1
|
Ma R, Lu Y, Li M, Gao Z, Li D, Gao Y, Deng W, Wang B. Whole-Genome Resequencing in Sheep: Applications in Breeding, Evolution, and Conservation. Genes (Basel) 2025; 16:363. [PMID: 40282323 PMCID: PMC12026845 DOI: 10.3390/genes16040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Sheep (Ovis aries) were domesticated around 10,000 years ago and have since become an integral part of human agriculture, providing essential resources, such as wool, meat, and milk. Over the past century, advances in communication and agricultural productivity have driven the evolution of selective breeding practices, further enhancing the value of sheep in the global economy. Recently, the rapid development of whole-genome resequencing (WGR) technologies has significantly accelerated research in sheep molecular biology, facilitating the discovery of genetic underpinnings for critical traits. This review offers a comprehensive overview of the evolution of whole-genome resequencing and its application to sheep genetics. It explores the domestication and genetic origins of sheep, examines the genetic structure and differentiation of various sheep populations, and discusses the use of WGR in the development of genetic maps. In particular, the review highlights how WGR technology has advanced our understanding of key traits, such as wool production, lactation, reproductive performance, disease resistance, and environmental adaptability. The review also covers the use of WGR technology in the conservation and sustainable utilization of sheep genetic resources, offering valuable insights for future breeding programs aimed at enhancing the genetic diversity and resilience of sheep populations.
Collapse
Affiliation(s)
- Ruoshan Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Dongfang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Yuyang Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| | - Bo Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (Y.L.); (M.L.); (Z.G.); (D.L.); (Y.G.)
| |
Collapse
|
2
|
Abeyratne CR, Macaya-Sanz D, Zhou R, Barry KW, Daum C, Haiby K, Lipzen A, Stanton B, Yoshinaga Y, Zane M, Tuskan GA, DiFazio SP. High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa. G3 (BETHESDA, MD.) 2023; 13:jkac269. [PMID: 36250890 PMCID: PMC9836356 DOI: 10.1093/g3journal/jkac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Fine-scale meiotic recombination is fundamental to the outcome of natural and artificial selection. Here, dense genetic mapping and haplotype reconstruction were used to estimate recombination for a full factorial Populus trichocarpa cross of 7 males and 7 females. Genomes of the resulting 49 full-sib families (N = 829 offspring) were resequenced, and high-fidelity biallelic SNP/INDELs and pedigree information were used to ascertain allelic phase and impute progeny genotypes to recover gametic haplotypes. The 14 parental genetic maps contained 1,820 SNP/INDELs on average that covered 376.7 Mb of physical length across 19 chromosomes. Comparison of parental and progeny haplotypes allowed fine-scale demarcation of cross-over regions, where 38,846 cross-over events in 1,658 gametes were observed. Cross-over events were positively associated with gene density and negatively associated with GC content and long-terminal repeats. One of the most striking findings was higher rates of cross-overs in males in 8 out of 19 chromosomes. Regions with elevated male cross-over rates had lower gene density and GC content than windows showing no sex bias. High-resolution analysis identified 67 candidate cross-over hotspots spread throughout the genome. DNA sequence motifs enriched in these regions showed striking similarity to those of maize, Arabidopsis, and wheat. These findings, and recombination estimates, will be useful for ongoing efforts to accelerate domestication of this and other biomass feedstocks, as well as future studies investigating broader questions related to evolutionary history, perennial development, phenology, wood formation, vegetative propagation, and dioecy that cannot be studied using annual plant model systems.
Collapse
Affiliation(s)
| | - David Macaya-Sanz
- Department of Forest Ecology & Genetics, CIFOR-INIA, CSIC, Madrid 28040, Spain
| | - Ran Zhou
- Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Kerrie W Barry
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Anna Lipzen
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Yuko Yoshinaga
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Matthew Zane
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Gerald A Tuskan
- Biosciences Division, Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
3
|
Genetic characterization of outbred Sprague Dawley rats and utility for genome-wide association studies. PLoS Genet 2022; 18:e1010234. [PMID: 35639796 PMCID: PMC9187121 DOI: 10.1371/journal.pgen.1010234] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 06/10/2022] [Accepted: 05/03/2022] [Indexed: 12/30/2022] Open
Abstract
Sprague Dawley (SD) rats are among the most widely used outbred laboratory rat populations. Despite this, the genetic characteristics of SD rats have not been clearly described, and SD rats are rarely used for experiments aimed at exploring genotype-phenotype relationships. In order to use SD rats to perform a genome-wide association study (GWAS), we collected behavioral data from 4,625 SD rats that were predominantly obtained from two commercial vendors, Charles River Laboratories and Harlan Sprague Dawley Inc. Using double-digest genotyping-by-sequencing (ddGBS), we obtained dense, high-quality genotypes at 291,438 SNPs across 4,061 rats. This genetic data allowed us to characterize the variation present in Charles River vs. Harlan SD rats. We found that the two populations are highly diverged (FST > 0.4). Furthermore, even for rats obtained from the same vendor, there was strong population structure across breeding facilities and even between rooms at the same facility. We performed multiple separate GWAS by fitting a linear mixed model that accounted for population structure and using meta-analysis to jointly analyze all cohorts. Our study examined Pavlovian conditioned approach (PavCA) behavior, which assesses the propensity for rats to attribute incentive salience to reward-associated cues. We identified 46 significant associations for the various metrics used to define PavCA. The surprising degree of population structure among SD rats from different sources has important implications for their use in both genetic and non-genetic studies. Outbred Sprague Dawley rats are among the most commonly used rats for neuroscience, physiology and pharmacological research; in the year 2020, 4,188 publications contained the keyword “Sprague Dawley”. Rats identified as “Sprague Dawley” are sold by several commercial vendors, including Charles River Laboratories and Harlan Sprague Dawley Inc. (now Envigo). Despite their widespread use, little is known about the genetic diversity of SD. We genotyped more than 4,000 SD rats, which we used for a genome-wide association study (GWAS) and to characterize genetic differences between SD rats from Charles River Laboratories and Harlan. Our analysis revealed extensive population structure both between and within vendors. The GWAS for Pavlovian conditioned approach (PavCA) identified a number of genome-wide significant loci for that complex behavioral trait. Our results demonstrate that, despite sharing an identical name, SD rats that are obtained from different vendors are very different. Future studies should carefully define the exact source of SD rats being used and may exploit their genetic diversity for genetic studies of complex traits.
Collapse
|
4
|
Robledo-Ruiz DA, Gan HM, Kaur P, Dudchenko O, Weisz D, Khan R, Lieberman Aiden E, Osipova E, Hiller M, Morales HE, Magrath MJL, Clarke RH, Sunnucks P, Pavlova A. Chromosome-length genome assembly and linkage map of a critically endangered Australian bird: the helmeted honeyeater. Gigascience 2022; 11:giac025. [PMID: 35348671 PMCID: PMC8963300 DOI: 10.1093/gigascience/giac025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The helmeted honeyeater (Lichenostomus melanops cassidix) is a Critically Endangered bird endemic to Victoria, Australia. To aid its conservation, the population is the subject of genetic rescue. To understand, monitor, and modulate the effects of genetic rescue on the helmeted honeyeater genome, a chromosome-length genome and a high-density linkage map are required. RESULTS We used a combination of Illumina, Oxford Nanopore, and Hi-C sequencing technologies to assemble a chromosome-length genome of the helmeted honeyeater, comprising 906 scaffolds, with length of 1.1 Gb and scaffold N50 of 63.8 Mb. Annotation comprised 57,181 gene models. Using a pedigree of 257 birds and 53,111 single-nucleotide polymorphisms, we obtained high-density linkage and recombination maps for 25 autosomes and Z chromosome. The total sex-averaged linkage map was 1,347 cM long, with the male map being 6.7% longer than the female map. Recombination maps revealed sexually dimorphic recombination rates (overall higher in males), with average recombination rate of 1.8 cM/Mb. Comparative analyses revealed high synteny of the helmeted honeyeater genome with that of 3 passerine species (e.g., 32 Hi-C scaffolds mapped to 30 zebra finch autosomes and Z chromosome). The genome assembly and linkage map suggest that the helmeted honeyeater exhibits a fission of chromosome 1A into 2 chromosomes relative to zebra finch. PSMC analysis showed a ∼15-fold decline in effective population size to ∼60,000 from mid- to late Pleistocene. CONCLUSIONS The annotated chromosome-length genome and high-density linkage map provide rich resources for evolutionary studies and will be fundamental in guiding conservation efforts for the helmeted honeyeater.
Collapse
Affiliation(s)
| | - Han Ming Gan
- Deakin Genomics Centre, Deakin University, Geelong, VIC 3220, Australia
- GeneSEQ Sdn Bhd, 48300 Rawang, Selangor, Malaysia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth WA 6009,Australia
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruqayya Khan
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erez Lieberman Aiden
- UWA School of Agriculture and Environment, The University of Western Australia, Perth WA 6009,Australia
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX 77030, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
| | - Ekaterina Osipova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 101307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
- Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 101307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
- Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Hernán E Morales
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Denmark
| | - Michael J L Magrath
- Department of Wildlife Conservation and Science, Zoos Victoria, Parkville, VIC 3052, Australia
| | - Rohan H Clarke
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
6
|
Gergelits V, Parvanov E, Simecek P, Forejt J. Chromosome-wide characterization of meiotic noncrossovers (gene conversions) in mouse hybrids. Genetics 2021; 217:1-14. [PMID: 33683354 DOI: 10.1093/genetics/iyaa013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 01/16/2023] Open
Abstract
During meiosis, the recombination-initiating DNA double-strand breaks (DSBs) are repaired by crossovers or noncrossovers (gene conversions). While crossovers are easily detectable, noncrossover identification is hampered by the small size of their converted tracts and the necessity of sequence polymorphism. We report identification and characterization of a mouse chromosome-wide set of noncrossovers by next-generation sequencing of 10 mouse intersubspecific chromosome substitution strains. Based on 94 identified noncrossovers, we determined the mean length of a conversion tract to be 32 bp. The spatial chromosome-wide distribution of noncrossovers and crossovers significantly differed, although both sets overlapped the known hotspots of PRDM9-directed histone methylation and DNA DSBs, thus supporting their origin in the standard DSB repair pathway. A significant deficit of noncrossovers descending from asymmetric DSBs proved their proposed adverse effect on meiotic recombination and pointed to sister chromatids as an alternative template for their repair. The finding has implications for the molecular mechanism of hybrid sterility in mice from crosses between closely related Mus musculus musculus and Mus musculus domesticus subspecies.
Collapse
Affiliation(s)
- Vaclav Gergelits
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, CZ-12000 Prague, Czech Republic
| | - Emil Parvanov
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| | - Petr Simecek
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| |
Collapse
|
7
|
Takeuchi F, Liang YQ, Isono M, Tajima M, Cui ZH, Iizuka Y, Gotoda T, Nabika T, Kato N. Integrative genomic analysis of blood pressure and related phenotypes in rats. Dis Model Mech 2021; 14:dmm048090. [PMID: 34010951 PMCID: PMC8188887 DOI: 10.1242/dmm.048090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Despite remarkable progress made in human genome-wide association studies, there remains a substantial gap between statistical evidence for genetic associations and functional comprehension of the underlying mechanisms governing these associations. As a means of bridging this gap, we performed genomic analysis of blood pressure (BP) and related phenotypes in spontaneously hypertensive rats (SHR) and their substrain, stroke-prone SHR (SHRSP), both of which are unique genetic models of severe hypertension and cardiovascular complications. By integrating whole-genome sequencing, transcriptome profiling, genome-wide linkage scans (maximum n=1415), fine congenic mapping (maximum n=8704), pharmacological intervention and comparative analysis with transcriptome-wide association study (TWAS) datasets, we searched causal genes and causal pathways for the tested traits. The overall results validated the polygenic architecture of elevated BP compared with a non-hypertensive control strain, Wistar Kyoto rats (WKY); e.g. inter-strain BP differences between SHRSP and WKY could be largely explained by an aggregate of BP changes in seven SHRSP-derived consomic strains. We identified 26 potential target genes, including rat homologs of human TWAS loci, for the tested traits. In this study, we re-discovered 18 genes that had previously been determined to contribute to hypertension or cardiovascular phenotypes. Notably, five of these genes belong to the kallikrein-kinin/renin-angiotensin systems (KKS/RAS), in which the most prominent differential expression between hypertensive and non-hypertensive alleles could be detected in rat Klk1 paralogs. In combination with a pharmacological intervention, we provide in vivo experimental evidence supporting the presence of key disease pathways, such as KKS/RAS, in a rat polygenic hypertension model.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yi-Qiang Liang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Michiko Tajima
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Zong Hu Cui
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo 693-0021, Japan
| | - Yoko Iizuka
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Takanari Gotoda
- Department of Metabolism and Biochemistry, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo 693-0021, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| |
Collapse
|
8
|
Gileta AF, Gao J, Chitre AS, Bimschleger HV, St Pierre CL, Gopalakrishnan S, Palmer AA. Adapting Genotyping-by-Sequencing and Variant Calling for Heterogeneous Stock Rats. G3 (BETHESDA, MD.) 2020; 10:2195-2205. [PMID: 32398234 PMCID: PMC7341140 DOI: 10.1534/g3.120.401325] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
The heterogeneous stock (HS) is an outbred rat population derived from eight inbred rat strains. HS rats are ideally suited for genome wide association studies; however, only a few genotyping microarrays have ever been designed for rats and none of them are currently in production. To address the need for an efficient and cost effective method of genotyping HS rats, we have adapted genotype-by-sequencing (GBS) to obtain genotype information at large numbers of single nucleotide polymorphisms (SNPs). In this paper, we have outlined the laboratory and computational steps we took to optimize double digest genotype-by-sequencing (ddGBS) for use in rats. We evaluated multiple existing computational tools and explain the workflow we have used to call and impute over 3.7 million SNPs. We have also compared various rat genetic maps, which are necessary for imputation, including a recently developed map specific to the HS. Using our approach, we obtained concordance rates of 99% with data obtained using data from a genotyping array. The principles and computational pipeline that we describe could easily be adapted for use in other species for which reliable reference genome sets are available.
Collapse
Affiliation(s)
- Alexander F Gileta
- Department of Psychiatry
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, 92093
| | | | | | | | | | - Shyam Gopalakrishnan
- Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637, and
| | - Abraham A Palmer
- Department of Psychiatry,
- Natural History Museum of Denmark, University of Copenhagen, 2200 København N, Denmark
| |
Collapse
|
9
|
Showmaker KC, Cobb MB, Johnson AC, Yang W, Garrett MR. Whole genome sequencing and novel candidate genes for CAKUT and altered nephrogenesis in the HSRA rat. Physiol Genomics 2020; 52:56-70. [PMID: 31841396 PMCID: PMC6985787 DOI: 10.1152/physiolgenomics.00112.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
The HSRA rat is a model of congenital abnormalities of the kidney and urogenital tract (CAKUT). Our laboratory has used this model to investigate the role of nephron number (functional unit of the kidney) in susceptibility to develop kidney disease as 50-75% offspring are born with a single kidney (HSRA-S), while 25-50% are born with two kidneys (HSRA-C). HSRA-S rats develop increased kidney injury and hypertension with age compared with nephrectomized two-kidney animals (HSRA-UNX), suggesting that even slight differences in nephron number can be an important driver in decline in kidney function. The HSRA rat was selected and inbred from a family of outbred heterogeneous stock (NIH-HS) rats that exhibited a high incidence of CAKUT. The HS model was originally developed from eight inbred strains (ACI, BN, BUF, F344, M520, MR, WKY, and WN). The genetic make-up of the HSRA is therefore a mosaic of these eight inbred strains. Interestingly, the ACI progenitor of the HS model exhibits CAKUT in 10-15% of offspring with the genetic cause being attributed to the presence of a long-term repeat (LTR) within exon 1 of the c-Kit gene. Our hypothesis is that the HSRA and ACI share this common genetic cause, but other alleles in the HSRA genome contribute to the increased penetrance of CAKUT (75% HSRA vs. 15% in ACI). To facilitate genetic studies and better characterize the model, we sequenced the whole genome of the HSRA to a depth of ~50×. A genome-wide variant analysis of high-impact variants identified a number of novel genes that could be linked to CAKUT in the HSRA model. In summary, the identification of new genes/modifiers that lead to CAKUT/loss of one kidney in the HSRA model will provide greater insight into association between kidney development and susceptibility to develop cardiovascular disease later in life.
Collapse
Affiliation(s)
- Kurt C Showmaker
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Meredith B Cobb
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley C Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenyu Yang
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
10
|
Rapp JP, Joe B. Dissecting Epistatic QTL for Blood Pressure in Rats: Congenic Strains versus Heterogeneous Stocks, a Reality Check. Compr Physiol 2019; 9:1305-1337. [PMID: 31688958 DOI: 10.1002/cphy.c180038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advances in molecular genetics have provided well-defined physical genetic maps and large numbers of genetic markers for both model organisms and humans. It is now possible to gain a fundamental understanding of the genetic architecture underlying quantitative traits, of which blood pressure (BP) is an important example. This review emphasizes analytical techniques and results obtained using the Dahl salt-sensitive (S) rat as a model of hypertension by presenting results in detail for three specific chromosomal regions harboring genetic elements of increasing complexity controlling BP. These results highlight the critical importance of genetic interactions (epistasis) on BP at all levels of structure, intragenic, intergenic, intrachromosomal, interchromosomal, and across whole genomes. In two of the three examples presented, specific DNA structural variations leading to biochemical, physiological, and pathological mechanisms are well defined. This proves the usefulness of the techniques involving interval mapping followed by substitution mapping using congenic strains. These classic techniques are compared to newer approaches using sophisticated statistical analysis on various segregating or outbred model-organism populations, which in some cases are uniquely useful in demonstrating the existence of higher-order interactions. It is speculated that hypertension as an outlier quantitative phenotype is dependent on higher-order genetic interactions. The obstacle to the identification of genetic elements and the biochemical/physiological mechanisms involved in higher-order interactions is not theoretical or technical but the lack of future resources to finish the job of identifying the individual genetic elements underlying the quantitative trait loci for BP and ascertaining their molecular functions. © 2019 American Physiological Society. Compr Physiol 9:1305-1337, 2019.
Collapse
Affiliation(s)
- John P Rapp
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Bina Joe
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
11
|
Identification of a Rat Mammary Tumor Risk Locus That Is Syntenic with the Commonly Amplified 8q12.1 and 8q22.1 Regions in Human Breast Cancer Patients. G3-GENES GENOMES GENETICS 2019; 9:1739-1743. [PMID: 30914425 PMCID: PMC6505137 DOI: 10.1534/g3.118.200873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Breast cancer risk is 31% heritable, yet the majority of the underlying risk factors remain poorly defined. Here, we used F2-linkage analysis in a rat mammary tumor model to identify a novel 11.2 Mb modifier locus of tumor incidence and burden on rat chromosome 5 (chr5: 15.4 – 26.6 Mb). Genomic and RNA sequencing analysis identified four differentially expressed candidates: TMEM68, IMPAD1, SDCBP, and RBM12B. Analysis of the human syntenic candidate region revealed that SDCBP is in close proximity to a previously reported genetic risk locus for human breast cancer. Moreover, analysis of the candidate genes in The Cancer Genome Atlas (TCGA) revealed that they fall within the commonly amplified 8q12.1 and 8q22.1 regions in human breast cancer patients and are correlated with worse overall survival. Collectively, this study presents novel evidence suggesting that TMEM68, IMPAD1, SDCBP, and RBM12B are potential modifiers of human breast cancer risk and outcome.
Collapse
|
12
|
Cosgarea I, Koelsch B, Fischer C, Griewank KG, van den Berg L, Kutritz A, Schadendorf D, Kindler-Röhrborn A. An Animal Model of Cutaneous Cyst Development Enables the Identification of Three Quantitative Trait Loci, Including the Homologue of a Human Locus (TRICY1). J Invest Dermatol 2019; 139:2235-2238.e5. [PMID: 31039361 DOI: 10.1016/j.jid.2019.03.1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Ioana Cosgarea
- Department of Dermatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany; Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Bernd Koelsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christine Fischer
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Klaus G Griewank
- Department of Dermatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Linda van den Berg
- Department of Biosciences (Genetics), Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Anja Kutritz
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrea Kindler-Röhrborn
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Abstract
The first and only published version of the rat reference genome sequence was RGSC3.1, accomplished by the Rat Genome Sequencing Project Consortium. Here we present the history of the community effort in the correction of sequence errors and filling missing gaps in the process of refining and providing researchers with a high-quality rat reference sequence. The genome assembly improvements, addition of different evidence resources over time, such as RNA-Seq data, and software development methodologies had a positive impact on the gene model annotations. Over the years we observed a great increase in the numbers of genes, protein coding sequences, predicted transcripts and transcript features. Before the sequencing of the rat genome was possible, first biochemical and next genomic markers like RAPD, AFLP, RFLP, and SSLP were fundamental in research studies involving cross-breeding between different rat strains, in finding the level of polymorphism, linkage mapping, and phylogeny. Linkage maps provide information on recombination rates, give insight into intra- and interspecies gene rearrangements, and help to identify Mendelian loci and Quantitative Trait Loci (QTL). In the 1990s many reports were published on the construction of rat linkage maps that incorporated increasing numbers of markers and facilitated the localization of disease loci. Current genetic monitoring and linkage mapping relies on single nucleotide polymorphisms (SNPs). The Rat Genome Database collects information on genetic variation from the worldwide community of rat researchers and provides tools for searching and retrieving these data. As of today we show details about almost 605 million variants coming from many studies in our Variant Visualizer tool.
Collapse
|