1
|
Borin GP, Oliveira JVDC. Assessing the intracellular primary metabolic profile of Trichoderma reesei and Aspergillus niger grown on different carbon sources. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:998361. [PMID: 37746225 PMCID: PMC10512294 DOI: 10.3389/ffunb.2022.998361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 09/26/2023]
Abstract
Trichoderma reesei and Aspergillus niger are efficient biological platforms for the production of various industrial products, including cellulases and organic acids. Nevertheless, despite the extensive research on these fungi, integrated analyses of omics-driven approaches are still missing. In this study, the intracellular metabolic profile of T. reesei RUT-C30 and A. niger N402 strains grown on glucose, lactose, carboxymethylcellulose (CMC), and steam-exploded sugarcane bagasse (SEB) as carbon sources for 48 h was analysed by proton nuclear magnetic resonance. The aim was to verify the changes in the primary metabolism triggered by these substrates and use transcriptomics data from the literature to better understand the dynamics of the observed alterations. Glucose and CMC induced higher fungal growth whereas fungi grown on lactose showed the lowest dry weight. Metabolic profile analysis revealed that mannitol, trehalose, glutamate, glutamine, and alanine were the most abundant metabolites in both fungi regardless of the carbon source. These metabolites are of particular interest for the mobilization of carbon and nitrogen, and stress tolerance inside the cell. Their concomitant presence indicates conserved mechanisms adopted by both fungi to assimilate carbon sources of different levels of recalcitrance. Moreover, the higher levels of galactose intermediates in T. reesei suggest its better adaptation in lactose, whereas glycolate and malate in CMC might indicate activation of the glyoxylate shunt. Glycerol and 4-aminobutyrate accumulated in A. niger grown on CMC and lactose, suggesting their relevant role in these carbon sources. In SEB, a lower quantity and diversity of metabolites were identified compared to the other carbon sources, and the metabolic changes and higher xylanase and pNPGase activities indicated a better utilization of bagasse by A. niger. Transcriptomic analysis supported the observed metabolic changes and pathways identified in this work. Taken together, we have advanced the knowledge about how fungal primary metabolism is affected by different carbon sources, and have drawn attention to metabolites still unexplored. These findings might ultimately be considered for developing more robust and efficient microbial factories.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
2
|
Liaw CC, Lo IW, Lin YC, Huang HT, Zhang LJ, Hsiao PC, Li TL, Kuo YH. Four cucurbitane glycosides taimordisins A–D with novel furopyranone skeletons isolated from the fruits of Momordica charantia. Food Chem X 2022; 14:100286. [PMID: 35330883 PMCID: PMC8938282 DOI: 10.1016/j.fochx.2022.100286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 10/31/2022] Open
Abstract
Four new cucurbitane-type triterpenoids glycosides were isolated from the fresh fruit of Momordica charantia and determined by NMR, HRESIMS, and biosynthesis. Taimordisins A and B possess rare bicyclic-fused and trifuso-centro-fused ring systems at side chain of the cucurbitane-type triterpenoids at the first time. Taimordisins A-D showed the inhibition of NO production by LPS-stimulated in RAW264.7 macrophage cells.
Four novel triterpene glycosides, taimordisins A–D (1–4), were discovered from fresh fruits of Taiwanese Momordica charantia. The chemical framework and relative stereochemistry of these four natural products were isolated, purified, and determined by using various separation and spectroscopy techniques. Each of them features a unique bicyclic-fused or trifuso-centro-fused ring system. Notably, 1 and 2 are cucurbitane-based compounds possessing a new C-24 and C-2″ carbon–carbon linkage with 5-hydroxy-2-(hydroxymethyl)tetrahydro-4H-pyran-4-one and 6-(hydroxymethyl)tetrahydro-4H-pyran-3,4,4-triol units, respectively, and represented an unprecedented molecular skeleton. In terms of biosynthesis, they all originate from a common precursor 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside. Of two sugar moieties, the one at 23-O-β-glucopyranoside grants each individual congener uniqueness likely through microbial symbiont-mediated intramolecular transformation into two major types of furo[2,3-b]pyranone and furo[3,2-c]pyranone derivatives. These new products possess desirable anti-inflammatory biological activities in addition to being generally regarded as safe.
Collapse
|
3
|
Abstract
Aspergillus fumigatus is a major opportunistic fungal pathogen of immunocompromised and immunocompetent hosts. To successfully establish an infection, A. fumigatus needs to use host carbon sources, such as acetate, present in the body fluids and peripheral tissues. However, utilization of acetate as a carbon source by fungi in the context of infection has not been investigated. This work shows that acetate is metabolized via different pathways in A. fumigatus and that acetate utilization is under the regulatory control of a transcription factor (TF), FacB. A. fumigatus acetate utilization is subject to carbon catabolite repression (CCR), although this is only partially dependent on the TF and main regulator of CCR CreA. The available extracellular carbon source, in this case glucose and acetate, significantly affected A. fumigatus virulence traits such as secondary metabolite secretion and cell wall composition, with the latter having consequences for resistance to oxidative stress, antifungal drugs, and human neutrophil-mediated killing. Furthermore, deletion of facB significantly impaired the in vivo virulence of A. fumigatus in both insect and mammalian models of invasive aspergillosis. This is the first report on acetate utilization in A. fumigatus, and this work further highlights the importance of available host-specific carbon sources in shaping fungal virulence traits and subsequent disease outcome, and a potential target for the development of antifungal strategies. IMPORTANCE Aspergillus fumigatus is an opportunistic fungal pathogen in humans. During infection, A. fumigatus is predicted to use host carbon sources, such as acetate, present in body fluids and peripheral tissues, to sustain growth and promote colonization and invasion. This work shows that A. fumigatus metabolizes acetate via different pathways, a process that is dependent on the transcription factor FacB. Furthermore, the type and concentration of the extracellular available carbon source were determined to shape A. fumigatus virulence determinants such as secondary metabolite secretion and cell wall composition. Subsequently, interactions with immune cells are altered in a carbon source-specific manner. FacB is required for A. fumigatus in vivo virulence in both insect and mammalian models of invasive aspergillosis. This is the first report that characterizes acetate utilization in A. fumigatus and highlights the importance of available host-specific carbon sources in shaping virulence traits and potentially subsequent disease outcome.
Collapse
|
4
|
de Assis LJ, Silva LP, Bayram O, Dowling P, Kniemeyer O, Krüger T, Brakhage AA, Chen Y, Dong L, Tan K, Wong KH, Ries LNA, Goldman GH. Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA. mBio 2021; 12:e03146-20. [PMID: 33402538 PMCID: PMC8545104 DOI: 10.1128/mbio.03146-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Filamentous fungi of the genus Aspergillus are of particular interest for biotechnological applications due to their natural capacity to secrete carbohydrate-active enzymes (CAZy) that target plant biomass. The presence of easily metabolizable sugars such as glucose, whose concentrations increase during plant biomass hydrolysis, results in the repression of CAZy-encoding genes in a process known as carbon catabolite repression (CCR), which is undesired for the purpose of large-scale enzyme production. To date, the C2H2 transcription factor CreA has been described as the major CC repressor in Aspergillus spp., although little is known about the role of posttranslational modifications in this process. In this work, phosphorylation sites were identified by mass spectrometry on Aspergillus nidulans CreA, and subsequently, the previously identified but uncharacterized site S262, the characterized site S319, and the newly identified sites S268 and T308 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was investigated. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 was not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. All sites were shown to be important for glycogen and trehalose metabolism. This study highlights the importance of CreA phosphorylation sites for the regulation of CCR. These sites are interesting targets for biotechnological strain engineering without the need to delete essential genes, which could result in undesired side effects.IMPORTANCE In filamentous fungi, the transcription factor CreA controls carbohydrate metabolism through the regulation of genes encoding enzymes required for the use of alternative carbon sources. In this work, phosphorylation sites were identified on Aspergillus nidulans CreA, and subsequently, the two newly identified sites S268 and T308, the previously identified but uncharacterized site S262, and the previously characterized site S319 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was characterized. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 is not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. This work characterized novel CreA phosphorylation sites under carbon catabolite-repressing conditions and showed that they are crucial for CreA protein turnover, control of carbohydrate utilization, and biotechnologically relevant enzyme production.
Collapse
Affiliation(s)
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, Brazil
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Ozgur Bayram
- Biology Department, Maynooth University, Maynooth, Kildare, Ireland
| | - Paul Dowling
- Biology Department, Maynooth University, Maynooth, Kildare, Ireland
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Yingying Chen
- Faculty of Health Science, University of Macau, Macau, China
| | - Liguo Dong
- Faculty of Health Science, University of Macau, Macau, China
| | - Kaeling Tan
- Faculty of Health Science, University of Macau, Macau, China
| | - Koon Ho Wong
- Faculty of Health Science, University of Macau, Macau, China
| | - Laure N A Ries
- University of Exeter, MRC Centre for Medical Mycology, Exeter, United Kingdom
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, Brazil
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
5
|
Gao T, He D, Liu X, Ji F, Xu J, Shi J. The pyruvate dehydrogenase kinase 2 (PDK2) is associated with conidiation, mycelial growth, and pathogenicity in Fusarium graminearum. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-00025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Pyruvate dehydrogenase kinase (PDK) is a mitochondrial enzyme in a variety of eukaryotes, including the plant pathogen Fusarium graminearum. This enzyme can reduce the oxidation of glucose to acetyl-coA by phosphorylation and selectively inhibits the activity of pyruvate dehydrogenase (PDH), which is a kind of pyruvate dehydrogenase complex (PDC). In this study, we investigated the F. graminearum pyruvate dehydrogenase kinase encoded by FgPDK2, which is a homologue of Neurospora crassa PDK2. The disruption of the FgPDK2 gene led to several phenotypic defects including effects on mycelial growth, conidiation, pigmentation, and pathogenicity. The mutants also showed decreased resistance to osmotic stress and cell membrane/wall-damaging agents. The FgPDK2 deletion mutant exhibited reduced virulence. All of these defects were restored by genetic complementation of the mutant with the complete FgPDK2 gene. Overall, the results demonstrated that FgPDK2 is crucial for the growth of F. graminearum and can be exploited as a potential molecular target for novel fungicides to control Fusarium head blight caused by F. graminearum.
Graphical abstract
Collapse
|
6
|
Ries LNA, Pardeshi L, Dong Z, Tan K, Steenwyk JL, Colabardini AC, Ferreira Filho JA, de Castro PA, Silva LP, Preite NW, Almeida F, de Assis LJ, dos Santos RAC, Bowyer P, Bromley M, Owens RA, Doyle S, Demasi M, Hernández DCR, Netto LES, Pupo MT, Rokas A, Loures FV, Wong KH, Goldman GH. The Aspergillus fumigatus transcription factor RglT is important for gliotoxin biosynthesis and self-protection, and virulence. PLoS Pathog 2020; 16:e1008645. [PMID: 32667960 PMCID: PMC7384679 DOI: 10.1371/journal.ppat.1008645] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that secretes an array of immune-modulatory molecules, including secondary metabolites (SMs), which contribute to enhancing fungal fitness and growth within the mammalian host. Gliotoxin (GT) is a SM that interferes with the function and recruitment of innate immune cells, which are essential for eliminating A. fumigatus during invasive infections. We identified a C6 Zn cluster-type transcription factor (TF), subsequently named RglT, important for A. fumigatus oxidative stress resistance, GT biosynthesis and self-protection. RglT regulates the expression of several gli genes of the GT biosynthetic gene cluster, including the oxidoreductase-encoding gene gliT, by directly binding to their respective promoter regions. Subsequently, RglT was shown to be important for virulence in a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA). Homologues of RglT and GliT are present in eurotiomycete and sordariomycete fungi, including the non-GT-producing fungus A. nidulans, where a conservation of function was described. Phylogenetically informed model testing led to an evolutionary scenario in which the GliT-based resistance mechanism is ancestral and RglT-mediated regulation of GliT occurred subsequently. In conclusion, this work describes the function of a previously uncharacterised TF in oxidative stress resistance, GT biosynthesis and self-protection in both GT-producing and non-producing Aspergillus species.
Collapse
Affiliation(s)
- Laure N. A. Ries
- Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lakhansing Pardeshi
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kaeling Tan
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine and Research and Training, University of Macau, Macau SAR, China
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
| | - Ana Cristina Colabardini
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaire A. Ferreira Filho
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Patricia A. de Castro
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lilian P. Silva
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Nycolas W. Preite
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Fausto Almeida
- Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Leandro J. de Assis
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Renato A. C. dos Santos
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Marilene Demasi
- Institute Butantan, Laboratory of Biochemistry and Biophysics, São Paulo, Brazil
| | - Diego C. R. Hernández
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Monica T. Pupo
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
| | - Flavio V. Loures
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Koon H. Wong
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, University of Macau, Macau SAR, China
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Bastos RW, Valero C, Silva LP, Schoen T, Drott M, Brauer V, Silva-Rocha R, Lind A, Steenwyk JL, Rokas A, Rodrigues F, Resendiz-Sharpe A, Lagrou K, Marcet-Houben M, Gabaldón T, McDonnell E, Reid I, Tsang A, Oakley BR, Loures FV, Almeida F, Huttenlocher A, Keller NP, Ries LNA, Goldman GH. Functional Characterization of Clinical Isolates of the Opportunistic Fungal Pathogen Aspergillus nidulans. mSphere 2020; 5:e00153-20. [PMID: 32269156 PMCID: PMC7142298 DOI: 10.1128/msphere.00153-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023] Open
Abstract
Aspergillus nidulans is an opportunistic fungal pathogen in patients with immunodeficiency, and virulence of A. nidulans isolates has mainly been studied in the context of chronic granulomatous disease (CGD), with characterization of clinical isolates obtained from non-CGD patients remaining elusive. This study therefore carried out a detailed biological characterization of two A. nidulans clinical isolates (CIs), obtained from a patient with breast carcinoma and pneumonia and from a patient with cystic fibrosis that underwent lung transplantation, and compared them to the reference, nonclinical FGSC A4 strain. Both CIs presented increased growth in comparison to that of the reference strain in the presence of physiologically relevant carbon sources. Metabolomic analyses showed that the three strains are metabolically very different from each other in these carbon sources. Furthermore, the CIs were highly susceptible to cell wall-perturbing agents but not to other physiologically relevant stresses. Genome analyses identified several frameshift variants in genes encoding cell wall integrity (CWI) signaling components. Significant differences in CWI signaling were confirmed by Western blotting among the three strains. In vivo virulence studies using several different models revealed that strain MO80069 had significantly higher virulence in hosts with impaired neutrophil function than the other strains. In summary, this study presents detailed biological characterization of two A. nidulanssensu stricto clinical isolates. Just as in Aspergillus fumigatus, strain heterogeneity exists in A. nidulans clinical strains that can define virulence traits. Further studies are required to fully characterize A. nidulans strain-specific virulence traits and pathogenicity.IMPORTANCE Immunocompromised patients are susceptible to infections with opportunistic filamentous fungi from the genus Aspergillus Although A. fumigatus is the main etiological agent of Aspergillus species-related infections, other species, such as A. nidulans, are prevalent in a condition-specific manner. A. nidulans is a predominant infective agent in patients suffering from chronic granulomatous disease (CGD). A. nidulans isolates have mainly been studied in the context of CGD although infection with A. nidulans also occurs in non-CGD patients. This study carried out a detailed biological characterization of two non-CGD A. nidulans clinical isolates and compared the results to those with a reference strain. Phenotypic, metabolomic, and genomic analyses highlight fundamental differences in carbon source utilization, stress responses, and maintenance of cell wall integrity among the strains. One clinical strain had increased virulence in models with impaired neutrophil function. Just as in A. fumigatus, strain heterogeneity exists in A. nidulans clinical strains that can define virulence traits.
Collapse
Affiliation(s)
- Rafael Wesley Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Taylor Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milton Drott
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Verônica Brauer
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Abigail Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's Associate Laboratory, Guimarães, Portugal
| | - Agustin Resendiz-Sharpe
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Marina Marcet-Houben
- Centre for Genomic Regulation, Barcelona, Spain
- Life Sciences Program, Barcelona Supercomputing Centre, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, Barcelona, Spain
- Life Sciences Program, Barcelona Supercomputing Centre, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Erin McDonnell
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Ian Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Flávio Vieira Loures
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Fausto Almeida
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Wang P, Ma L, Jin J, Zheng M, Pan L, Zhao Y, Sun X, Liu Y, Xing F. The anti-aflatoxigenic mechanism of cinnamaldehyde in Aspergillus flavus. Sci Rep 2019; 9:10499. [PMID: 31324857 PMCID: PMC6642104 DOI: 10.1038/s41598-019-47003-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B1 (AFB1), the predominant and most carcinogenic naturally polyketide, is mainly produced by Aspergillus flavus and Aspergillus parasiticus. Cinnamaldehyde has been reported for inhibiting the growth and aflatoxin biosynthesis in A. flavus. But its molecular mechanism of action still remains largely ambiguous. Here, the anti-aflatoxigenic mechanism of cinnamaldehyde in A. flavus was investigated via a comparative transcriptomic analysis. The results indicated that twenty five of thirty genes in aflatoxin cluster showed down-regulation by cinnamaldehyde although the cluster regulators aflR and aflS were slightly up-regulated. This may be due to the up-regulation of the oxidative stress-related genes srrA, msnA and atfB being caused by the significant down-regulation of the diffusible factor FluG. Cinnamaldehyde also inhibited aflatoxin formation by perturbing GPCRs and oxylipins normal function, cell wall biosynthesis and redox equilibrium. In addition, accumulation of NADPH due to up-regulation of pentose phosphate pathway drove acetyl-CoA to lipids synthesis rather than polyketides. Both GO and KEGG analysis suggested that pyruvate and phenylalanine metabolism, post-transcriptional modification and key enzymes biosynthesis might be involved in the suppression of AFB1 production by cinnamaldehyde. This study served to decipher the anti-aflatoxigenic properties of cinnamaldehyde in A. flavus and provided powerful evidence for its use in practice.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Longxue Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Mumin Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Lin Pan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China.
| |
Collapse
|
9
|
Ries LNA, Steenwyk JL, de Castro PA, de Lima PBA, Almeida F, de Assis LJ, Manfiolli AO, Takahashi-Nakaguchi A, Kusuya Y, Hagiwara D, Takahashi H, Wang X, Obar JJ, Rokas A, Goldman GH. Nutritional Heterogeneity Among Aspergillus fumigatus Strains Has Consequences for Virulence in a Strain- and Host-Dependent Manner. Front Microbiol 2019; 10:854. [PMID: 31105662 PMCID: PMC6492530 DOI: 10.3389/fmicb.2019.00854] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Abstract
Acquisition and subsequent metabolism of different carbon and nitrogen sources have been shown to play an important role in virulence attributes of the fungal pathogen Aspergillus fumigatus, such as the secretion of host tissue-damaging proteases and fungal cell wall integrity. We examined the relationship between the metabolic processes of carbon catabolite repression (CCR), nitrogen catabolite repression (NCR) and virulence in a variety of A. fumigatus clinical isolates. A considerable amount of heterogeneity with respect to the degree of CCR and NCR was observed and a positive correlation between NCR and virulence in a neutropenic mouse model of pulmonary aspergillosis (PA) was found. Isolate Afs35 was selected for further analysis and compared to the reference strain A1163, with both strains presenting the same degree of virulence in a neutropenic mouse model of PA. Afs35 metabolome analysis in physiological-relevant carbon sources indicated an accumulation of intracellular sugars that also serve as cell wall polysaccharide precursors. Genome analysis showed an accumulation of missense substitutions in the regulator of protease secretion and in genes encoding enzymes required for cell wall sugar metabolism. Based on these results, the virulence of strains Afs35 and A1163 was assessed in a triamcinolone murine model of PA and found to be significantly different, confirming the known importance of using different mouse models to assess strain-specific pathogenicity. These results highlight the importance of nitrogen metabolism for virulence and provide a detailed example of the heterogeneity that exists between A. fumigatus isolates with consequences for virulence in a strain-specific and host-dependent manner.
Collapse
Affiliation(s)
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Fausto Almeida
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Yoko Kusuya
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Xi Wang
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Lebanon, NH, United States
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Lebanon, NH, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|