1
|
Kiener S, Wildermuth B, Meertens NM, Jagannathan V, Leeb T. Heterozygous deletion of the NSDHL gene in an Appenzeller Mountain Dog with verrucous epidermal keratinocytic nevi. Anim Genet 2024; 55:697-699. [PMID: 38659285 DOI: 10.1111/age.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Sarah Kiener
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Dermfocus, University of Bern, Bern, Switzerland
| | | | - Nadine M Meertens
- Pathology Department, Royal GD Animal Health, Deventer, The Netherlands
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Dermfocus, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Wyatt EK, Roccabianca P, Schmidt V, Legnani S. Proliferative, lymphocytic, infundibular mural folliculitis and dermatitis with prominent follicular apoptosis and parakeratotic casts in a Labrador retriever: Clinical, histopathological and dermoscopic features and co-morbidities. Vet Dermatol 2024; 35:354-359. [PMID: 38247380 DOI: 10.1111/vde.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/30/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Proliferative, lymphocytic, infundibular mural folliculitis and dermatitis have been reported in six female Labrador retrievers from North America. This is the first report of the disease outside North America, describing the clinical and histopathological diagnosis and dermoscopic aspect of the verrucous plaques, treatment and co-morbidities in a female Labrador retriever dog.
Collapse
Affiliation(s)
- Eleanor K Wyatt
- The University of Liverpool School of Veterinary Science, Cheshire, UK
| | - Paola Roccabianca
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Vanessa Schmidt
- The University of Liverpool School of Veterinary Science, Cheshire, UK
| | - Sara Legnani
- The University of Liverpool School of Veterinary Science, Cheshire, UK
| |
Collapse
|
3
|
Moura E, Tasqueti UI, Mangrich-Rocha RMV, Filho JRE, de Farias MR, Pimpão CT. Inborn Errors of Metabolism in Dogs: Historical, Metabolic, Genetic, and Clinical Aspects. Top Companion Anim Med 2022; 51:100731. [DOI: 10.1016/j.tcam.2022.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
4
|
Inheritance of Monogenic Hereditary Skin Disease and Related Canine Breeds. Vet Sci 2022; 9:vetsci9080433. [PMID: 36006348 PMCID: PMC9412528 DOI: 10.3390/vetsci9080433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The plasticity of the genome is an evolutionary factor in all animal species, including canines, but it can also be the origin of diseases caused by hereditary genetic mutation. Genetic changes, or mutations, that give rise to a pathology in most cases result from recessive alleles that are normally found with minority allelic frequency. The use of genetic improvement increases the consanguinity within canine breeds and, on many occasions, also increases the frequency of these recessive alleles, increasing the prevalence of these pathologies. This prevalence has been known for a long time, but mutations differ according to the canine breed. These genetic diseases, including skin diseases, or genodermatosis, which is narrowly defined as monogenic hereditary dermatosis. In this review, we focus on genodermatosis sensu estricto, i.e., monogenic, and hereditary dermatosis, in addition to the clinical features, diagnosis, pathogeny, and treatment. Specifically, this review analyzes epidermolytic and non-epidermolytic ichthyosis, junctional epidermolysis bullosa, nasal parakeratosis, mucinosis, dermoid sinus, among others, in canine breeds, such as Golden Retriever, German Pointer, Australian Shepherd, American Bulldog, Great Dane, Jack Russell Terrier, Labrador Retriever, Shar-Pei, and Rhodesian Ridgeback.
Collapse
|
5
|
Peng Y, Shi H, Liu Y, Huang Y, Zheng R, Jiang D, Jiang M, Zhu C, Li G. RNA Sequencing Analysis Reveals Divergent Adaptive Response to Hypo- and Hyper-Salinity in Greater Amberjack ( Seriola dumerili) Juveniles. Animals (Basel) 2022; 12:327. [PMID: 35158652 PMCID: PMC8833429 DOI: 10.3390/ani12030327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Salinity significantly affects physiological and metabolic activities, breeding, development, survival, and growth of marine fish. The greater amberjack (Seriola dumerili) is a fast-growing species that has immensely contributed to global aquaculture diversification. However, the tolerance, adaptation, and molecular responses of greater amberjack to salinity are unclear. This study reared greater amberjack juveniles under different salinity stresses (40, 30, 20, and 10 ppt) for 30 days to assess their tolerance, adaptation, and molecular responses to salinity. RNA sequencing analysis of gill tissue was used to identify genes and biological processes involved in greater amberjack response to salinity stress at 40, 30, and 20 ppt. Eighteen differentially expressed genes (DEGs) (nine upregulated and nine downregulated) were identified in the 40 vs. 30 ppt group. Moreover, 417 DEGs (205 up-regulated and 212 down-regulated) were identified in the 20 vs. 30 ppt group. qPCR and transcriptomic analysis indicated that salinity stress affected the expression of genes involved in steroid biosynthesis (ebp, sqle, lss, dhcr7, dhcr24, and cyp51a1), lipid metabolism (msmo1, nsdhl, ogdh, and edar), ion transporters (slc25a48, slc37a4, slc44a4, and apq4), and immune response (wnt4 and tlr5). Furthermore, KEGG pathway enrichment analysis showed that the DEGs were enriched in steroid biosynthesis, lipids metabolism, cytokine-cytokine receptor interaction, tryptophan metabolism, and insulin signaling pathway. Therefore, this study provides insights into the molecular mechanisms of marine fish adaptation to salinity.
Collapse
Affiliation(s)
- Yuhao Peng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Yuqi Liu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Renchi Zheng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Mouyan Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| |
Collapse
|
6
|
Leeb T, Roosje P, Welle M. Genetics of inherited skin disorders in dogs. Vet J 2021; 279:105782. [PMID: 34861369 DOI: 10.1016/j.tvjl.2021.105782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
Canine genodermatoses represent a broad spectrum of diseases with diverse phenotypes. Modern genetic technology including whole genome sequencing has expedited the identification of novel genes and greatly simplified the establishment of genetic diagnoses in such heterogeneous disorders. The precise genetic diagnosis of a heritable skin disorder is essential for the appropriate counselling of owners regarding the course of the disease, prognosis and implications for breeding. Understanding the underlying pathophysiology is a prerequisite to developing specific, targeted or individualized therapeutic approaches. This review aims to create a comprehensive overview of canine genodermatoses and their respective genetic aetiology known to date. Raising awareness of genodermatoses in dogs is important and this review may help clinicians to apply modern genetics in daily clinical practice, so that a precise diagnoses can be established in suspected genodermatoses.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland.
| | - Petra Roosje
- Dermfocus, University of Bern, 3001 Bern, Switzerland; Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Monika Welle
- Dermfocus, University of Bern, 3001 Bern, Switzerland; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
7
|
Mauldin EA, Elias PM. Ichthyosis and hereditary cornification disorders in dogs. Vet Dermatol 2021; 32:567-e154. [PMID: 34796560 DOI: 10.1111/vde.13033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/16/2021] [Accepted: 07/17/2021] [Indexed: 12/14/2022]
Abstract
The stratum corneum (SC), the outermost layer of the epidermis, serves a crucial role in maintaining body hydration and protection from environmental insults. When the stratum corneum is injured or when the genetic blueprints are flawed, the body is at risk of dehydration, secondary infections and allergen sensitization. Advancements in veterinary dermatology have revealed a wide gamut of disease from relatively benign to lethal that specifically arise from flawed structural proteins, enzymes or lipids needed to create the corneocytes and lipid bilayers of the SC. Some conditions closely mimic their human counterparts while others are unique to the dog. This review will focus on forms of ichthyosis in the dog.
Collapse
Affiliation(s)
- Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St, Philadelphia, PA, 19104, USA
| | - Peter M Elias
- Veterans Affairs Medical Center San Francisco, California, Department of Dermatology, University of California San Francisco, San Franciso, California, 150 Clement Street, Dermatology MS 190, San Francisco, CA, 94121, USA
| |
Collapse
|
8
|
Pegram C, Woolley C, Brodbelt DC, Church DB, O'Neill DG. Disorder predispositions and protections of Labrador Retrievers in the UK. Sci Rep 2021; 11:13988. [PMID: 34262062 PMCID: PMC8280121 DOI: 10.1038/s41598-021-93379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The Labrador Retriever is one of the most popular dog breeds worldwide, therefore it is important to have reliable evidence on the general health issues of the breed. Using anonymised veterinary clinical data from the VetCompass Programme, this study aimed to explore the relative risk to common disorders in the Labrador Retriever. The clinical records of a random sample of dogs were reviewed to extract the most definitive diagnoses for all disorders recorded during 2016. A list of disorders was generated, including the 30 most common disorders in Labrador Retrievers and the 30 most common disorders in non-Labrador Retrievers. Multivariable logistic regression was used to report the odds of each of these disorders in 1462 (6.6%) Labrador Retrievers compared with 20,786 (93.4%) non-Labrador Retrievers. At a specific-level of diagnostic precision, after accounting for confounding, Labrador Retrievers had significantly increased odds of 12/35 (34.3%) disorders compared to non-Labrador Retrievers; osteoarthritis (OR 2.83) had the highest odds. Conversely, Labrador Retrievers had reduced odds of 7/35 (20.0%) disorders; patellar luxation (OR 0.18) had the lowest odds. This study provides useful information about breed-specific disorder predispositions and protections, which future research could evaluate further to produce definitive guidance for Labrador Retriever breeders and owners.
Collapse
Affiliation(s)
- Camilla Pegram
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK.
| | - Charlotte Woolley
- The Roslin Institute and the Royal (Dick), School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Dave C Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - David B Church
- Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Dan G O'Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| |
Collapse
|
9
|
Rokhsar JL, Canino J, Raj K, Yuhnke S, Slutsky J, Giger U. Web resource on available DNA variant tests for hereditary diseases and genetic predispositions in dogs and cats: An Update. Hum Genet 2021; 140:1505-1515. [PMID: 33547946 DOI: 10.1007/s00439-021-02256-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022]
Abstract
Vast progress has been made in the clinical diagnosis and molecular basis of hereditary diseases and genetic predisposition in companion animals. The purpose of this report is to provide an update on the availability of DNA testing for hereditary diseases and genetic predispositions in dogs and cats utilizing the WSAVA-PennGen DNA Testing Database web resource (URL: http://research.vet.upenn.edu/WSAVA-LabSearch ). Information on hereditary diseases, DNA tests, genetic testing laboratories and afflicted breeds added to the web-based WSAVA-PennGen DNA Testing Database was gathered. Following verification through original research and clinical studies, searching various databases on hereditary diseases in dogs and cats, and contacting laboratories offering DNA tests, the data were compared to the resource reported on in 2013. The number of molecularly defined Mendelian inherited diseases and variants in companion animals listed in the WSAVA-PennGen DNA Testing Database in 2020 drastically increased by 112% and 141%, respectively. The number of DNA variant tests offered by each laboratory has also doubled for dogs and cats. While the overall number of laboratories has only slightly increased from 43 to 47, the number of larger corporate laboratories increased, while academic laboratories have declined. In addition, there are now several laboratories that are offering breed-specific or all-breed panel tests rather than single-DNA tests for dogs and cats. This unique regularly updated searchable web-based database allows veterinary clinicians, breeders and pet owners to readily find available DNA tests, laboratories performing these DNA tests worldwide, and canine and feline breeds afflicted and also serves as a valuable resource for comparative geneticists.
Collapse
Affiliation(s)
- Jennifer L Rokhsar
- Section of Medical Genetics (PennGen Laboratories), School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104-6010, USA
| | - Julia Canino
- Section of Medical Genetics (PennGen Laboratories), School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104-6010, USA
| | - Karthik Raj
- Section of Medical Genetics (PennGen Laboratories), School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104-6010, USA
| | - Scott Yuhnke
- Section of Medical Genetics (PennGen Laboratories), School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104-6010, USA
| | - Jeffrey Slutsky
- Section of Medical Genetics (PennGen Laboratories), School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104-6010, USA
| | - Urs Giger
- Section of Medical Genetics (PennGen Laboratories), School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104-6010, USA.
| |
Collapse
|
10
|
Christen M, Austel M, Banovic F, Jagannathan V, Leeb T. NSDHL Frameshift Deletion in a Mixed Breed Dog with Progressive Epidermal Nevi. Genes (Basel) 2020; 11:genes11111297. [PMID: 33143176 PMCID: PMC7716214 DOI: 10.3390/genes11111297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Loss-of-function variants in the NSDHL gene have been associated with epidermal nevi in humans with congenital hemidysplasia, ichthyosiform nevi, and limb defects (CHILD) syndrome and in companion animals. The NSDHL gene codes for the NAD(P)-dependent steroid dehydrogenase-like protein, which is involved in cholesterol biosynthesis. In this study, a female Chihuahua cross with a clinical and histological phenotype consistent with progressive epidermal nevi is presented. All exons of the NSDHL candidate gene were amplified by PCR and analyzed by Sanger sequencing. A heterozygous frameshift variant, c.718_722delGAACA, was identified in the affected dog. In lesional skin, the vast majority of NSDHL transcripts lacked the five deleted bases. The variant is predicted to produce a premature stop codon truncating 34% of the encoded protein, p.Glu240Profs*17. The mutant allele was absent from 22 additionally genotyped Chihuahuas, as well as from 647 control dogs of diverse breeds and eight wolves. The available experimental data together with current knowledge about NSDHL variants and their functional impact in humans, dogs, and other species prompted us to classify this variant as pathogenic according to the ACMG guidelines that were previously established for human sequence variants. Therefore, we propose the c.718_722delGAACA variant as causative variant for the observed skin lesions in this dog.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Michaela Austel
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.A.); (F.B.)
| | - Frane Banovic
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (M.A.); (F.B.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-631-2326
| |
Collapse
|
11
|
Transcriptome Profiling and Differential Gene Expression in Canine Microdissected Anagen and Telogen Hair Follicles and Interfollicular Epidermis. Genes (Basel) 2020; 11:genes11080884. [PMID: 32759649 PMCID: PMC7463739 DOI: 10.3390/genes11080884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/17/2022] Open
Abstract
The transcriptome profile and differential gene expression in telogen and late anagen microdissected hair follicles and the interfollicular epidermis of healthy dogs was investigated by using RNAseq. The genes with the highest expression levels in each group were identified and genes known from studies in other species to be associated with structure and function of hair follicles and epidermis were evaluated. Transcriptome profiling revealed that late anagen follicles expressed mainly keratins and telogen follicles expressed GSN and KRT15. The interfollicular epidermis expressed predominately genes encoding for proteins associated with differentiation. All sample groups express genes encoding for proteins involved in cellular growth and signal transduction. The expression pattern of skin-associated genes in dogs is similar to humans. Differences in expression compared to mice and humans include BMP2 expression mainly in telogen and high KRT17 expression in the interfollicular epidermis of dogs. Our data provide the basis for the investigation of the structure and function of canine skin or skin disease and support the use of dogs as a model for human cutaneous disease by assigning gene expression to specific tissue states.
Collapse
|
12
|
Jagannathan V, Drögemüller C, Leeb T. A comprehensive biomedical variant catalogue based on whole genome sequences of 582 dogs and eight wolves. Anim Genet 2019; 50:695-704. [PMID: 31486122 PMCID: PMC6842318 DOI: 10.1111/age.12834] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
The domestic dog serves as an excellent model to investigate the genetic basis of disease. More than 400 heritable traits analogous to human diseases have been described in dogs. To further canine medical genetics research, we established the Dog Biomedical Variant Database Consortium (DBVDC) and present a comprehensive list of functionally annotated genome variants that were identified with whole genome sequencing of 582 dogs from 126 breeds and eight wolves. The genomes used in the study have a minimum coverage of 10× and an average coverage of ~24×. In total, we identified 23 133 692 single-nucleotide variants (SNVs) and 10 048 038 short indels, including 93% undescribed variants. On average, each individual dog genome carried ∼4.1 million single-nucleotide and ~1.4 million short-indel variants with respect to the reference genome assembly. About 2% of the variants were located in coding regions of annotated genes and loci. Variant effect classification showed 247 141 SNVs and 99 562 short indels having moderate or high impact on 11 267 protein-coding genes. On average, each genome contained heterozygous loss-of-function variants in 30 potentially embryonic lethal genes and 97 genes associated with developmental disorders. More than 50 inherited disorders and traits have been unravelled using the DBVDC variant catalogue, enabling genetic testing for breeding and diagnostics. This resource of annotated variants and their corresponding genotype frequencies constitutes a highly useful tool for the identification of potential variants causative for rare inherited disorders in dogs.
Collapse
Affiliation(s)
- V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Leuthard F, Lehner G, Jagannathan V, Leeb T, Welle M. A missense variant in the NSDHL gene in a Chihuahua with a congenital cornification disorder resembling inflammatory linear verrucous epidermal nevi. Anim Genet 2019; 50:768-771. [PMID: 31571289 DOI: 10.1111/age.12862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 11/27/2022]
Abstract
Congenital hemidysplasia with ichthyosiform nevus and limb defects syndrome in humans is a genodermatosis characterized by inflammatory linear verrucous epidermal nevi (ILVEN), often showing a striking lateralization pattern. It is caused by variants in the NSDHL gene encoding a 3β-hydroxysteroid dehydrogenase involved in the cholesterol biosynthesis pathway. In the present study, we investigated a female Chihuahua, which showed clinical and histological signs of ILVEN. We performed a candidate gene analysis in the affected animal. This analysis revealed a single missense variant in the NSDHL gene in the affected dog (XM_014111859.2:c.700G>A). The variant is predicted to cause a non-conservative amino acid change from glycine to arginine, XP_013967334.1:p.(Gly234Arg). The mutant allele was absent from WGS data of 594 genetically diverse dogs and eight wolves. Sanger sequencing confirmed that the variant was heterozygous in the affected dog and absent from 22 control Chihuahuas. Based on the knowledge about the functional impact of NSDHL variants in dogs and other species, c.700G>A is probably pathogenic and a convincing candidate causative variant for the observed skin lesions in the affected Chihuahua.
Collapse
Affiliation(s)
- F Leuthard
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| | - G Lehner
- Kleintierpraxis Lehner Dermatologie, 89290, Buch, Germany
| | - V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| | - M Welle
- DermFocus, University of Bern, 3001, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
14
|
De Lucia M, Angileri M, Bauer A, Spycher M, Jaggannathan V, Denti D, Di Diodoro F, Ferro S, Mezzalira G, Welle M, Leeb T. X-linked cutaneous mosaicism in a dog. Vet Dermatol 2019; 30:361-362. [PMID: 31012178 DOI: 10.1111/vde.12748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michela De Lucia
- San Marco Veterinary Clinic, Via Sorio 114/C, 35141, Padova, Italy.,San Marco Veterinary Laboratory, Via Sorio 114/C, 35141, Padova, Italy
| | - Martina Angileri
- San Marco Veterinary Clinic, Via Sorio 114/C, 35141, Padova, Italy
| | - Anina Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Melina Spycher
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Vidhya Jaggannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Daria Denti
- San Marco Veterinary Clinic, Via Sorio 114/C, 35141, Padova, Italy
| | | | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Giorgia Mezzalira
- San Marco Veterinary Laboratory, Via Sorio 114/C, 35141, Padova, Italy
| | - Monika Welle
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
15
|
De Lucia M, Bauer A, Spycher M, Jagannathan V, Romano E, Welle M, Leeb T. Genetic variant in the NSDHL gene in a cat with multiple congenital lesions resembling inflammatory linear verrucous epidermal nevi. Vet Dermatol 2018; 30:64-e18. [PMID: 30474267 DOI: 10.1111/vde.12699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The feline counterpart of human inflammatory linear verrucous epidermal nevus (ILVEN) has been described; however, the possible underlying developmental defect has not been investigated. OBJECTIVE To report a case of multiple ILVEN-like lesions in a cat with a genetic variant in the NSDHL gene. ANIMALS A 2-year-old, female, domestic short hair cat with a history of multiple alopecic, verrucous, hyperpigmented and erythematous skin lesions, following Blaschko's lines on the head, the limbs, the trunk and paw pads. METHODS AND RESULTS According to the clinical and histopathological findings, a diagnosis of multiple ILVEN-like lesions was made. Genetic investigation revealed a heterozygous missense variant in the X-chromosomal NSDHL gene predicted to lead to a loss-of-function of the NSDHL protein. CONCLUSIONS AND CLINICAL IMPORTANCE To the best of the authors' knowledge, this is the first case of feline ILVEN-like lesions in which a genetic cause has been proposed. Future studies to establish a causal relationship between NSDHL variants and skin lesions might lead to pathogenesis-directed treatments.
Collapse
Affiliation(s)
- Michela De Lucia
- San Marco Veterinary Clinic, Via Sorio 114/C, 35141, Padova, Italy.,San Marco Veterinary Laboratory, Via Sorio 114/C, 35141, Padova, Italy
| | - Anina Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Melina Spycher
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Erica Romano
- Veterinary Hospital Gregorio VII, Piazza di Villa Carpegna 52, 00165, Rome, Italy
| | - Monika Welle
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|