly evolving and frequently occur in genomes as clusters with complex structures, and their precise mapping and identification are complicated and time consuming. RESULTS Comparative analysis of root transcriptomes of Solanum phureja genotypes with contrasting resistance to Globodera rostochiensis revealed a number of differentially expressed genes. However, compiling a list of candidate R genes for further segregation analysis was hampered by their scarce annotation. Nevertheless, combination of transcriptomic analysis with data on predicted potato NBS-LRR-encoding genes considerably improved the quality of the results and provided a reasonable number of candidate genes that provide S. phureja with strong resistance to the potato golden cyst nematode. CONCLUSION Combination of comparative analyses of tissue-specific transcriptomes in resistant and susceptible genotypes may be used as an approach for the rapid identification of candidate potato R genes for co-segregation analysis and may be used in parallel with more sophisticated studies based on genome resequencing.
Collapse
Affiliation(s)
- Alex V Kochetov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia.
| | - Anastasiya Y Glagoleva
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | - Elena K Khlestkina
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | | | | | | | | | - Nikolay A Shmakov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
| | - Olga Y Antonova
- Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, 190000, Russia
| | - Tatyana A Gavrilenko
- Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, 190000, Russia
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Natalia V Alpatyeva
- Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, 190000, Russia
| | - Alexander Khiutti
- All Russian Research Institute for Plant Protection, Saint Petersburg, 196608, Russia
| | - Olga S Afanasenko
- All Russian Research Institute for Plant Protection, Saint Petersburg, 196608, Russia
| |
Collapse
|