1
|
Song N, Xia H, Yang X, Liu S, Xu L, Zhuang K, Yao L, Yang S, Chen X, Dai J. Transcriptome analysis and reverse engineering verification of SNZ3 Val125Ile and Pho3 Asn134Asp revealed the mechanism of adaptive laboratory evolution to increase the yield of tyrosol in Saccharomyces cerevisiae strain S26-AE2. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:29. [PMID: 40045317 PMCID: PMC11884060 DOI: 10.1186/s13068-025-02627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/15/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Tyrosol is an important drug precursor, and Saccharomyces cerevisiae is one of the main microorganisms that produces tyrosol. Although excessive metabolic modification increases the production of tyrosol, it also causes a decrease in the growth rate of yeast. Therefore, this study attempted to restore the growth of S. cerevisiae through adaptive evolution and further improve tyrosol production. RESULTS After the adaptive laboratory evolution of S. cerevisiae S26, three evolutionary strains were obtained. The biomass of strain S26-AE2 reached 17.82 g DCW/L in the presence of 100 g/L glucose, which was 15.33% higher than that of S26, and its tyrosol production reached 817.83 mg/L. The transcriptome analysis revealed that, upon exposure to 100 g/L glucose, the S26-AE2 strain may reduce the transcriptional regulation of glucose repression through decreased HXK2 expression. The expression of genes related to pyruvate synthesis was increased in strain S26-AE2. Meanwhile, the expression levels of most tricarboxylic acid cycle-related genes in S26-AE2 were increased when cultured with 20 g/L glucose. Furthermore, the amount of tyrosol produced by strain S26 with the SNZ3Val125Ile mutation increased by 17.01% compared with that of the control strain S26 following exposure to 100 g/L glucose. CONCLUSIONS In this study, a strain, S26-AE2, with good growth and tyrosol production performance was obtained by adaptive evolution. The transcriptome analysis revealed that the differences in the expression of genes involved in metabolic pathways in adaptive evolutionary strains may be related to yeast growth and tyrosol production. Further reverse engineering verified that the mutation of SNZ3 promoted tyrosol synthesis in S. cerevisiae in glucose-rich medium. This study provides a theoretical basis for the metabolic engineering of S. cerevisiae to synthesise tyrosol and its derivatives.
Collapse
Affiliation(s)
- Na Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan, 430068, Hubei, People's Republic of China
| | - Huili Xia
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Xiaoxue Yang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan, 430068, Hubei, People's Republic of China
| | - Siyao Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan, 430068, Hubei, People's Republic of China
| | - Linglong Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan, 430068, Hubei, People's Republic of China
| | - Kun Zhuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan, 430068, Hubei, People's Republic of China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Lan Yao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan, 430068, Hubei, People's Republic of China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, People's Republic of China
| | - Xiong Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan, 430068, Hubei, People's Republic of China.
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan, 430068, Hubei, People's Republic of China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Deng X, Li H, Wu A, He J, Mao X, Dai Z, Tian G, Cai J, Tang J, Luo Y. Composition, Influencing Factors, and Effects on Host Nutrient Metabolism of Fungi in Gastrointestinal Tract of Monogastric Animals. Animals (Basel) 2025; 15:710. [PMID: 40075993 PMCID: PMC11898470 DOI: 10.3390/ani15050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Intestinal fungi, collectively referred to as mycobiota, constitute a small (0.01-2%) but crucial component of the overall intestinal microbiota. While fungi are far less abundant than bacteria in the gut, the volume of an average fungal cell is roughly 100-fold greater than that of an average bacterial cell. They play a vital role in nutrient metabolism and maintaining intestinal health. The composition and spatial organization of mycobiota vary across different animal species and are influenced by a multitude of factors, including age, diet, and the host's physiological state. At present, quantitative research on the composition of mycobiota in monogastric animals remains scarce, and investigations into the mechanisms underlying their metabolic functions are also relatively restricted. This review delves into the distribution characteristics of mycobiota, including Candida albicans, Saccharomyces cerevisiae, Kazachstania slooffiae, in monogastric animals, the factors influencing their composition, and the consequent impacts on host metabolism and health. The objective is to offer insights for a deeper understanding of the nutritional significance of intestinal fungi in monogastric animals and to explore the mechanisms by which they affect host health in relation to inflammatory bowel disease (IBD), diarrhea, and obesity. Through a systematic evaluation of their functional contributions, this review shifts our perception of intestinal fungi from overlooked commensals to key components in gut ecosystem dynamics, emphasizing their potential in personalized metabolic control regulation and the enhancement of disease prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (H.L.); (A.W.); (J.H.); (X.M.); (Z.D.); (G.T.); (J.C.); (J.T.)
| |
Collapse
|
3
|
De Vitto H, Belfon KKJ, Sharma N, Toay S, Abendroth J, Dranow DM, Lukacs CM, Choi R, Udell HS, Willis S, Barrera G, Beyer O, Li TD, Hicks KA, Torelli AT, French JB. Characterization of an Acinetobacter baumannii Monofunctional Phosphomethylpyrimidine Kinase That Is Inhibited by Pyridoxal Phosphate. Biochemistry 2024. [PMID: 38306231 PMCID: PMC11426312 DOI: 10.1021/acs.biochem.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Thiamin and its phosphate derivatives are ubiquitous molecules involved as essential cofactors in many cellular processes. The de novo biosynthesis of thiamin employs the parallel synthesis of 4-methyl-5-(2-hydroxyethyl)thiazole (THZ-P) and 4-amino-2-methyl-5(diphosphooxymethyl) pyrimidine (HMP) pyrophosphate (HMP-PP), which are coupled to generate thiamin phosphate. Most organisms that can biosynthesize thiamin employ a kinase (HMPK or ThiD) to generate HMP-PP. In nearly all cases, this enzyme is bifunctional and can also salvage free HMP, producing HMP-P, the monophosphate precursor of HMP-PP. Here we present high-resolution crystal structures of an HMPK from Acinetobacter baumannii (AbHMPK), both unliganded and with pyridoxal 5-phosphate (PLP) noncovalently bound. Despite the similarity between HMPK and pyridoxal kinase enzymes, our kinetics analysis indicates that AbHMPK accepts HMP exclusively as a substrate and cannot turn over pyridoxal, pyridoxamine, or pyridoxine nor does it display phosphatase activity. PLP does, however, act as a weak inhibitor of AbHMPK with an IC50 of 768 μM. Surprisingly, unlike other HMPKs, AbHMPK catalyzes only the phosphorylation of HMP and does not generate the diphosphate HMP-PP. This suggests that an additional kinase is present in A. baumannii, or an alternative mechanism is in operation to complete the biosynthesis of thiamin.
Collapse
Affiliation(s)
- Humberto De Vitto
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Kafi K J Belfon
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Nandini Sharma
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Sarah Toay
- Department of Biological Chemistry, Grinnell College, Grinnell, Iowa 50112, United States
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - David M Dranow
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Christine M Lukacs
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Ryan Choi
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Hannah S Udell
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Sydney Willis
- Department of Chemistry, Rollins College, Winter Park, Florida 32789, United States
| | - George Barrera
- Department of Chemistry and Biochemistry, Weber State University, Ogden, Utah 84408, United States
| | - Olive Beyer
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Teng Da Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Katherine A Hicks
- Chemistry Department, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Andrew T Torelli
- Department of Chemistry, Ithaca College, Ithaca, New York 14850, United States
| | - Jarrod B French
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| |
Collapse
|
4
|
Muller G, de Godoy VR, Dário MG, Duval EH, Alves-Jr SL, Bücker A, Rosa CA, Dunn B, Sherlock G, Stambuk BU. Improved Sugarcane-Based Fermentation Processes by an Industrial Fuel-Ethanol Yeast Strain. J Fungi (Basel) 2023; 9:803. [PMID: 37623574 PMCID: PMC10456111 DOI: 10.3390/jof9080803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
In Brazil, sucrose-rich broths (cane juice and/or molasses) are used to produce billions of liters of both fuel ethanol and cachaça per year using selected Saccharomyces cerevisiae industrial strains. Considering the important role of feedstock (sugar) prices in the overall process economics, to improve sucrose fermentation the genetic characteristics of a group of eight fuel-ethanol and five cachaça industrial yeasts that tend to dominate the fermentors during the production season were determined by array comparative genomic hybridization. The widespread presence of genes encoding invertase at multiple telomeres has been shown to be a common feature of both baker's and distillers' yeast strains, and is postulated to be an adaptation to sucrose-rich broths. Our results show that only two strains (one fuel-ethanol and one cachaça yeast) have amplification of genes encoding invertase, with high specific activity. The other industrial yeast strains had a single locus (SUC2) in their genome, with different patterns of invertase activity. These results indicate that invertase activity probably does not limit sucrose fermentation during fuel-ethanol and cachaça production by these industrial strains. Using this knowledge, we changed the mode of sucrose metabolism of an industrial strain by avoiding extracellular invertase activity, overexpressing the intracellular invertase, and increasing its transport through the AGT1 permease. This approach allowed the direct consumption of the disaccharide by the cells, without releasing glucose or fructose into the medium, and a 11% higher ethanol production from sucrose by the modified industrial yeast, when compared to its parental strain.
Collapse
Affiliation(s)
- Gabriela Muller
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Victor R. de Godoy
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Marcelo G. Dário
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Eduarda H. Duval
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Sergio L. Alves-Jr
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Augusto Bücker
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Carlos A. Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| | - Barbara Dunn
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; (B.D.); (G.S.)
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; (B.D.); (G.S.)
| | - Boris U. Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| |
Collapse
|
5
|
Eliodório KP, Cunha GCDGE, Lino FSDO, Sommer MOA, Gombert AK, Giudici R, Basso TO. Physiology of Saccharomyces cerevisiae during growth on industrial sugar cane molasses can be reproduced in a tailor-made defined synthetic medium. Sci Rep 2023; 13:10567. [PMID: 37386049 PMCID: PMC10310838 DOI: 10.1038/s41598-023-37618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
Fully defined laboratory media have the advantage of allowing for reproducibility and comparability of results among different laboratories, as well as being suitable for the investigation of how different individual components affect microbial or process performance. We developed a fully defined medium that mimics sugarcane molasses, a frequently used medium in different industrial processes where yeast is cultivated. The medium, named 2SMol, builds upon a previously published semi-defined formulation and is conveniently prepared from some stock solutions: C-source, organic N, inorganic N, organic acids, trace elements, vitamins, Mg + K, and Ca. We validated the 2SMol recipe in a scaled-down sugarcane biorefinery model, comparing the physiology of Saccharomyces cerevisiae in different actual molasses-based media. We demonstrate the flexibility of the medium by investigating the effect of nitrogen availability on the ethanol yield during fermentation. Here we present in detail the development of a fully defined synthetic molasses medium and the physiology of yeast strains in this medium compared to industrial molasses. This tailor-made medium was able to satisfactorily reproduce the physiology of S. cerevisiae in industrial molasses. Thus, we hope the 2SMol formulation will be valuable to researchers both in academia and industry to obtain new insights and developments in industrial yeast biotechnology.
Collapse
Affiliation(s)
- Kevy Pontes Eliodório
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, 380, São Paulo, SP, 05508-010, Brazil
| | - Gabriel Caetano de Gois E Cunha
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, 380, São Paulo, SP, 05508-010, Brazil
| | | | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Andreas Karoly Gombert
- School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, Campinas, 13083-862, Brazil
| | - Reinaldo Giudici
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, 380, São Paulo, SP, 05508-010, Brazil
| | - Thiago Olitta Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, 380, São Paulo, SP, 05508-010, Brazil.
| |
Collapse
|
6
|
Genetic analysis using vitamin B 6 antagonist 4-deoxypyridoxine uncovers a connection between pyridoxal 5'-phosphate and coenzyme A metabolism in Salmonella enterica. J Bacteriol 2022; 204:e0060721. [PMID: 35099985 DOI: 10.1128/jb.00607-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is an essential cofactor for organisms in all three domains of life. Despite the central role of PLP, many aspects of vitamin B6 metabolism, including its integration with other biological pathways, are not fully understood. In this study, we examined the metabolic perturbations caused by the vitamin B6 antagonist 4-deoxypyridoxine (dPN) in a ptsJ mutant of Salmonella enterica serovar Typhimurium LT2. Our data suggest that PdxK (PL/PN/PM kinase, EC 2.7.1.35) phosphorylates dPN to 4-deoxypyridoxine 5'-phosphate (dPNP), which in turn can compromise the de novo biosynthesis of PLP. The data are consistent with the hypothesis that accumulated dPNP inhibits GlyA (serine hydroxymethyltransferase, EC 2.1.2.1) and/or GcvP (glycine decarboxylase, EC 1.4.4.2), two PLP-dependent enzymes involved in the generation of one-carbon units. Our data suggest this inhibition leads to reduced flux to coenzyme A precursors and subsequently lower synthesis of CoA and thiamine. This study uncovers a link between vitamin B6 metabolism and the biosynthesis of CoA and thiamine, highlighting the integration of biochemical pathways in microbes. IMPORTANCE PLP is a ubiquitous cofactor required by enzymes in diverse metabolic networks. The data herein expand our understanding of the toxic effects of dPN, a vitamin B6 antagonist often used to mimic vitamin B6 deficiency and to study PLP-dependent enzyme kinetics. In addition to de novo PLP biosynthesis, we define a metabolic connection between vitamin B6 metabolism and synthesis of thiamine and CoA. This work provides a foundation for the use of dPN to study vitamin B6 metabolism in other organisms.
Collapse
|
7
|
Pyridoxal and α-ketoglutarate independently improve function of Saccharomyces cerevisiae Thi5 in the metabolic network of Salmonella enterica. J Bacteriol 2021; 204:e0045021. [PMID: 34662241 DOI: 10.1128/jb.00450-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial metabolism is often considered modular, but metabolic engineering studies have shown that transferring pathways, or modules, between organisms is not always straightforward. The Thi5-dependent pathway(s) for synthesis of the pyrimidine moiety of thiamine from Saccharomyces cerevisiae and Legionella pneumophila functioned differently when incorporated into the metabolic network of Salmonella enterica. Function of Thi5 from Saccharomyces cerevisiae (ScThi5) required modification of the underlying metabolic network, while LpThi5 functioned with the native network. Here we probe the metabolic requirements for heterologous function of ScThi5 and report a strong genetic and physiological evidence for a connection between alpha-ketoglutarate (αKG) levels and ScThi5 function. The connection was built with two classes of genetic suppressors linked to metabolic flux or metabolite pool changes. Further, direct modulation of nitrogen assimilation through nutritional or genetic modification implicated αKG levels in Thi5 function. Exogenous pyridoxal similarly improved ScThi5 function in S. enterica. Finally, directly increasing αKG and PLP with supplementation improved function of both ScThi5 and relevant variants of Thi5 from Legionella pneumophila (LpThi5). The data herein suggest structural differences between ScThi5 and LpThi5 impact their level of function in vivo and implicate αKG in supporting function of the Thi5 pathway when placed in the heterologous metabolic network of S. enterica. IMPORTANCE Thiamine biosynthesis is a model metabolic node that has been used to extend our understanding of metabolic network structure and individual enzyme function. The requirements for in vivo function of the Thi5-dependent pathway found in Legionella and yeast are poorly characterized. Here we suggest that αKG modulates function of the Thi5 pathway in S. enterica and provide evidence that structural variation between ScThi5 and LpThi5 contribute to their functional differences in a Salmonella enterica host.
Collapse
|
8
|
Minebois R, Lairón-Peris M, Barrio E, Pérez-Torrado R, Querol A. Metabolic differences between a wild and a wine strain of Saccharomyces cerevisiae during fermentation unveiled by multi-omic analysis. Environ Microbiol 2021; 23:3059-3076. [PMID: 33848053 DOI: 10.1111/1462-2920.15523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Saccharomyces cerevisiae, a widespread yeast present both in the wild and in fermentative processes, like winemaking. During the colonization of these human-associated fermentative environments, certain strains of S. cerevisiae acquired differential adaptive traits that enhanced their physiological properties to cope with the challenges imposed by these new ecological niches. The advent of omics technologies allowed unveiling some details of the molecular bases responsible for the peculiar traits of S. cerevisiae wine strains. However, the metabolic diversity within yeasts remained poorly explored, in particular that existing between wine and wild strains of S. cerevisiae. For this purpose, we performed a dual transcriptomic and metabolomic comparative analysis between a wild and a wine S. cerevisiae strains during wine fermentations performed at high and low temperatures. By using this approach, we could correlate the differential expression of genes involved in metabolic pathways, such as sulfur, arginine and thiamine metabolisms, with differences in the amounts of key metabolites that can explain some important differences in the fermentation performance between the wine and wild strains.
Collapse
Affiliation(s)
- Romain Minebois
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| | - María Lairón-Peris
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain.,Departament de Genètica, Universitat de València, C/Doctor Moliner, 50, Burjassot, Valencia, E-46100, Spain
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| |
Collapse
|
9
|
Vila-Santa A, Islam MA, Ferreira FC, Prather KLJ, Mira NP. Prospecting Biochemical Pathways to Implement Microbe-Based Production of the New-to-Nature Platform Chemical Levulinic Acid. ACS Synth Biol 2021; 10:724-736. [PMID: 33764057 DOI: 10.1021/acssynbio.0c00518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Levulinic acid is a versatile platform molecule with potential to be used as an intermediate in the synthesis of many value-added products used across different industries, from cosmetics to fuels. Thus far, microbial biosynthetic pathways having levulinic acid as a product or an intermediate are not known, which restrains the development and optimization of a microbe-based process envisaging the sustainable bioproduction of this chemical. One of the doors opened by synthetic biology in the design of microbial systems is the implementation of new-to-nature pathways, that is, the assembly of combinations of enzymes not observed in vivo, where the enzymes can use not only their native substrates but also non-native ones, creating synthetic steps that enable the production of novel compounds. Resorting to a combined approach involving complementary computational tools and extensive manual curation, in this work, we provide a thorough prospect of candidate biosynthetic pathways that can be assembled for the production of levulinic acid in Escherichia coli or Saccharomyces cerevisiae. Out of the hundreds of combinations screened, five pathways were selected as best candidates on the basis of the availability of substrates and of candidate enzymes to catalyze the synthetic steps (that is, those steps that involve conversions not previously described). Genome-scale metabolic modeling was used to assess the performance of these pathways in the two selected hosts and to anticipate possible bottlenecks. Not only does the herein described approach offer a platform for the future implementation of the microbial production of levulinic acid but also it provides an organized research strategy that can be used as a framework for the implementation of other new-to-nature biosynthetic pathways for the production of value-added chemicals, thus fostering the emerging field of synthetic industrial microbiotechnology.
Collapse
Affiliation(s)
- Ana Vila-Santa
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - M. Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Leicestershire, LE11 3TU Loughborough, United Kingdom
| | - Frederico C. Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Kristala L. J. Prather
- Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nuno P. Mira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
10
|
Jacobus AP, Stephens TG, Youssef P, González-Pech R, Ciccotosto-Camp MM, Dougan KE, Chen Y, Basso LC, Frazzon J, Chan CX, Gross J. Comparative Genomics Supports That Brazilian Bioethanol Saccharomyces cerevisiae Comprise a Unified Group of Domesticated Strains Related to Cachaça Spirit Yeasts. Front Microbiol 2021; 12:644089. [PMID: 33936002 PMCID: PMC8082247 DOI: 10.3389/fmicb.2021.644089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 01/05/2023] Open
Abstract
Ethanol production from sugarcane is a key renewable fuel industry in Brazil. Major drivers of this alcoholic fermentation are Saccharomyces cerevisiae strains that originally were contaminants to the system and yet prevail in the industrial process. Here we present newly sequenced genomes (using Illumina short-read and PacBio long-read data) of two monosporic isolates (H3 and H4) of the S. cerevisiae PE-2, a predominant bioethanol strain in Brazil. The assembled genomes of H3 and H4, together with 42 draft genomes of sugarcane-fermenting (fuel ethanol plus cachaça) strains, were compared against those of the reference S288C and diverse S. cerevisiae. All genomes of bioethanol yeasts have amplified SNO2(3)/SNZ2(3) gene clusters for vitamin B1/B6 biosynthesis, and display ubiquitous presence of a particular family of SAM-dependent methyl transferases, rare in S. cerevisiae. Widespread amplifications of quinone oxidoreductases YCR102C/YLR460C/YNL134C, and the structural or punctual variations among aquaporins and components of the iron homeostasis system, likely represent adaptations to industrial fermentation. Interesting is the pervasive presence among the bioethanol/cachaça strains of a five-gene cluster (Region B) that is a known phylogenetic signature of European wine yeasts. Combining genomes of H3, H4, and 195 yeast strains, we comprehensively assessed whole-genome phylogeny of these taxa using an alignment-free approach. The 197-genome phylogeny substantiates that bioethanol yeasts are monophyletic and closely related to the cachaça and wine strains. Our results support the hypothesis that biofuel-producing yeasts in Brazil may have been co-opted from a pool of yeasts that were pre-adapted to alcoholic fermentation of sugarcane for the distillation of cachaça spirit, which historically is a much older industry than the large-scale fuel ethanol production.
Collapse
Affiliation(s)
- Ana Paula Jacobus
- Laboratory for Genomics and Experimental Evolution of Yeasts, Institute for Bioenergy Research, São Paulo State University, Rio Claro, Brazil
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Pierre Youssef
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Raul González-Pech
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Michael M Ciccotosto-Camp
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine E Dougan
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yibi Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Luiz Carlos Basso
- Biological Science Department, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo (USP), Piracicaba, Brazil
| | - Jeverson Frazzon
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jeferson Gross
- Laboratory for Genomics and Experimental Evolution of Yeasts, Institute for Bioenergy Research, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
11
|
Dong C, Schultz JC, Liu W, Lian J, Huang L, Xu Z, Zhao H. Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in Saccharomyces cerevisiae via genome-scale engineering. Metab Eng 2021; 66:319-327. [PMID: 33713797 DOI: 10.1016/j.ymben.2021.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
S-Adenosyl-L-methionine (SAM) is an important intracellular metabolite and widely used for treatment of various diseases. Although high level production of SAM had been achieved in yeast, novel metabolic engineering strategies are needed to further enhance SAM production for industrial applications. Here genome-scale engineering (GSE) was performed to identify new targets for SAM overproduction using the multi-functional genome-wide CRISPR (MAGIC) system, and the effects of these newly identified targets were further validated in industrial yeast strains. After 3 rounds of FACS screening and characterization, numerous novel targets for enhancing SAM production were identified. In addition, transcriptomic and metabolomic analyses were performed to investigate the molecular mechanisms for enhanced SAM accumulation. The best combination (upregulation of SNZ3, RFC4, and RPS18B) improved SAM productivity by 2.2-fold and 1.6-fold in laboratory and industrial yeast strains, respectively. Using GSE of laboratory yeast strains to guide industrial yeast strain engineering presents an effective approach to design microbial cell factories for industrial applications.
Collapse
Affiliation(s)
- Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - J Carl Schultz
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
12
|
Paxhia MD, Swanson MS, Downs DM. Functional characterization of the HMP-P synthase of Legionella pneumophila (Lpg1565). Mol Microbiol 2020; 115:539-553. [PMID: 33034117 DOI: 10.1111/mmi.14622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/30/2022]
Abstract
The production of the pyrimidine moiety in thiamine synthesis, 2-methyl-4-amino-5-hydroxymethylpyrimidine phosphate (HMP-P), has been described to proceed through the Thi5-dependent pathway in Saccharomyces cerevisiae and other yeast. Previous work found that ScThi5 functioned poorly in a heterologous context. Here we report a bacterial ortholog to the yeast HMP-P synthase (Thi5) was necessary for HMP synthesis in Legionella pneumophila. Unlike ScThi5, LpThi5 functioned in vivo in Salmonella enterica under multiple growth conditions. The protein LpThi5 is a dimer that binds pyridoxal-5'-phosphate (PLP), apparently without a solvent-exposed Schiff base. A small percentage of LpThi5 protein co-purifies with a bound molecule that can be converted to HMP. Analysis of variant proteins both in vivo and in vitro confirmed that residues in sequence motifs conserved across bacterial and eukaryotic orthologs modulate the function of LpThi5. IMPORTANCE: Thiamine is an essential vitamin for the vast majority of organisms. There are multiple strategies to synthesize and salvage this vitamin. The predominant pathway for synthesis of the pyrimidine moiety of thiamine involves the Fe-S cluster protein ThiC. An alternative pathway utilizes Thi5, a novel enzyme that uses PLP as a substrate. The Thi5-dependent pathway is poorly characterized in yeast and has not been characterized in Bacteria. Here we demonstrate that a Thi5-dependent pathway is necessary for thiamine biosynthesis in Legionella pneumophila and provide biochemical data to extend knowledge of the Thi5 enzyme, the corresponding biosynthetic pathway, and the role of metabolic network architecture in optimizing its function.
Collapse
Affiliation(s)
- Michael D Paxhia
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
13
|
The Role of YggS in Vitamin B 6 Homeostasis in Salmonella enterica Is Informed by Heterologous Expression of Yeast SNZ3. J Bacteriol 2020; 202:JB.00383-20. [PMID: 32900833 DOI: 10.1128/jb.00383-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 11/20/2022] Open
Abstract
YggS (COG0325) is a pyridoxal 5'-phosphate (PLP)-binding protein proposed to be involved in homeostasis of B6 vitamers. In Salmonella enterica, lack of yggS resulted in phenotypes that were distinct and others that were similar to those of a yggS mutant of Escherichia coli Like other organisms, yggS mutants of S. enterica accumulate endogenous pyridoxine 5'-phosphate (PNP). Data herein show that strains lacking YggS accumulated ∼10-fold more PLP in growth medium than a parental strain. The deoxyxylulose 5-phosphate-dependent biosynthetic pathway for PLP and the PNP/pyridoxamine 5'-phosphate (PMP) oxidase credited with interconverting B6 vitamers were replaced with a single PLP synthase from Saccharomyces cerevisiae The impact of a yggS deletion on the intracellular and extracellular levels of B6 vitamers in this restructured strain supported a role for PdxH in PLP homeostasis and led to a general model for YggS function in PLP-PMP cycling. Our findings uncovered broader consequences of a yggS mutation than previously reported and suggest that the accumulation of PNP is not a direct effect of lacking YggS but rather a downstream consequence.IMPORTANCE Pyridoxal 5'-phosphate (PLP) is an essential cofactor for enzymes in all domains of life. Perturbations in PLP or B6 vitamer content can be detrimental, notably causing B6-dependent epilepsy in humans. YggS homologs are broadly conserved and have been implicated in altered levels of B6 vitamers in multiple organisms. The biochemical activity of YggS, expected to be conserved across domains, is not yet known. Herein, a simplified heterologous pathway minimized metabolic variables and allowed the dissection of this system to generate new metabolic knowledge that will be relevant to understanding YggS.
Collapse
|
14
|
Pyridoxal Reductase, PdxI, Is Critical for Salvage of Pyridoxal in Escherichia coli. J Bacteriol 2020; 202:JB.00056-20. [PMID: 32253339 DOI: 10.1128/jb.00056-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and an essential cofactor in all organisms. In Escherichia coli, PLP is synthesized via the deoxyxylulose 5-phosphate (DXP)-dependent pathway that includes seven enzymatic steps and generates pyridoxine 5'-phosphate as an intermediate. Additionally, E. coli is able to salvage pyridoxal, pyridoxine, and pyridoxamine B6 vitamers to produce PLP using kinases PdxK/PdxY and pyridox(am)ine phosphate oxidase (PdxH). We found that E. coli strains blocked in PLP synthesis prior to the formation of pyridoxine 5'-phosphate (PNP) required significantly less exogenous pyridoxal (PL) than strains lacking pdxH and identified the conversion of PL to pyridoxine (PN) during cultivation to be the cause. Our data showed that PdxI, shown to have PL reductase activity in vitro, was required for the efficient salvage of PL in E. coli The pdxI+ E. coli strains converted exogenous PL to PN during growth, while pdxI mutants did not. In total, the data herein demonstrated that PdxI is a critical enzyme in the salvage of PL by E. coli IMPORTANCE The biosynthetic pathway of pyridoxal 5'-phosphate (PLP) has extensively been studied in Escherichia coli, yet limited information is available about the vitamin B6 salvage pathway. We show that the protein PdxI (YdbC) is the primary pyridoxal (PL) reductase in E. coli and is involved in the salvage of PL. The orthologs of PdxI occur in a wide range of bacteria and plants, suggesting that PL reductase in the B6 salvage pathway is more widely distributed than previously expected.
Collapse
|
15
|
Perli T, Wronska AK, Ortiz‐Merino RA, Pronk JT, Daran J. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast 2020; 37:283-304. [PMID: 31972058 PMCID: PMC7187267 DOI: 10.1002/yea.3461] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Chemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B-group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term "vitamin" is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.
Collapse
Affiliation(s)
- Thomas Perli
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Anna K. Wronska
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | | | - Jack T. Pronk
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Jean‐Marc Daran
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|